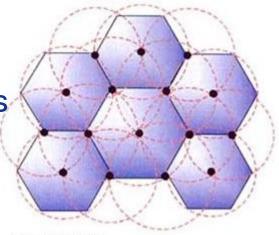


Throughput-Outage Tradeoff of Wireless One-Hop Caching Networks with Affiliation

Tengfei Hou 2017.5.8

- Background and Motivation
- Network Model
- Outer Bound
 - Constraints and Analysis
 - ➢ Results

- Constraints and Analysis
- ➢ Results
- Sum up
- Future



Background and Motivation

- Increased number of users
- -> Increase the bandwidth
- -> build more base stations

-Ineffective

-too expensive

- Caching network: Storage -> Bandwidth
- Realistic network users' relationships are evolving over time

Background and Motivation

- Current research:
 - Based on static network :
 - Disadvantages :
 - Can not reflect evolutionary properties
 - Difference:
 - Evolution improve cache performance

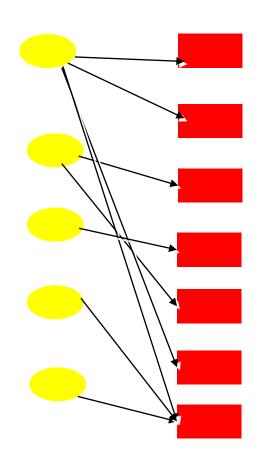
My Work

For the first time to study the evolution of network outage and throughput tradeoffs

To observe the impact to the tradeoff under the affiliation

Definition

- Outage: $p_o = \frac{1}{n} \mathbb{E}[\mathsf{N}_o] = \frac{1}{n} \sum_{u \in \mathcal{U}} \mathbb{P}\left(\mathbb{E}[T_u | \mathsf{f}, \mathsf{G}] = 0\right).$
- A user node in a period of time the throughput is expected to be 0, called the point in outage, the ratio of the points in outage for all user.
- (a) **Throughput**: $T_u = \sum_{v:(u,v)\in A} c_{u,v} 1\{f_u \in G(v)\}$
- The amount of data transferred between users per slot. (The file is composed of packets)



Definition

Outer Bound: The upper limit of the throughput associated with the outage. (Transmission interference limit)

Inner Bound: The lower limit of the throughput associated with the outage. (File requirements limit)

Affiliation model

B(Q,U)

Fix two integers $c_q, c_u > 0$, and let $\beta \in (0, 1)$.

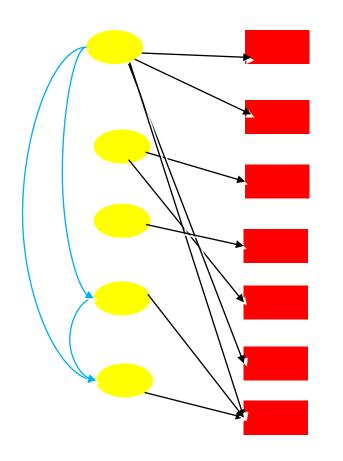
At time 0, the bipartite graph $B_0(Q, U)$ is a simple graph with at least $c_q c_u$ edges, where each node in Qhas at least c_q edges and each node in U has at least c_u edges.

At time t > 0:

(Evolution of Q) With probability β :

(Arrival) A new node q is added to Q.

(*Preferentially chosen Prototype*) A node $q' \in Q$ is chosen as *prototype* for the new node, with probability proportional to its degree.


(*Edge copying*) c_q edges are "copied" from q'; that is, c_q neighbors of q', denoted by u_1, \ldots, u_{c_q} , are chosen uniformly at random (without replacement), and the edges $(q, u_1), \cdots, (q, u_{c_q})$ are added to the graph.

(Evolution of U) With probability $1 - \beta$, a new node u is added to U following a symmetrical process, adding c_u edges to u.

G(Q, E)

Fix integers $c_q, c_u, s > 0$, and let $\beta \in (0, 1)$.

At time 0, $G_0(Q, E)$ consists of the subset Q of the vertices of $B_0(Q, U)$, and two vertices have an edge between them for every neighbor in U that they have in common in $B_0(Q, U)$.

At time t > 0:

(Evolution of Q) With probability β :

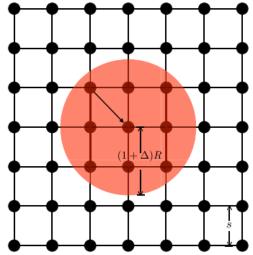
(Arrival) A new node q is added to Q.

(Edges via Prototype) An edge between q and another node in Q is added for every neighbor that they have in common in B(Q, U) (note that this is done after the edges for q are determined in B).

(Edges via evolution of U) With probability $1 - \beta$:

A new edge is added between two nodes q_1 and q_2 if the new node added to $u \in U$ is a neighbor of both q_1 and q_2 in B(Q, U).

(Preferentially Chosen Edges) A set of s nodes q_{i_1}, \ldots, q_{i_s} is chosen, each node independently of the others (with replacement), by choosing vertices with probability proportional to their degrees, and the edges $(q, q_{i_1}), \ldots, (q, q_{i_s})$ are added to G(Q, E).



Caching network

The network consists of files and users in a two-dimensional plane.

File cache in the user, the user does not have their own documents to make a request,

In the absence of interference a certain range of transmission.

Definition

- There important parameters
- n:Number of users

M:Number of files

α (γ): Ratio of File increase

Theorem 4. For the bipartite graph B(Q, U) generated after n steps, almost surely, when $n \to \infty$, the degree sequence of nodes in Q (resp. U) follows a power law distribution with exponent $\alpha = -2 - \frac{c_q\beta}{c_u(1-\beta)} \left(\alpha = -2 - \frac{c_u(1-\beta)}{c_q\beta}\right)$, for every degree smaller than n^{γ} , with $\gamma < \frac{1}{4 + \frac{c_q\beta}{c_u(1-\beta)}} \left(\gamma < \frac{1}{4 + \frac{c_u(1-\beta)}{c_q\beta}}\right)$.

Outer bound result

$$T^*_{sum}(g) \leq T^{ub}_{sum}(g) = \frac{16}{\Delta^2} \cdot k \cdot c \cdot H(\gamma - 1, 1, n) \left[(1 - p^{1b}(g)^{(1 + \frac{2}{3}\Delta^2)g}) \frac{n}{g} \right]_{q}$$
$$g = \Theta(m^{\alpha}) = \rho m^{\alpha}$$

0r

$$T = \frac{c}{\alpha} M^{-\gamma} \frac{n^{-\alpha}}{m^{-\alpha}} + o\left(\frac{n^{-\alpha}}{m^{-\alpha}}\right)$$
$$1 - \left(\frac{Mn}{m}\right)^{1-\gamma} \le p \le 1.$$

- After adding evolution analysis
- Number of files has resulted in a small increase in the impact of Throughput.
- In some case, Evolution of the file growth ratio is high, the Throughput increase.
- Number of users has little effect.

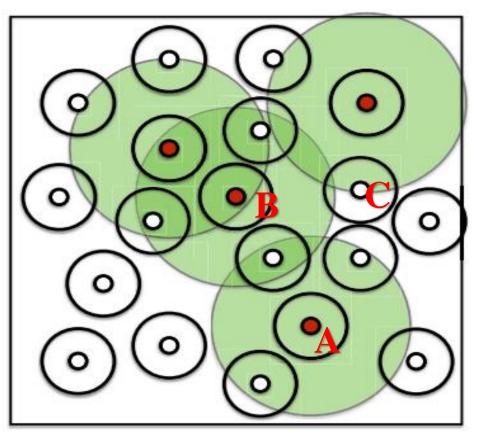
Inner bound result

$$T = C \cdot \frac{1}{\gamma^3} \frac{1 - 2g_c(m)^{1 - \gamma}}{g_c(m)}$$

$$p_0 = 2^x \left(1 - \frac{x}{2^{\frac{x}{g_c(m)M}}}\right)$$

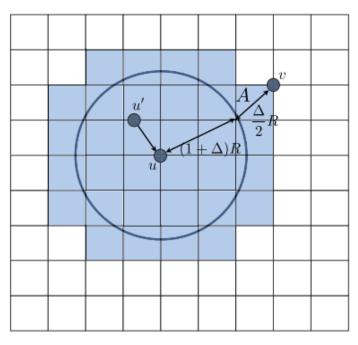
$$g_c(m) = \frac{x}{\log_2 \frac{x}{1 - \frac{p_0}{2^x}}} \qquad \qquad x = \frac{m\gamma}{E[n_2(t)]}$$

- After adding evolution analysis,
- Number of files has resulted in a small increase in the impact of Throughput.
- Evolution of the file growth ratio is high, the Throughput increase.
- Number of users has little effect.


transfer speed the user's degree in the B graph File requirements the file's degree in the B graph B $g_R(m)$: All the points within O a transmission radius 0 Space constraints : no transfer around $\frac{\Delta}{2}R$

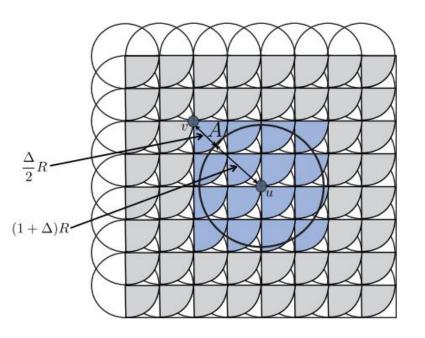
distance from a transmitting point

No transfer around $\frac{\Delta}{2}R$ distance from a transmitting point.


$$d(j,l) \ge d(k,j) - d(k,l)$$

$$\ge (1 + \Delta)R - d(k,l)$$

$$\ge (1 + \Delta)R - R = \Delta R.$$



The distance between transmissions gives the upper limit of the number of transmissions to get the tradeoff between throughput and outage

$$T^*_{sum}(g) \le T^{ub}_{sum}(g) = \frac{16}{\Delta^2} \cdot k \cdot c \cdot H(\gamma - 1, 1, n) \left[(1 - p^{1b}(g)^{(1 + \frac{2}{3}\Delta^2)g}) \frac{n}{g} \right]_{e^1}$$

$$[(1 - p^{lb}(g)^{(1 + \frac{2}{3}\Delta^2)g})\frac{n}{g}]$$

- $g_R(m)$ and m has there relationship
 $1g = o(m^{\alpha}) 2g = \omega(m^{\alpha}) 3g = \Theta(m^{\alpha}) = \rho m^{\alpha}$
- The first and second case has a little effect compare with T
- Third case: (M is caching size)

(1)
$$\rho > \frac{1}{M}, \gamma \uparrow, T \uparrow$$

(a) $(2)\rho > \frac{1}{M}, \gamma \uparrow, T \downarrow$

When compared with users, the files number too large:

$$T_{\text{sum}} = C \cdot \mathbb{E}[\mathsf{L}]$$

$$\stackrel{(a)}{\leq} C \sum_{u=1}^{n} \sum_{f=1}^{Mn} P_r(f) = Cn \frac{H(\gamma, 1, Mn)}{H(\gamma, 1, m)}$$

$$1 - \left(\frac{Mn}{m}\right)^{1-\gamma} \leq p \leq 1.$$

But its P is impossible to decrease

- transfer speed the user's degree in the B graph File requirements the file's degree in the B graph User to user the user's degree in the G graph (users can transfer with each other if they have edge between them)
- Cluster: $g_{c}(m)$
- The constraint is that only the required files can be found in the cluster.

- Optimal caching:
- the caching distribution Pc that maximizes the probability that any user u ∈ U finds its requested file inside its corresponding cluster

$$p_u^c = E[l_u] = P(F_{g_c(m)}^u)$$

= $\sum_{f=1}^m P_r(f)((1 - (1 - P_c(f)))^{ME[n_2(t) \ \frac{m}{g_c(m)}] - M})$
= $\sum_{f=1}^m \frac{f^{-\gamma}}{H(\gamma, 1, n)}((1 - (1 - P_c(f)))^{ME[n_2(t) \ \frac{m}{g_c(m)}] - M})$

Lagrangian function

$$\mathcal{L}(P_c,\xi) = \sum_{f=1}^{m} P_r(f)(1 - P_c(f))^{Mg - M} + \xi' \left(\sum_{f=1}^{m} P_c(f) - 1\right)$$
$$P_c(f) = \frac{1 + \xi - (\xi - 1) \cdot 2^{\frac{1}{\xi}}}{\xi} \qquad \qquad \xi = \frac{M \cdot E[n_2(t) \frac{g_c(m)}{m}] - M - 1}{\gamma}$$

- Sound (T, p) with the caching $\overline{T}_{sum} = C \cdot E[L] = k \cdot E[n_1(t)] \cdot \frac{E[total \ nuber \ of \ clusters] \cdot P(W>0)}{K}$ $= K \cdot cH(\gamma 1, 1, n) \cdot \frac{E[total \ nuber \ of \ clusters] \cdot P(W>0)}{K}$
- W is the number of potential links.
- Maximize the probability of P $P(W > 0) \geq \frac{E[W]^2}{E[W^2]}$
- Minimize $E[W^2]$ and Maximize E[W]

$$P(W > 0) = \frac{2\gamma - 2}{(\gamma - 2)^2} \frac{1 - 2(g_c(m))^{1 - \gamma}}{1 - g_c(m)^{1 - \gamma} + 2\gamma - 2}$$

③ Outage:

Use the simplest probability theory

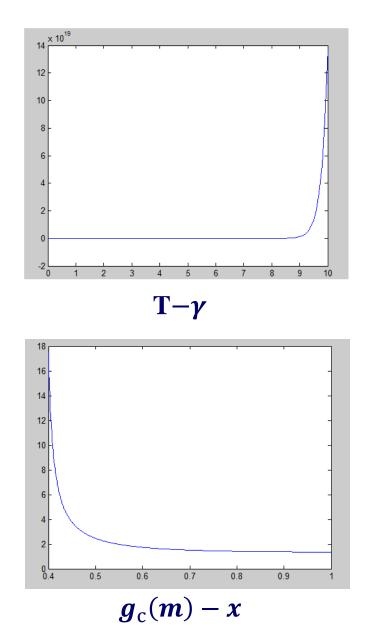
 $p_0 = P(文件不存在) + P(连接不存在) - P(文件不存在且连接也不存在)$ $<math>p_0 = A + B - AB$

•
$$\mathbf{A} = \prod_{1}^{g_c(m)M} (1 - P_c(f))$$
 $\mathbf{B} = \prod_{1}^{g_c(m)} (1 - x^{-\gamma})$

 $P_c(f)$ is the optimal caching

Using Inequality to change,

$$p_{0} = \prod_{1}^{g_{c}(m)M} [1 - P_{c}(f)] \qquad p_{0} = 2^{x} \left(1 - \frac{x}{2^{\frac{x}{g_{c}(m)M}}}\right)$$
$$= (1 - \frac{1}{\xi}) \left[1 - \frac{1 + \xi - (\xi - 1) \cdot 2^{\frac{1}{\xi}}}{\xi}\right]^{g_{c}(m)M - 1} \qquad \frac{m\gamma}{E[n_{2}(t)]} = x$$


 $\ensuremath{^{\textcircled{\tiny \ensuremath{\mathbb{S}}}}}$ Plot the $g_c(m)$ and γ

$$T = C \cdot \frac{1}{\gamma^3} \frac{1 - 2g_c(m)^{1-\gamma}}{g_c(m)}$$

$$g_c(m) = \frac{x}{\log_2 \frac{x}{1 - \frac{p_0}{2^x}}} \qquad x = \frac{m\gamma}{E[n_2(t)]}$$

⊕ $g_c(m)$ ↑, T ↓

In and $\gamma(\alpha)$ make
Throughput increase

Sum up

- After adding evolution analysis
- In the case that propagation radius large

- Number of files has resulted in a small increase in the impact of Throughput.
- Evolution of the file growth ratio is high, the Throughput increase.
- Number of users has little effect.

Future

❀ Gap :

the gap between inner bound and outer bound is not close.

Complete :

the cases which is talked are not Include all the circumstances.

Experiment

Reference

- [1] Silvio Lattanzi, D Sivakumar "Affiliation Networks", in STOC2009 December 13,2010
- [2]Mingyue Ji, Giuseppe Caire, Andreas F.Molisch "Throughput-Outage Tradeoff of Wireless One-Hop Caching Networks " in IEEE TRANSACTIONS ON INFORMATION THEORY Vol 61, NO.12,December 2015

Thank you !

