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The Transport Service: Services

 Transport layer services (1 ik 55) :

— To provide efficient, reliable, and cost-effective
service to its users, normally processes in the
application layer.

— To make use of the services provided by the network
layer.
e T

ancnnrt o
ne u CLLLDPUL L Ull

_s\
\../
=

software within the transport 1ayer that does the work.
Its positions:

— In the OS kernel, 1n a separate user process, in a
library package bound to network applications, or

— On the network interface card.



The Transport Service: Services

The network, transport and application layers
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The Transport Service: Services

e There are two types transport services
— Connection-oriented transport service
— Connectionless transport service

e The similarities between transport services and network
Services

— The connection—oriented service 1s similar to the
connection-oriented network service in many ways:

e Establishment, - data transfer, 2 release;
e Addressing;
* Flow control

— The connectionless transport service 1s also similar to
the connectionless network service.



The Transport Service: Services

e The differences between transport services and network
services. Why are there two distinct layers?

— The transport code runs entirely on the user’s machines,
but the network layer mostly runs on the routers which
are usually operated by the carrier.

— Network layer has problems (losing packets, router
crashing, ...)

— The transport layer improves the QOS of the network
layer.

— => The transport service is more reliable than the
network service.

— => Applications programmers can write code according
to a standard set of transport service primitives and
have these programs work on a wide variety of
networks.



The Transport Service: Hypothetical Primitives

e The transport layer provides some operations to applications
programs, 1.€., a transport service interface.

e Each transport service has its own interface.

e The transport service 1s similar to the network service, but
there are also some important differences:

— Network service models real network = unreliable.
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— Network services are for network  developers.
Transport services are for application developers.



The Transport Service: Hypothetical Primitives

Primitive Packet sent Meaning
LISTEN (none) Block until some process tries to connect
CONNECT CONNECTION REQ. Actively attempt to establish a connection
SEND DATA Send information
RECEIVE (none) Block until a DATA packet arrives
DISCONNECT | DISCONNECTION REQ. | This side wants to release the connection




The Transport Service: Hypothetical Primitives

How to use these primitives for an application?

. Server App: LISTEN
e Client App: CONNECT
e Client <SEND/RECEIVE—>  Server
e Client Transport < TPDU - Server Transport
— Client network layer € Packets—> Server network layer
— Client data link layer € Frames = Server data link layer

Client/Server: DISCONNECT



The Transport Service: Hypothetical Primitives

Nesting of Segments, packets, and frames

Frame Packet TPDU
header header header
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The Transport Service: Hypothetical Primitives

Connection establishment and connection release

Connection request Connect primitive
TPDU received executed
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The Transport Service: Berkeley Sockets

Primitive Meaning
SOCKET Create a new communication end point
BIND Attach a local address to a socket
LISTEN Announce willingness to accept connections; give queue size
ACCEPT Block the caller until a connection attempt arrives
CONNECT | Actively attempt to establish a connection
SEND Send some data over the connection
RECEIVE Receive some data from the connection
CLOSE Release the connection




The Transport Service: Berkeley Sockets

The C/S Application

— Server: SOCKET/BIND/LISTEN/ACCEPT
— Client: SOCKET/CONNECT

— C/S: SEND/RECEIVE

— C/S: CLOSE (symmetric)



The Transport Service: An example

IFServer.c

[FClient.c



ELEMENTS OF
TRANSPORT PROTOCOLS

Addressing

Connection Establishment
Connection Release

Error Control and Flow Control
Multiplexing

Crash Recovery



Elements of Transport Protocols

Transport protocol and data link protocol
e Similarities: Error control, sequencing, and flow control
e Differences
— Environment: physical communication channel/subnet
— Addressing: implicit/explicit
— Connection establishment: simple/complicated
— Storage capacity: no/yes (unpredictable/predictable)
— Buffering and flow control: amount

Router Router Subnet

AN /
* \Physical ° \Host

communication channel

(a) (b)



Elements of Transport Protocols: Addressing

How to address?
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Elements of Transport Protocols: Addressing

« NSAP: Network service access points
— IP (32 bits)

TSAP: Transport service access point
— Port (16 bits)

 How to find out the server’s TSAP

— Some TSAP addresses are so famous that they are
fixed.

— Process server

e To listen to a set of TSAPs at the same time.
* To dispatch the request to the right server.

— Process server + name server (directory server, 114)



Elements of Transport Protocols: Addressing

Host 1 Host 2 Host 1 Host 2

ime-
of-day
server

Process Process
Server Server
/ I\ AN

/

TSAP

Layer

((
J))
1
))
({
))
({
))
((
)
((
J))
((
J))
((

J))

(a) (b)



Elements of Transport Protocols:
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Connection establishment sounds easy, but ...

e Naive approach:

— One sends a CONNECTION REQUEST TPDU to the
other and wait for a CONNECTION ACCEPTED reply.

— If ok, done; otherwise, retry.
— Possible nightmare:

e A user establishes a connection with a bank, sends
messages telling the bank to transfer a large amount of
money to the account of a not-entirely-trustworthy
person, and then releases the connection.

 Moreover, assume each packet in scenario 1s
duplicated and stored in the subnet.

— = delayed duplicates.
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Possible solutions for solving delayed duplicates

e To give each connection a connection i1dentifier (1.e., a
sequence number incremented for each connection
established) chosen by the initiating party and put in
each TPDU, including the one requesting the connection.

e To use throw away transport addresses. Each time a
transport address 1s needed, a new one 1s generated.
When a connection 1s released, the address 1s discarded
and never used again.

e To use sequence number and age
— To Iimit packet lifetime.
— To use the sequence number
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 Packet lifetime can be restricted to a known maximum
using one of the following techniques

— Restricted subnet design.
— Putting a hop counter 1n each packet.

— Timestamping each packet. (router synchronization
problem)

e In practice, we will need to guarantee not only that a
packet 1s dead, but also that all acknowledgements to it
are also dead, so we will now introduce T, which 1s
some small multiple of the true maximum packet
lifetime.



Elements of Transport Protocols:
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To ensure that two identically numbered TPDUs
are never outstanding at the same time:
1. To equip each host with a time-of-day clock

* Each clock 1s assumed to take the form of a binary
counter that increments itself at uniform intervals.

e The number of bits in the counter must equal or
exceed the number of bits in the sequence numbers.

e The clock 1s assumed to continue running even 1f
the host goes down.

* The clocks at different hosts need not be
synchronized.



Elements of Transport Protocols:
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To ensure that two identically numbered TPDUs
are never outstanding at the same time:

2. When a connection is setup, the low order k bits of
the clock are used as the 1nitial sequence number
( also k bits). Each connection starts numbering 1ts
TPDUs with a different 1nitial sequence number. The

sequence space should be so large that by the time

mhe nd old TPDI ¢ with L\a
SCQUCIICC NUIMIOCTS wWidp arouid, 01 1 riJus with the

same sequence number are long gone.

3. Once both transport entities have agreed on the

initial sequence number, any sliding window protocol
can be used for data flow control.
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A problem occurs when a host crashes. When it
comes up again, its transport entity does not
know where it was in the sequence space.

— To require the transport entities to be 1dle for T
seconds after a recovery to let all old TPDUs die off.
(In a complex internetwork, T may be large, so this
strategy 1s unattractive.)

— To avoid requiring T sec of dead time after a crash, 1t
1S necessary to introduce a new restriction on the use
of sequence numbers.



Elements f Transport Protocols:
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Restriction on the sequence numbers ?

* Let T (the maximum packet lifetime) be 60 sec and let the
clock tick once per second. The initial sequence number
for a connection opened at time X will be X.

o Att=30sec, an ordinary data TPDU being sent on (a
previously opened) connection 5 (called as TPDU X)) 1s

gﬂrpn sequence number 80.
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o After sending TPDU X, the host crashes and then quickly
restarts.

e Att = 60sec, it begins reopening connections 0 through 4.



Elements f Transport Protocols:
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At t = 70sec, it reopens connection using initial sequence
number 70 as required.

During the next 15 sec 1t sends data TPDUs 70 through 80.
Thus at t=85sec, a new TPDU with sequence number 80 and
connection 5 has been injected into the subnet.

= TPDU X and TPDU 80.

To prevent sequence numbers from being used for a time
T before their potential use as initial sequence numbers.
The illegal combinations of time and sequence number
are called as the forbidden region. Before sending any
TPDU on any connection, the transport entity must read
the clock and check to see that it is no in the forbidden
region.
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Elements of Transport Protocols:
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e Too fast
 Too slow

e = (Solution for the delayed TPDU)

Before sending every TPDU,

the transport entity must check to see if it is about to
enter the forbidden region,

and if so, either delay the TPDU for T sec or
resynchronize the sequence numbers.



Elements of Transport Protocols:
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e Three-way handshake for connection establishment

— Normal operation.

— Old duplicate CONNECTION REQUEST appearing
out of nowhere.

— Duplicate CONNECTION REQUEST and duplicate
ACK.

e Conclusion: there is no combination of old

CONNECTION REQUEST, CONNECTION
ACCEPTED, or other TPDUs that can cause the
protocol to fail and have a connection setup by accident

when no one wants it.
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Elements of Transport Protocols:
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e Asymmetric release and symmetric release

— Asymmetric release: When one part hangs up, the
connection 1s broken.

— Symmetric release: to treat the connection as two
separate unidirectional connections and require each
one to be released separately.

e Asymmetric release 1s abrupt and may result in data loss
(See the next slide)

* One way to avoid data loss 1s to use symmetric release.



e Abrupt disconnection with loss of data

Time

Host 1 Host 2

—

No data are
delivered after
a disconnect
request




Elements of Transport Protocols:
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 Symmetric release does the job when each process has a
fixed amount of data to send and clearly knows when 1t has
sent 1t.

e Symmetric release has its problems if determining that all
the work has been done and the connection should be
terminated 1s not so obvious.

Blue ® Blue
e The two

B army
#2
army

problem

Ih White army %




Elements of Transport Protocols:
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Connection Release
 Two army-problem: A white army 1s encamped 1n a valley.
On both of the surrounding hillsides are blue armies.

one blue army < white army < two blue armies

* Does a a protocol exist that allows the blue armies to win?
— Two-way handshake

The commander of blue army #1: “I propose we attack at down
on March 29. How about 1t?”

The commander of blue army #2: “OK.”
—> Will the attack happen?
— Three-way handshake,

— N-way handshake
— =»No protocol exists that works.

o Substitute “disconnect™ for “attack”. If neither side is prepared
to disconnect until it 1s convinced that the other side is prepared to
disconnect too, the disconnection will never happen.



(a) Normal case of three-way handshake
(b) Final ACK lost

Host 1 Host 2 Host 1 Host 2
Send DR DR Send DR \DR‘
+ start timer \ + start timer
Send DR Send DR
‘y + start timer ‘V + start timer
Release Release 5
conneaction connection °
L J
[ ]
[ ]
Send ACK W‘ .
[ ]
Release Send ACK A&‘ :
connection (Tim&out)
release
connection




(c) Response lost
(d) Response lost and subsequent DRs Lost

Host 1 Host 2 Host 1 Host 2

Send DR w‘ Send DR \DR‘
+ start timer a Send DR & + start timer Send DR &
* ﬁ : : ' ‘D/ start timer * | starttimer
D

( Timeout)

[ ]
[ ]
Send DH \R‘ Send DR & ( Til’h’eout) :
+ start timer start fimer sand DR S :
‘y + start timer *% .
Releage : :
connection . pt
. :

Send ACK

L]
W Release (N Tirﬁeouts) (Tim&out)

connection release release
connection connection

©) (@)



Elements of Transport Protocols:
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e Automatic disconnect rule

— If no TPDUSs have arrived for a certain number of
seconds, the connection 1s then automatically
disconnect.

la

— Thus, 1f one side ever disconnects, the other side will
detect the lack of activity and also disconnect.

e Conclusion: releasing a connection without data loss 1s
not nearly as simple as it first appears.



Elements of Transport Protocols:

| D (~Antral and E]f\‘17 (N ~Antrnl
11101 LUVUIlIUUUVU1 A1l 11UV LT VUlliuvul

Error control 1s ensuring that the data is delivered with the
desired level of reliability, usually that all of the data 1s
delivered without any errors.

e Similarity: In both layers, error control has to be performed.

e Difference: The link layer checksum protects a frame while
it crosses a single link. The transport layer checksum
protects a segment while it crosses an entire network path. It
1s an end-to-end check, which 1s not the same as having a
check on every link.



Elements of Transport Protocols:
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Flow control in data link layer and transport layer

e Similarity: In both layers a sliding window or other scheme
is needed on each connection to keep a fast transmitter from
overrunning a slow receiver.

e Difference: A router usually has relative few lines, whereas
a host may have numerous connections.

Buffering

 The sender: The sender must buffer all TPDUs sent 1f the
network service 1s unreliable. The sender must buffer all
TPDUs sent 1f the receiver cannot guarantee that every
incoming TPDU will be accepted.

e The receiver: If the receiver has agreed to do the buffering,
there still remains the question of the buffer size.
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Buffer sizes
(a) Chained fixed-size buffers.

(b) Chained variable-sized buffers.
(¢) One large circular buffer per connection.
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} TPDU 3

> TPDU 4

Unused
space
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 The optimum trade-off between sender buffering
and receiver buffering depends on the type of traffic
carried by the connection.

— For low-bandwidth bursty traffic, it 1s better to buffer
at the sender,

— For high-bandwidth smooth traffic, it is better to
buffer at the receiver.

— As connections are opened and closed, and as the
traffic pattern changes, the sender and receiver need
to dynamically adjust their buffer allocation.

— Dynamic buffer allocation.



Dynamic buffer allocation (receiver’s buffering capacity).
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Message

< request 8 buffers>
<ack = 15, buf = 4>
<seq = 0, data = mO>
<seq =1, data=m1>
<seq = 2, data = m2>
<ack =1, buf = 3>
<seq = 3, data = m3>
<seq = 4, data = m4>
<seq = 2, data = m2>
<ack = 4, buf = 0>
<ack =4, buf = 1>
<ack = 4, buf = 2>
<seq = 5, data = m5>
<seq = 6, data = m6>
<ack = 6, buf = 0>
<ack = 6, buf = 4>

bttt bbb

Comments

A wants 8 buffers

B grants messages 0-3 only

A has 3 buffers left now

A has 2 buffers left now

Message lost but A thinks it has 1 left
B acknowledges 0 and 1, permits 2-4
A has 1 buffer left

A has 0 buffers left, and must stop

A times out and retransmits
Everything acknowledged, but A still blocked
A may now send 5

B found a new buffer somewhere

A has 1 buffer left

A is now blocked again

A is still blocked

Potential deadlock
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 When buffer space no longer limits the maximum flow,
another bottleneck will appear: the carrying capacity of
the subnet.

— The sender dynamically adjusts the window size to
match the network's carrying capacity.

— In order to adjust the window size periodically, the
sender could monitor both parameters and then
compute the desired window size.



Elements of Transport Protocols:
Multiplexing
e Multiplexing and demultiplexing

— Multiplexing: Application layer =» Transport layer
=>» Network layer =»Data link layer =»Physical layer

— Demultiplexing: Physical layer =» Data link layer
=>» Network layer =» Transport layer =» Application
layer

e Two multiplexing:
— Upward multiplexing
— Downward multiplexing (See the next slide)
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Elements of Transport Protocols:
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Recovery from network and router crash 1s
straightforward.

Recovery from host crash 1s difficult.

Assume that a client 1s sending a long file to a file
server using a simple stop-and -wait protocol.

— Part way through the transmission, the server crashes.

— The server might send a broadcast TPDU to all other
hosts, announcing that 1t had just crashed and
requesting that its clients inform 1t of the status of all
open connections.

— Each client can be 1in one of two states: one TPDU
outstanding, S1, or no TPDUs outstanding, SO.



Elements of Transport Protocols:
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e Some situations

— The client should retransmit only 1f has an
unacknowledged TPDU outstanding (S1) when 1t
learns the crash.

e [f a crash occurs after the acknowledgement has
been sent but before the write has been done, the

client will receive the acknowledgement and thus
be in state SO. = LOST. Problem!

e [f a crash occurs after the write has been done but
before the acknowledgement has been sent, the
client will not receive the acknowledgement and
thus be in state S1. = Dup. Problem!

e For more, see the next slide



Elements of

Strategy used by

Transport Protocols:

Strategy used by receiving host

First ACK, then write

h o U4

PaYaYa S VA=)
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First write, then ACK

sending host AC(W) AWC C(AW) C(WA) W AC WC(A)
Always retransmit OK DUP OK OK DUP DUP
Never retransmit LOST OK LOST LOST OK OK
Retransmit in SO OK DUP LOST LOST DUP OK
Retransmit in S1 LOST OK OK OK OK DUP

= Protocol functions correctly

DUP = Protocol generates a duplicate message
LOST = Protocol loses a message




Elements of Transport Protocols:
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e No matter how the sender and receive are programmed,

there are always situations where the protocol fails to
recover properly.

 In more general terms, recovery from a layer N
crash can only be done by layer N+1 and only if the
higher layer retains enough status information.



Congestion Control™

e Desirable Bandwidth Allocation
e Regulating the sending rate

e Wireless Issues



Congestion Control:
Desirable Bandwidth Allocation

e Efficiency and Power
(a) Goodput and (b) delay as a function of offered load
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Congestion Control:
Desirable Bandwidth Allocation

e To analyze the desirable bandwidth allocation,
Kleinrock (1979) proposed the metric of power,

load
delay

power =

e Power

— will initially rise with offered load, as delay remains small and
roughly constant,

— but will reach a maximum and

— fall as delay grows rapidly.

e The load with the highest power represents an efficient
load for the transport entity to place on the network.



Congestion Control:
Max-Min Fairness

 How to divide bandwidth between different transport senders:

— The first consideration 1s to ask what this problem has to do
with congestion control.

— A second consideration 1s what a fair portion means for flows
in a network. The form of fairness that is often desired for
network usage 1s max-min fairness.

— A third consideration is the level over which to consider

fairness.
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Congestion Control:
Desirable Bandwidth Allocation

Convergence: A final criterion is that the congestion
control algorithm converge quickly to a fair and
efficient allocation of bandwidth.

Bandwidth allocation

1 4 9
Time (secs)



Congestion Control:
Regulating the sending rate

(a) A fast network feeding a low-capacity recerver.
(b) A slow network feeding a high-capacity receiver.
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Congestion Control:
Regulating the sending rate

e Signals of some congestion control protocol

Protocol Signal Explicit? | Precise?
XCP Rate to use Yes Yes
TCP with ECN Congestion warning Yes No
FAST TCP End-to-end delay Mo Yes
Compound TCP | Packet loss & end-to-end delay Mo Yes
CUBIC TCFP Packet loss Mo MNo
TCP Packet loss Mo MNo




Congestion Control:
Regulating the sending rate

Additive increase
100% |~ and decrease

- '\.\ //f \
g ‘*{ ,” Faimess line
+
E / " Optimal point
o 2 P Multiplicative increase
g Cd q\/ and decrease
:. r
P BN Efficiency line
,,/ \.\f‘
0 100%
User 1’s bandwidth

Additive and multiplicative bandwidth adjustments.



e Used

Usar2's bandwidth %

0

Congestion Control:
Regulating the sending rate

in TCP
[
L otart -
Y TN
#x" Faimess line
ST
Ji s .. Optimal point
.-'____*" w‘
i ~_  Efficiency line
ff s ", -‘lll
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0 User 1's bandwidth 100%

Legend:

/-’ = Additive increase
(up at 45%)

»~ = Multiplicative decrease
(line points to orgin)

Additive Increase Multiplicative Decrease { AIMD) control law.



Congestion Control:
Wireless Issues

Analyses by Padhye et al. (1998) show that the throughput goes
up as the inverse square-root of the packet loss rate.

What this means in practice is that the loss rate for fast TCP
connections 1s very small; 1% 1s a moderate loss rate, and by the
time the loss rate reaches 10% the connection has effectively
stopped working.

However, for wireless networks such as 802.11 LANSs, frame loss
rates of at least 10% are common.

This difference means that, absent protective measures,
congestion control schemes that use packet loss as a signal will
unnecessarily throttle connections that run over wireless links to
very low rates.



Congestion Control:
Wireless Issues

There are two aspects to note. First, the sender does not necessarily know that
the path includes a wireless link, since all it sees 1s the wired link to which it 1s
attached.

The second aspect 1s a puzzle. The figure shows two mechanisms that are
driven by loss: link layer frame retransmissions, and transport layer congestion
control. TIMESCALE

Transport with end-to-end congestion control (loss = congestion)

‘ . —Wired link —Wireless link ‘
- [

.
! et — S g

Sender Receiver

| ol

Link layer retransmission
(loss = transmission error)

Congestion control over a path with a wireless link.



THE INTERNET TRANSPORT
PROTOCOLS: UDP, RPC, RTP

Two main transport protocols in the Internet
— Connectionless protocol (UDP)
— Connection-oriented protocol (TCP)
UDP (User Datagram protocol)
RPC (Remote Procedure Call)
RTP (Real-time Transport Protocol)



The Internet Transport Protocols: UDP

 UDP (RFC768) provides a way for applications to

— send encapsulated IP datagrams and

— send them without having to establish a connection.
e UDP transmits segments consisting of an 8-byte header

followed by the payload.
- 32 Bits B
| | | | | | | | | | | | ] | | | | | | | | | | | | | | | | ] | |
Source port Destination port
UDP length UDP checksum
m UDP

+ Multiplexing and demultiplexing using ports.

¢ No flow control, error control or retransmission.

¢ Applications: RPC, RTP, DNS (Domain Name System)



The Internet Transport Protocols: RPC/UDP

 RPC (Remote Procedure Call) allows programs to call
procedures located on remote hosts.

— When a process on machine 1 calls a procedure on
machine 2, the calling process on 1 1s suspended and
execution of the called procedure takes place on 2

— Information can be transported from the caller to the
callee 1n the parameters and can come back in the
procedure result.

— No message passing 1s visible to the programmer.

 The idea behind RPC is to make a remote procedure
call look as much as possible like a local one.

C Proc €= C Stub €<= S Stub €<= S Proc



The Internet Transport Protocols: RPC/UDP

Client CPU
= Client
@v stub
— |2

S

erver CPU

Operating system \

Server,
stub

AT
A |server

4

-

A Operating system

_/

N

Network




The Internet Transport Protocols: RPC/UDP

The steps 1n making an RPC
e Step 1 1s the client calling the client stub.

e Step 2 1s the client stub packing the parameters into a
message (marshaling) and making a system call to send
the message.

e Step 3 1s the kernel sending the message from the client
machine to the server machine.

e Step 4 1s the kernel passing the incoming packet to the
server stub and unpacking the packet to extract the
parameters (unmarshaling).

e Step 5 1s the server stub calling the server procedure with
the unmarshaled parameters.

* The reply traces the same path 1n the other direction.



The Internet Transport Protocols: RPC/UDP

e A few snakes hiding under the grass (RPC)
— The use of pointer parameters.

— Some problems for weakly-typed languages (The
length of an array).

— It 1s not always possible to deduce the types of the
parameters, not even from a formal specification or
the code itself. (printf)

— The use of global variables.

e >Some restrictions are needed to make RPC work
well in practice.

e RPC/TCP vs RPC/UDP



The Internet Transport Protocols: RTP/UDP

e Multimedia applications such as Internet radio, Internet
telephony, music-on-demand, videoconferencing, video-on-
demand, require real-time transport protocols. = RTP
(Real-time Transport Protocol) (RFC1889)

e The RTP 1s in user space and runs over UDP. The RTP Ops:

— The multimedia applications consists of multiple audio,

video, text, and possibly other streams. These are fed into
the RTP library.

— This library then multiplexes the streams and encodes
them 1n RTP packets, which it then puts 1nto a socket.

— UDP packets are generated and embedded 1n IP packets.
— The IP packet are then put in frames for transmission.




The Internet Transport Protocols: RTP/UDP

(a)The position of RTP 1n the protocol stack
(b) packet nesting

Ethernet IP UDP RTP
header header header header

User { Multimedia application

space RTP ¥ !
Socket interface RTP payload
( UDP
o <«— UDP payload ——
Kernel IP ReyiOd
. Ethernet - IP payload -
- Ethernet payload -

(a) (b)




The Internet Transport Protocols: RTP/UDP

RTP is a transport protocol realized in the application layer.

RTP 1s to multiplex several real-time data streams onto a

single stream of UDP packets and unicast or multicast the
UDP packets.

Each RTP packet 1s given a number one higher than its
predecessor. RTP has no flow control, no error control, no
acknowledgements, and no retransmission support.

Each RTP payload may contain multiple samples and they
can be coded any way that the application wants. For
example a single audio stream may be encoded as 8-bit
PCM samples at 8kHz, delta encoding, predictive encoding,
GSM encoding, MP3, and so on.

RTP allows timestamping.




The Internet Transport Protocols: RTP/UDP

- 32 bits >
| | | NN A O O
Ver. CC Payload type Sequence number
Timestamp
Synchronization source identifier
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The Internet Transport Protocols: RTP/UDP

Version: 2 bits, already at 2.

P bit: padded to a multiple of 4 bytes or not.

X bit: an extension header or not.

CC: how many contributing sources are present (0-15).
M bit: marker bit.

Payload type: which encoding algorith

as
Sequence number: incremented on each RTP packet sen

LL‘I. v“ N/ A A - Y A -

=
=

Timestamp: reducing J1tter.

Synchronization source identifier: which stream the
packet belongs to.

Contributing source 1dentifiers.



The Internet Transport Protocols: RTP/UDP

e RTCP (Real-time Transport Control Protocol) is a little
sister protocol (little sibling protocol?) for RTP.

— Does not transport any data

— To handle feedback, synchronization, and the user
interface

— To handle interstream synchronization.
— To name the various sources.

* For more information about RTP, RTP: Audio and
Video for the Internet (Perkins, C.E. 2002, Addison-
Wesley)



The Internet Transport Protocols: RTP/UDP

Smoothing the output stream by buffering packets
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The Internet Transport Protocols: RTP/UDP
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THE INTERNET TRANSPORT PROTOCOLS:

D
1Cr

e Introduction to TCP
e The TCP Service Model
e The TCP Protocol

 The TCP Segment Header
e TCP Connection Establishment

 TCP Connection Release

1 U1 CUUILLLILUL1IVULL lVldlldéClllCllL U
e TCP Sliding Window

 TCP Timer Management

e TCP Congestion Control

e The Future of TCP




TCP: Introduction

e TCP (Transmission Control Protocol) provides a reliable

end-to-end byte stream over an unreliable internetwork. For
TCP, see RFC 793, 1122, 1323, 2108,2581, 2873, 2988,
3168, 4614.

e The communication between TCP entities

e A TCP entity accepts user data streams from local

processes, breaks them up 1nto pieces not exceeding
64KB (in practice, often 1500 — 20 — 20 data bytes),

QPY\AQ PQ(‘]’\ niece ac a cenarate IP F]QfQﬂ'me
ODVIIUO vavil pPivive Ao G ovpalrdtlv 11 uauagoiaiii.

 When datagrams containing TCP data arrive at a
machine, they are given to the TCP entity, which
constructs the original byte streams.

e TCP must furnish the reliability that most users want and
that IP does not provide.



TCP: The Service Model

e For any TCP service to be obtained, a connection must
be explicitly established between a socket on the
sending machine and a socket on the receiving machine.

— Connections are 1dentified by the socket identifiers at
both ends, that 1s, (socketl, socket2)

— A socket number (address) consisting of the IP
address of the host and a 16-bit number local to that
host, called a port.

— Port numbers below 1024 are called well-known
ports and are reserved for standard services. (see the
next slide.)




TCP: The Service Model

e Some well-known ports

— 23 for TELNET
— 25 for SMTP
— 69 for TFTP

— 79 for Finger
— 119 for NNTP

Port | Protocol Use
20, 21 FTP File transfer

22 | SSH Remote login, replacement for Telnet
25 | SMTP Email
80 | HTTP World Wide Web

110 | POP-3 Remote email access

143 | IMAP Remote email access

443 | HTTPS Secure Web (HTTP over SSL/TLS)

943 | RTSP Media player control

631 | IPP Printer sharing




TCP: The Service Model

* To have many daemons standby
* To have one master daemon inetd or xinetd standby

I

— The master daemon attaches itself to multiple ports and
wait for the first incoming connection

— When one incoming connection request arrives, mnetd
or xinetd forks off a new process and executes the
appropriate daemon on it, letting that daemon handle
the request.

e All TCP connections are full duplex and point-point.

A TCP connection 1s a byte stream, not a message queue.
Message boundaries are not preserved end to end.



TCP: The Service Model

e All TCP connections are full duplex and point-point.

A TCP connection 1s a byte stream, not a message queue.
Message boundaries are not preserved end to end.

IP header TCP header
\ /

A 1B C D A B CD

(a) (b)
(a) Four 512-byte segments sent as separate IP datagrams.

(b) The 2048 bytes of data delivered to the application 1n a single
READ CALL.



TCP: The Service Model

IP header TCP header
\/

A 1B C D A B COD

(@) (b)

(a) Four 512-byte segments sent as separate IP datagrams.

(b) The 2048 bytes of data delivered to the application in a
single READ CALL.



TCP: The Service Model

 When an application passes data to TCP, TCP may send
it immediately or buffer it at its own discretion.

— To force data out, applications can use the PUSH flag,
which tells TCP not to delay the transmission.

e TCP supports urgent data (now rarely used).

— When the urgent data are received at the destination,
the receiving application 1s interrupted (e.g, given a
signal in UNIX terms) so it can stop whatever 1t was
doing and read the data stream to find the urgent data.

e The end of the urgent data 1s marked so the
application know when it 1s over.

e The start of the urgent data is not marked. It 1s up
to the application to figure that out.



TCP: The Overview

Every byte on a TCP connection has its own 32-bit
sequence number.

The sending and receiving TCP entities exchange data
in the form of segments.

— Each segment, including the TCP header, must fit in
the 65515 (=65535-20) byte IP payload.

— Each network has a maximum transfer unit or MTU
(1500 for the Ethernet).

The TCP entities use the sliding window protocol
— Segments can arrive out of order.
— Segments can be delayed.

— The retransmissions may include different byte
ranges than the original transmission.



TCP: The Header

A
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TCP: The Header

Source port and destination port: to identify the local
end points of the connection. A port plus its host’s IP
address forms a 48-bit unique end point. The source and
destination end points together 1dentify the connection.

Sequence number and acknowledgement number: 32
bits long (every byte of data 1s numbered in a TCP
stream).

TCP header length: how many 32-bit words are
contained 1n the TCP header.

4-bit field not used.
CWR: Congestion Window Reduced from a sender

ECE: ECN (Explicit Congestion Notification)-Echo to a
sender




TCP: The Header

URG bait: the Urgent pointer 1s 1n use or not.
ACK bit: the Acknowledgement number 1s valid or not.

PSH bit: PUSHed data or not.

RST bit: to reset a connection that has become confused
due to a host crash or some other reason.

SYN bit: to used to establish connections.
— SYN for CONNECTION REQUEST,
— SYN+ACK for CONNECTION ACCEPTED.
FIN bit: used to release a connection.

Window size: to tell how many bytes may be sent
starting at the byte acknowledged.



TCP: The Header

e Checksum: provided for extra reliability.

Source address

Destination address

00000000 Protocol = 6 TCP segment length

e Urgent pointer: used to indicate a byte offset from the
current sequence number at which urgent data are to be
found.

e Options:

— To allow each host to specify the maximum TCP payload it is
willing to accept

— Window scale option

— To use selective repeat instead of go back n protocol



TCP: Connection Establishment

Host 1 Host 2 Host 1 Host 2

S
sYN (SEQ =)

y ack =%+

oYN (SEQ =

<«—Time

(SEQ=x 4 1,ACK=y, 1)

(@) (b)




TCP: Connection Release

e TCP connections are full duplex and can be treated as a
pair of stmplex connections.

e Each simplex connection 1s released independently of 1ts
sibling.
— To release a connection, a party can send a TCP

segment with the FIN bit set, which means that it has
no more data to transmuit.

— When the FIN 1s acknowledged, that direction 1is shut
down for the new data.

— When both directions have been shut down, the
connection is released.

e To avoid the two-army problem, timers are used.



TCP: Connection Management Policy

State Description
CLOSED No connection is active or pending
LISTEN The server is waiting for an incoming call
SYN RCVD A connection request has arrived; wait for ACK
SYN SENT The application has started to open a connection
ESTABLISHED | The normal data transfer state
FIN WAIT 1 The application has said it is finished
FIN WAIT 2 The other side has agreed to release
TIMED WAIT Wait for all packets to die off
CLOSING Both sides have tried to close simultaneously
CLOSE WAIT The other side has initiated a release
LAST ACK Wait for all packets to die off




TCP: Connection Management Policy

(Start)

TCP Connection Loseo i:ONNECT/SYN (Step 1 of tri 3-way handshake)
management finite state o P
machine (FSM). o2 (e i s
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The heavy SOlid line is the Il?g\?lD ) SYN/SYN + ACK (simultaneous open) S?EYST
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\ ACK/- SYN + ACK/ACK
The heavy dashed line 1s A i ESTABL;SHED SRRSO SEEREEES)
the normal path for a server. { Soser J ' e
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events. ; ACK/~ ACK/~ ; ; i CLOSE/HNE

| FIN + ACK/ACK : i ! ;
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(Go back to start)

separated by a slash.



TCP: Sliding Window

Sender Receiver Receiver's
Application buffer
do_es a2k ——» 0 4K
write
Empty
2K
ACK = 2048 WIN = 2048
Application
does a 2K —
write m SEQ = 2048
Full
Sender is J Application
blocked reads 2K
2K
Sender may
send up to 2K —
m SEQ =
4096 K| | 2K




TCP: Sliding Window

e Nagle’s algorithm

— Consider a telnet connection to an interactive editor that reacts on
every keystroke.

— Solution 1: to delay acknowledgements and window updates for

500 msec 1n the hope of acquiring some data on which to hitch a
free ride.

— Solution 2: Nagle’s algithm

 When data come into the sender one byte at a time, just send
the first byte and buffer all the rest until the outstanding byte 1s
acknowledged. Then send all the buffered characters in one
TCP segment and start buffering again until they are
acknowledged.

e To disable it by TCP. NODELAY option



TCP: Transmission Policy

e (Clark’s solution for silly window syndrome
— To prevent the receiver from sending a window update

for 1 byte.
( )

Receiver's buffer is full

l

Application reads 1 byte

-—— Room for one more byte

l

-<—— Header Window update segment sent

Header > New byte arrives

1 Byte

Receiver's buffer is full

N y




TCP: Timer Management

(a) Probability density of ACK arrival times in the data
link layer.
(b) Probability density of ACK arrival times for TCP.
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TCP: Timer Management

Retransmission timer
— SRTT (Smoothed Round-Trip Time) (a=7/8)
SRTT=0a SRTT + (1- o) R
— RTTVAR(Round-Trip Time VARiation) (f=3/4)
RTTVAR =B RTTVAR+ (1-B) | SRTT-R |
— RTO (Retransmission TimeOut)
RTO =SRTT =4 * RTTVAR

Persistence timer: to prevent the deadlock.

Keepalive timer: to check whether the other side 1s still
there.

Other timers such as the one used in the TIMED WAIT state.



TCP: Congestion Control

e Congestion window

e Recerver window

\ Transmission
rate adjustment

Transmission

network Internal

congestion
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TCP: Congestion Control

e Congestion Control Algorithm by Van Jacobson (1988)

To approximate an AIMD congestion window

To represent congestion signal by packet loss

To measure packet loss by a retransmission timer

s

T'o split data into segments (Ack Clock)

To use the optimal congestion window



TCP: Congestion Control

e The way packets are sent into the network must be
matched to the network path eve over short periods of
times. (Ack clock)

1: Burst of packets 2: Burst queues at router
sent on fast link f'_Faﬁt”nh :>> and drains onto Elﬂw“TrL-SInw ink -
LA A > { —a Y s [ (bottleneck)
- |
{J ] {]
Sender +__"'\‘?“| d-- _{-l e e d Receiver
4: Acks preserve slow 3: Receive acks packets

link timing at sender + Ack clock at slow link rate

A burst of packets from a sender and the returning ack clock.



TCP: Congestion Control

e The AIMD rule will take a very long time to reach a
good operating point on fast networks 1f the congestion
window is started from a small size.

— Slow start from an 1nitial congestion window of 1
segment

— Additive increase from an initial congestion
window of 1 segment.

— Slow start followed by additive increase in TCP
Tahoe.

— Fast recovery and the sawtooth pattern of TCP Reno.

— To use selective ackowledgements



TCP: Congestion Control

Slow start from an initial congestion window of

Acknowledgment
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Data
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cwnd=4 |4
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cwnd=6 |¢
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(pipe is full)




TCP: Congestion Control

Additive increase from an initial congestion
window of 1 segment.

TCP Sender TCP Receiver
cwnd=1 Data
Acknowledgment ~
cwnd—2 — 1 RTT, 1 packet
-1 RTT, 2 packets
cwnd=3 =
— 1 RTT, 3 packets
cwnd=4 )
— 1 RTT, 4 packets
cwnd=5 __=::::--:::::: -- 1 RTT, 4 packets
TTSSIlIoo--all (pipe is full)
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TCP: Congestion Control

Slow start followed by additive increase

Thresr!r__':_l_d 32 KB

4 start
I

Slow

In TCP Tahoe.

-
-
-
-
-
-

Packet
loss

Threshold 20 KB

¥ Additive

increase

8 10 12 14

Transmission round (RTTs)



Congestion window (KB or packets)

40

35

30

25

20

15

10

TCP: Congestion Control

Fast recovery and the sawtooth pattern
of TCP Reno.
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TCP: Congestion Control

Selective ackowledgement

Etranam'rt 2 and EIﬁI (——Lnst pa::kets—-_ﬂ
- Y '
[ 5 B B o }
g1 — = L=
Sender <] <] { {] Receiver

ACK: 1 ACK: 1 ACK: 1 ACK: 1
SACK:3 SACK:3-4 SACK:6, 34



TCP: The Future

SCTP (Stream Control Transmission Protocol ) (RFC 4960) 1s
message-oriented like UDP and ensures reliable, in-sequence
transport of messages.

SST (Structured Stream Transport) is an experimental transport
protocol designed to address the needs of modern applications
that need to juggle many asynchronous communication activities
in parallel, such as downloading different parts of a web page
simultaneously and playing multiple audio and video streams at
once.

FAST TCP (Wet et al. 2006)
Transactional TCP



PERFORMANCE ISSUES

Performance Problems in Computer Networks
Network Performance Measurement

System Design for Better Performance

Fast TPDU Processing

Protocols for Gigabit Networks



Performance Issues: Performance Problems

Some performance problems, such as congestion, are
caused by temporary resource overloads.

Performance also degrades when there 1s a structural
resource 1imbalance.

Overloads can also be synchronously triggered.

— Broadcast storm due to errors.

— DHCP after an electrical power failure.
Poor performance can occur due to lack of system
tuning.

— Low priority for network processing

— Less buffers for network processing

— Setting timeouts incorrectly



Performance Issues: Performance Problems

e (Gigabit networks bring with them new performance
problems.
The state of transmitting one megabit from San Diego to Boston
(a) Att=0,
(b) After 500 usec,
(c) After 20 msec,
(d) after 40 msec.




Performance Issues: Performance Measurement

e The basic loop for improving network
performance.

— Measure relevant network parameters and
performance.

— Try to understand what 1s going on.
— Change one parameter to .

* These steps are repeated until the performance 1s
good enough or 1t 1s clear that the last drop of
improvement has been squeezed out.



Performance Issues: Performance Measurement

Make sure that the sample size 1s large enough.
Make sure that the samples are representative.
Be careful when using a coarse-grained clock.

Be sure that nothing unexpected 1s going on during your
tests.

Caching can wreak havoc with measurements.
Understand what you are measuring.

Be careful about extrapolating the results
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Performance Issues: Design for Better Performance

e CPU speed 1s more important than network speed.

e Reduce packet count to reduce software overhead.
— Nagle’s algorithm and Clark’s solution.

e Minimize context switches.

Four context switches to handle one packet

User process running at the Network Receiving
time of the packet arrival manager process

\ \ 7

\
Q Q O > User space

___________________________ > Kernel space

=
®
®
\
®




Performance Issues: Design for Better Performance

e Minimize copying:
— On a 50-MIPS machine, making three copies of each

packet at five instructions per 32-bit word copied
requires 75 nsec per incoming byte. => 107Mbps

— Overhead for header processing, interrupt handling,
and context switches => 50Mbps

— Memory operations (not register-register operations)
=> 16Mbps

* You can buy more bandwidth but not lower delay.

* Avoiding congestion 1s better than recover it (An ounce
of prevention is worth a pound of cure).

e Avoid timeouts.



Performance Issues: Fast TPDU Processing

The fast path from sender to receiver 1s shown with
a heavy line.

The processing steps on this path are shaded.
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Performance Issues: Fast TPDU Processing

(a) TCP header.
(b) IP header. In both cases, the shaded fields are
taken from the prototype without change.

Source port Destination port VER. | IHL| TOS Total length
Sequence number Identification Fragment offset
Acknowledgement number TTL Protocol Header checksum

Len |Unused

Window size

Source address

Checksum

Urgent pointer

Destination address

(b)




Performance Issues: Fast TPDU Processing

e A timing wheel.

Slot
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Performance Issues: Gigabit Network Protocols

e The problems with gigabit network:

— Many protocols use 32-bit sequence numbers
e For 56 kbps, the wrap time is over 1 week.
e For 10Mbps, the wrap time 1s 57 minute.
e For 1 Gbps, the wrap time 1s 34 seconds.

— Communication speeds have improved much faster
then computing speeds.

—_— T]’\P (T(\ ]’\Q{‘]{ n 1"\1"(\1’(\(‘(\] pPY"FOI‘IY\S

large bandw1dth delay product.

— (Gigabit lines are fundamentally different from
megabit lines.

— The variance 1n the packet arrival times 1s as
important as the mean delay itself.

LLLLLL
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Performance Issues: Gigabit Network Protocols
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Performance Issues: Gigabit Network Protocols

e Solutions
— Design for speed, not for bandwidth optimization.

— To use a rate-based protocol rather than a sliding
window protocol.

— Packets should be well layout.

— The header and data should be separately
checksummed.

— The maximum data size should be large.

— To send a normal amount of data along with the
connection request.



Homework

c 6.4

In both parts of Fig. 6-6, there 1s a comment that the value of
SERVERPORT must be the same in both client and server.
Why 1s this so important?

* 6.9

Imagine that a two-way handshake rather than a three-way
handshake were used to set up connections. In other words, the
third message was not required. Are deadlocks now possible?
Give an example or show that none exist.



Homework

6.15

Why does UDP exist? Would it not have been enough to just let user
processes send raw IP packets?

6.17

A client sends a 128-byte request to a server located 100 km away
over a 1-gigabit optical fiber. What is the efficiency of the line during
the remote procedure call?

6.23

Datagram fragmentation and reassembly are handled by IP and are
invisible to TCP. Does this mean that TCP does not have to worry
about data arriving in the wrong order?

6.28

The maximum payload of a TCP segment 1s 65,495 bytes. Why was
such a strange number chosen?



Homework

¢ 6.32

If the TCP round-trip time, RTT, 1s currently 30 msec and the
following acknowledgements come in after 26, 32, and 24 msec,
respectively, what 1s the new RTT estimate using the Jacobson
algorithm? Use 0=0.9.

* 6.36

In a network whose max segment 1s 128 bytes, max segment lifetime
1s 30 sec, and has 8-bit sequence numbers, what 1s the maximum data
rate per connection?

* 6.39

To get around the problem of sequence numbers wrapping around
while old packets still exist, one could use 64-bit sequence numbers.
However, theoretically, an optical fiber can run at 75 Tbps. What
maximum packet lifetime 1s required to make sure that future 75-Tbps
networks do not have wrap around problems even with 64-bit
sequence numbers? Assume that each byte has its own sequence
number, as TCP does.



