
CHAPTER 6:CHAPTER 6:
THE TRANSPORT LAYER

(传输层)
• The Transport Service (传输服务)
• Elements of Transport Protocols (传输协议的若干问题)• Elements of Transport Protocols (传输协议的若干问题)
• Congestion Control (拥塞控制)*

传输协议• The Internet Transport Protocols (Internet传输协议): UDP
• The Internet Transport Protocols (Internet传输协议): TCP
• Performance Issues (性能问题)*
• Delay-Tolerant Networking (容延网络)*• Delay-Tolerant Networking (容延网络)

THE TRANSPORT SERVICE
(传输服务)

• Services Provided to the Upper Layers
T t S i P i iti (简单传输服务原语)• Transport Service Primitives (简单传输服务原语)

• Berkeley Sockets (套接字)
• An Example of Socket Programming:

– An Internet File ServerAn Internet File Server

The Transport Service: Servicesp
• Transport layer services (传输服务) :

– To provide efficient, reliable, and cost-effective
service to its users, normally processes in the
application layer.

– To make use of the services provided by the network o a e use o t e se v ces p ov ded by t e etwo
layer.

• The transport entity (传输实体): the hardware and/or• The transport entity (传输实体): the hardware and/or
software within the transport layer that does the work.
Its positions:Its positions:
– In the OS kernel, in a separate user process, in a

library package bound to network applications orlibrary package bound to network applications, or
– On the network interface card.

The Transport Service: Servicesp
The network, transport and application layers

The Transport Service: Servicesp
• There are two types transport services

– Connection-oriented transport service
– Connectionless transport service

• The similarities between transport services and network
services
– The connection–oriented service is similar to the

connection-oriented network service in many ways:
• Establishment, data transfer, release;
• Addressing; g;
• Flow control

– The connectionless transport service is also similar toThe connectionless transport service is also similar to
the connectionless network service.

The Transport Service: Servicesp
• The differences between transport services and network

services Why are there two distinct layers?services. Why are there two distinct layers?
– The transport code runs entirely on the user’s machines,

but the network layer mostly runs on the routers whichbut the network layer mostly runs on the routers which
are usually operated by the carrier.

– Network layer has problems (losing packets, router
crashing, …)

– The transport layer improves the QOS of the network
llayer.

– The transport service is more reliable than the
network servicenetwork service.

–Applications programmers can write code according
to a standard set of transport service primitives and p p
have these programs work on a wide variety of
networks.

The Transport Service: Hypothetical Primitivesp yp

• The transport layer provides some operations to applications
programs, i.e., a transport service interface.

• Each transport service has its own interface.
• The transport service is similar to the network service, but

there are also some important differences:p
– Network service models real network  unreliable.

Transport services improves real network reliableTransport services improves real network  reliable.
– Network services are for network developers.

T i f li i d lTransport services are for application developers.

The Transport Service: Hypothetical Primitivesp yp

The Transport Service: Hypothetical Primitivesp yp

How to use these primitives for an application?
• Server App: LISTEN
• Client App: CONNECT
• Client SEND/RECEIVE Server
• Client Transport  TPDU  Server Transport

– Client network layer  Packets Server network layer
– Client data link layer  Frames  Server data link layer

• Client/Server: DISCONNECT

The Transport Service: Hypothetical Primitivesp yp

Nesting of Segments, packets, and frames

The Transport Service: Hypothetical Primitivesp yp

Connection establishment and connection release

The Transport Service: Berkeley Socketsp y

The Transport Service: Berkeley Socketsp y

• The C/S Application
– Server: SOCKET/BIND/LISTEN/ACCEPT
– Client: SOCKET/CONNECTClient: SOCKET/CONNECT

C/S SEND/RECEIVE– C/S: SEND/RECEIVE

– C/S: CLOSE (symmetric)

The Transport Service: An examplep p

• IFServer.c
• IFClient.c

ELEMENTS OF
TRANSPORT PROTOCOLS

• Addressing
• Connection EstablishmentConnection Establishment
• Connection Release

E C t l d Fl C t l• Error Control and Flow Control
• Multiplexing
• Crash Recovery

Elements of Transport Protocolsp
Transport protocol and data link protocol

Si il iti E t l i d fl t l• Similarities: Error control, sequencing, and flow control
• Differences

E i t h i l i ti h l/ b t– Environment: physical communication channel/subnet
– Addressing: implicit/explicit

C ti t bli h t i l / li t d– Connection establishment: simple/complicated
– Storage capacity: no/yes (unpredictable/predictable)

B ff i d fl t l t– Buffering and flow control: amount

Elements of Transport Protocols: Addressingp g

How to address?

Elements of Transport Protocols: Addressingp g
• NSAP: Network service access points

IP (32 bit)– IP (32 bits)
• TSAP: Transport service access point

– Port (16 bits)
• How to find out the server’s TSAP

– Some TSAP addresses are so famous that they are
fixedfixed.

– Process server
li f SA h i• To listen to a set of TSAPs at the same time.

• To dispatch the request to the right server.
– Process server + name server (directory server, 114)

Elements of Transport Protocols: Addressingp g

Elements of Transport Protocols:
Connection EstablishmentConnection Establishment

Connection establishment sounds easy, but …
• Naïve approach:

– One sends a CONNECTION REQUEST TPDU to the
other and wait for a CONNECTION ACCEPTED reply.

– If ok, done; otherwise, retry.
– Possible nightmare:

• A user establishes a connection with a bank, sends ,
messages telling the bank to transfer a large amount of
money to the account of a not-entirely-trustworthy

d h l h iperson, and then releases the connection.
• Moreover, assume each packet in scenario is

d d i h bduplicated and stored in the subnet.
– delayed duplicates.

Elements of Transport Protocols:
Connection EstablishmentConnection Establishment

Possible solutions for solving delayed duplicates
• To give each connection a connection identifier (i.e., a

sequence number incremented for each connection
t bli h d) h b th i iti ti t d t iestablished) chosen by the initiating party and put in

each TPDU, including the one requesting the connection.
T th t t dd E h ti• To use throw away transport addresses. Each time a
transport address is needed, a new one is generated.
When a connection is released the address is discardedWhen a connection is released, the address is discarded
and never used again.

• To use sequence number and ageTo use sequence number and age
– To limit packet lifetime.

To use the sequence number– To use the sequence number

Elements of Transport Protocols:
Connection EstablishmentConnection Establishment

• Packet lifetime can be restricted to a known maximum
using one of the following techniques
– Restricted subnet design.
– Putting a hop counter in each packet.
– Timestamping each packet (router synchronization– Timestamping each packet. (router synchronization

problem)
• I ti ill d t t t l th t• In practice, we will need to guarantee not only that a

packet is dead, but also that all acknowledgements to it
are also dead so e ill no introd ce T hich isare also dead, so we will now introduce T, which is
some small multiple of the true maximum packet
lifetimelifetime.

Elements of Transport Protocols:
Connection EstablishmentConnection Establishment

To ensure that two identically numbered TPDUs
i iare never outstanding at the same time:

1. To equip each host with a time-of-day clock
• Each clock is assumed to take the form of a binary

counter that increments itself at uniform intervals.
• The number of bits in the counter must equal or

exceed the number of bits in the sequence numbers.
• The clock is assumed to continue running even if

the host goes down.
• The clocks at different hosts need not be

synchronized.

Elements of Transport Protocols:
Connection EstablishmentConnection Establishment

To ensure that two identically numbered TPDUs
i iare never outstanding at the same time:

2. When a connection is setup, the low order k bits of
the clock are used as the initial sequence number
(also k bits). Each connection starts numbering its
TPDU ith diff t i iti l b ThTPDUs with a different initial sequence number. The
sequence space should be so large that by the time
sequence numbers wrap around old TPDUs with thesequence numbers wrap around, old TPDUs with the
same sequence number are long gone.

3 Once both transport entities have agreed on the3. Once both transport entities have agreed on the
initial sequence number, any sliding window protocol
can be used for data flow control.can be used for data flow control.

Elements of Transport Protocols:
Connection EstablishmentConnection Establishment

A problem occurs when a host crashes. When it
comes up again, its transport entity does not
know where it was in the sequence space.know where it was in the sequence space.
– To require the transport entities to be idle for T

seconds after a recovery to let all old TPDUs die offseconds after a recovery to let all old TPDUs die off.
(In a complex internetwork, T may be large, so this
strategy is unattractive)strategy is unattractive.)

– To avoid requiring T sec of dead time after a crash, it
i t i t d t i ti this necessary to introduce a new restriction on the use
of sequence numbers.

Elements of Transport Protocols:
Connection Establishment: The forbidden regionConnection Establishment: The forbidden region

Restriction on the sequence numbers ?
• Let T (the maximum packet lifetime) be 60 sec and let the

clock tick once per second. The initial sequence number p q
for a connection opened at time x will be x.

• At t=30sec an ordinary data TPDU being sent on (aAt t 30sec, an ordinary data TPDU being sent on (a
previously opened) connection 5 (called as TPDU X) is
given sequence number 80given sequence number 80.

• After sending TPDU X, the host crashes and then quickly
restartsrestarts.

• At t = 60sec, it begins reopening connections 0 through 4.

Elements of Transport Protocols:
Connection Establishment: The forbidden regionConnection Establishment: The forbidden region

• At t = 70sec, it reopens connection using initial sequence
b 70 i dnumber 70 as required.

• During the next 15 sec it sends data TPDUs 70 through 80.
Th t t 85 TPDU ith b 80 dThus at t=85sec, a new TPDU with sequence number 80 and
connection 5 has been injected into the subnet.
TPDU X d TPDU 80• TPDU X and TPDU 80.

• To prevent sequence numbers from being used for a time
T before their potential se as initial seq ence n mbersT before their potential use as initial sequence numbers.
The illegal combinations of time and sequence number
are called as the forbidden region Before sending anyare called as the forbidden region. Before sending any
TPDU on any connection, the transport entity must read
the clock and check to see that it is no in the forbidden
region.

Elements of Transport Protocols:
Connection EstablishmentConnection Establishment

Elements of Transport Protocols:
Connection Establishment: The forbidden regionConnection Establishment: The forbidden region

• Too fast
• Too slow
•  (Solution for the delayed TPDU) (Solution for the delayed TPDU)

Before sending every TPDU,
the transport entity must check to see if it is about to

enter the forbidden region,
and if so, either delay the TPDU for T sec or

resynchronize the sequence numbers.

Elements of Transport Protocols:
Connection EstablishmentConnection Establishment

• Three-way handshake for connection establishment
– Normal operation.
– Old duplicate CONNECTION REQUEST appearingOld duplicate CONNECTION REQUEST appearing

out of nowhere.
– Duplicate CONNECTION REQUEST and duplicate– Duplicate CONNECTION REQUEST and duplicate

ACK.
• C l i th i bi ti f ld• Conclusion: there is no combination of old

CONNECTION REQUEST, CONNECTION
ACCEPTED or other TPDUs that can ca se theACCEPTED, or other TPDUs that can cause the
protocol to fail and have a connection setup by accident
when no one wants itwhen no one wants it.

Elements of Transport Protocols:
Connection EstablishmentConnection Establishment

Elements of Transport Protocols:
Connection ReleaseConnection Release

• Asymmetric release and symmetric release
– Asymmetric release: When one part hangs up, the

connection is broken.
– Symmetric release: to treat the connection as two

separate unidirectional connections and require each sepa ate u d ect o a co ect o s a d equ e eac
one to be released separately.

• Asymmetric release is abrupt and may result in data lossAsymmetric release is abrupt and may result in data loss
(See the next slide)

• One a to a oid data loss is to se s mmetric release• One way to avoid data loss is to use symmetric release.

Elements of Transport Protocols:
Connection ReleaseConnection Release

• Abrupt disconnection with loss of data

Elements of Transport Protocols:
Connection ReleaseConnection Release

• Symmetric release does the job when each process has a
fixed amount of data to send and clearly knows when it has
sent it.

• Symmetric release has its problems if determining that all
the work has been done and the connection should be
terminated is not so obvious.

• The two
army
problemproblem

Elements of Transport Protocols:
Connection ReleaseConnection Release

• Two army-problem: A white army is encamped in a valley.
On both of the surrounding hillsides are blue armies.

one blue army < white army < two blue armies
• Does a a protocol exist that allows the blue armies to win?

– Two-way handshake
The commander of blue army #1: “I propose we attack at down

on March 29. How about it?”on March 29. How about it?
The commander of blue army #2: “OK.”
Will the attack happen?

– Three-way handshake，
– …

N h d h k– N-way handshake
– No protocol exists that works.

• Substitute “disconnect” for “attack” If neither side is prepared• Substitute disconnect for attack . If neither side is prepared
to disconnect until it is convinced that the other side is prepared to
disconnect too, the disconnection will never happen.

Elements of Transport Protocols:
Connection ReleaseConnection Release

(a) Normal case of three-way handshake
(b) Final ACK lost

Elements of Transport Protocols:
Connection ReleaseConnection Release

(c) Response lost
(d) Response lost and subsequent DRs Lost

Elements of Transport Protocols:
Connection ReleaseConnection Release

• Automatic disconnect rule
– If no TPDUs have arrived for a certain number of

seconds, the connection is then automatically
disconnect.

– Thus, if one side ever disconnects, the other side will us, o e s de eve d sco ects, t e ot e s de w
detect the lack of activity and also disconnect.

• Conclusion: releasing a connection without data loss isConclusion: releasing a connection without data loss is
not nearly as simple as it first appears.

Elements of Transport Protocols:
Error Control and Flow ControlError Control and Flow Control

Error control is ensuring that the data is delivered with the
d i d l l f li bilit ll th t ll f th d t idesired level of reliability, usually that all of the data is
delivered without any errors.
Si il it I b th l t l h t b f d• Similarity: In both layers, error control has to be performed.

• Difference: The link layer checksum protects a frame while
it crosses a single link. The transport layer checksum
protects a segment while it crosses an entire network path. It
is an end-to-end check, which is not the same as having a
check on every link.

Elements of Transport Protocols:
Error Control and Flow ControlError Control and Flow Control

Flow control in data link layer and transport layer
• Similarity: In both layers a sliding window or other scheme

is needed on each connection to keep a fast transmitter from
i l ioverrunning a slow receiver.

• Difference: A router usually has relative few lines, whereas
h t h tia host may have numerous connections.

Buffering
• The sender: The sender must buffer all TPDUs sent if the

network service is unreliable. The sender must buffer all
TPDUs sent if the recei er cannot g arantee that e erTPDUs sent if the receiver cannot guarantee that every
incoming TPDU will be accepted.

• The receiver: If the receiver has agreed to do the buffering• The receiver: If the receiver has agreed to do the buffering,
there still remains the question of the buffer size.

Elements of Transport Protocols:
Flow control and buffering: (The receiver buffering)Flow control and buffering: (The receiver buffering)

Buffer sizes
(a) Chained fixed-size buffers. ()
(b) Chained variable-sized buffers.
(c) One large circular buffer per connection.

Elements of Transport Protocols:
Flow control and bufferingFlow control and buffering

• The optimum trade-off between sender buffering
and receiver buffering depends on the type of traffic
carried by the connection.
– For low-bandwidth bursty traffic, it is better to buffer

at the sender,
– For high-bandwidth smooth traffic, it is better to

buffer at the receiver.
– As connections are opened and closed, and as the

traffic pattern changes the sender and receiver needtraffic pattern changes, the sender and receiver need
to dynamically adjust their buffer allocation.
Dynamic buffer allocation– Dynamic buffer allocation.

Elements of Transport Protocols:
Flow control and bufferingFlow control and buffering

Dynamic buffer allocation (receiver’s buffering capacity).

Elements of Transport Protocols:
Flow control and bufferingFlow control and buffering

• When buffer space no longer limits the maximum flow,
another bottleneck will appear: the carrying capacity of
the subnet.
– The sender dynamically adjusts the window size to

match the network's carrying capacity.
– In order to adjust the window size periodically, the

sender could monitor both parameters and then p
compute the desired window size.

Elements of Transport Protocols:
MultiplexingMultiplexing

• Multiplexing and demultiplexing
– Multiplexing: Application layer Transport layer
Network layer Data link layer Physical layer

– Demultiplexing: Physical layer Data link layer
Network layer Transport layer Application Netwo aye a spo t aye pp cat o
layer

• Two multiplexing:Two multiplexing:
– Upward multiplexing

d l i l i (h lid)– Downward multiplexing (See the next slide)

Elements of Transport Protocols:
MultiplexingMultiplexing

Elements of Transport Protocols:
Crash RecoveryCrash Recovery

• Recovery from network and router crash is
t i htf dstraightforward.

• Recovery from host crash is difficult.
• Assume that a client is sending a long file to a file

server using a simple stop-and -wait protocol.
– Part way through the transmission, the server crashes.
– The server might send a broadcast TPDU to all other

hosts, announcing that it had just crashed and
requesting that its clients inform it of the status of all
open connectionsopen connections.

– Each client can be in one of two states: one TPDU
outstanding S1 or no TPDUs outstanding S0outstanding, S1, or no TPDUs outstanding, S0.

Elements of Transport Protocols:
Crash RecoveryCrash Recovery

• Some situations
– The client should retransmit only if has an

unacknowledged TPDU outstanding (S1) when it
l th hlearns the crash.
• If a crash occurs after the acknowledgement has

b t b t b f th it h b d thbeen sent but before the write has been done, the
client will receive the acknowledgement and thus
be in state S0  LOST Problem!be in state S0.  LOST. Problem!

• If a crash occurs after the write has been done but
before the acknowledgement has been sent thebefore the acknowledgement has been sent, the
client will not receive the acknowledgement and
thus be in state S1.  Dup. Problem!p

• For more, see the next slide

Elements of Transport Protocols:
Crash RecoveryCrash Recovery

Elements of Transport Protocols:
Crash RecoveryCrash Recovery

• No matter how the sender and receive are programmed• No matter how the sender and receive are programmed,
there are always situations where the protocol fails to
recover properlyrecover properly.

• In more general terms, recovery from a layer N
h l b d b l N 1 d l if hcrash can only be done by layer N+1 and only if the

higher layer retains enough status information.

Congestion Control*g

• Desirable Bandwidth Allocation

• Regulating the sending rate

• Wireless Issues

Congestion Control:
D i bl B d id h All iDesirable Bandwidth Allocation

• Efficiency and Powery
(a) Goodput and (b) delay as a function of offered load

Congestion Control:
Desirable Bandwidth AllocationDesirable Bandwidth Allocation

• To analyze the desirable bandwidth allocation, y ,
Kleinrock (1979) proposed the metric of power,

P• Power
– will initially rise with offered load, as delay remains small and

hl t troughly constant,
– but will reach a maximum and

f ll d l idl– fall as delay grows rapidly.

• The load with the highest power represents an efficient
l d f h i l h kload for the transport entity to place on the network.

Congestion Control:
Max Min FairnessMax-Min Fairness

• How to divide bandwidth between different transport senders:
– The first consideration is to ask what this problem has to do

with congestion control.
– A second consideration is what a fair portion means for flows

in a network. The form of fairness that is often desired for
t k i i f inetwork usage is max-min fairness.

– A third consideration is the level over which to consider
fairnessfairness.

Congestion Control:
Desirable Bandwidth AllocationDesirable Bandwidth Allocation

• Convergence: A final criterion is that the congestion g g
control algorithm converge quickly to a fair and
efficient allocation of bandwidth.

Congestion Control:
Regulating the sending rateRegulating the sending rate

(a) A fast network feeding a low-capacity receiver.() g p y
(b) A slow network feeding a high-capacity receiver.

Congestion Control:
Regulating the sending rateRegulating the sending rate

• Signals of some congestion control protocolg g p

Congestion Control:
Regulating the sending rateRegulating the sending rate

Congestion Control:
Regulating the sending rateRegulating the sending rate

• Used in TCP

Congestion Control:
Wireless IssuesWireless Issues

• Analyses by Padhye et al. (1998) show that the throughput goes
up as the inverse square-root of the packet loss rate.

• What this means in practice is that the loss rate for fast TCP
i i ll 1% i d l d b hconnections is very small; 1% is a moderate loss rate, and by the

time the loss rate reaches 10% the connection has effectively
stopped workingstopped working.

• However, for wireless networks such as 802.11 LANs, frame loss
rates of at least 10% are common.rates of at least 10% are common.

• This difference means that, absent protective measures,
congestion control schemes that use packet loss as a signal will g p g
unnecessarily throttle connections that run over wireless links to
very low rates.

Congestion Control:
Wireless IssuesWireless Issues

• There are two aspects to note. First, the sender does not necessarily know that
th th i l d i l li k i ll it i th i d li k t hi h it ithe path includes a wireless link, since all it sees is the wired link to which it is
attached.

• The second aspect is a puzzle. The figure shows two mechanisms that are p p g
driven by loss: link layer frame retransmissions, and transport layer congestion
control. TIMESCALE

THE INTERNET TRANSPORTTHE INTERNET TRANSPORT
PROTOCOLS: UDP, RPC, RTP

• Two main transport protocols in the Internet
– Connectionless protocol (UDP)
– Connection-oriented protocol (TCP)Connection oriented protocol (TCP)

• UDP (User Datagram protocol)
RPC (R P d C ll)• RPC (Remote Procedure Call)

• RTP (Real-time Transport Protocol)

The Internet Transport Protocols: UDPp

• UDP (RFC768) provides a way for applications to
– send encapsulated IP datagrams and
– send them without having to establish a connection.

• UDP transmits segments consisting of an 8-byte header
followed by the payload.

 UDPUDP UDPUDP
 Multiplexing and Multiplexing and demultiplexingdemultiplexing using ports.using ports.

N fl t l t l t i iN fl t l t l t i i No flow control, error control or retransmission.No flow control, error control or retransmission.
 Applications: RPC, RTP, DNS (Domain Name System)Applications: RPC, RTP, DNS (Domain Name System)

The Internet Transport Protocols: RPC/UDPp
• RPC (Remote Procedure Call) allows programs to call

procedures located on remote hostsprocedures located on remote hosts.
– When a process on machine 1 calls a procedure on

machine 2, the calling process on 1 is suspended andmachine 2, the calling process on 1 is suspended and
execution of the called procedure takes place on 2

– Information can be transported from the caller to the
callee in the parameters and can come back in the
procedure result.
N i i i ibl t th– No message passing is visible to the programmer.

• The idea behind RPC is to make a remote procedure
call look as much as possible like a local onecall look as much as possible like a local one.

C Proc C Stub  S Stub  S Proc

The Internet Transport Protocols: RPC/UDPp

The Internet Transport Protocols: RPC/UDPp
The steps in making an RPC

St 1 i th li t lli th li t t b• Step 1 is the client calling the client stub.
• Step 2 is the client stub packing the parameters into a

message (marshaling) and making a system call to sendmessage (marshaling) and making a system call to send
the message.

• Step 3 is the kernel sending the message from the client Step 3 s t e e e se d g t e essage o t e c e t
machine to the server machine.

• Step 4 is the kernel passing the incoming packet to the
server stub and unpacking the packet to extract the
parameters (unmarshaling).

• Step 5 is the ser er st b calling the ser er proced re ith• Step 5 is the server stub calling the server procedure with
the unmarshaled parameters.

• The reply traces the same path in the other direction.

The Internet Transport Protocols: RPC/UDPp

• A few snakes hiding under the grass (RPC)
– The use of pointer parameters.
– Some problems for weakly-typed languages (TheSome problems for weakly typed languages (The

length of an array).
– It is not always possible to deduce the types of the– It is not always possible to deduce the types of the

parameters, not even from a formal specification or
the code itself (printf)the code itself. (printf)

– The use of global variables.
• Some restrictions are needed to make RPC work
well in practice.

• RPC/TCP vs RPC/UDP

The Internet Transport Protocols: RTP/UDPp
• Multimedia applications such as Internet radio, Internet

t l h i d d id f i idtelephony, music-on-demand, videoconferencing, video-on-
demand, require real-time transport protocols.  RTP
(Real-time Transport Protocol) (RFC1889)(Real-time Transport Protocol) (RFC1889)

• The RTP is in user space and runs over UDP. The RTP Ops:
Th lti di li ti i t f lti l di– The multimedia applications consists of multiple audio,
video, text, and possibly other streams. These are fed into
the RTP librarythe RTP library.

– This library then multiplexes the streams and encodes
them in RTP packets which it then puts into a socketthem in RTP packets, which it then puts into a socket.

– UDP packets are generated and embedded in IP packets.
The IP packet are then put in frames for transmission– The IP packet are then put in frames for transmission.

– …

The Internet Transport Protocols: RTP/UDPp

(a)The position of RTP in the protocol stack
(b) packet nesting

The Internet Transport Protocols: RTP/UDPp
• RTP is a transport protocol realized in the application layer.
• RTP is to multiplex several real-time data streams onto a

single stream of UDP packets and unicast or multicast the
UDP k tUDP packets.

• Each RTP packet is given a number one higher than its
d RTP h fl t l t lpredecessor. RTP has no flow control, no error control, no

acknowledgements, and no retransmission support.
• E h RTP l d t i lti l l d th• Each RTP payload may contain multiple samples and they

can be coded any way that the application wants. For
example a single audio stream may be encoded as 8-bitexample a single audio stream may be encoded as 8-bit
PCM samples at 8kHz, delta encoding, predictive encoding,
GSM encoding, MP3, and so on. g, ,

• RTP allows timestamping.

The Internet Transport Protocols: RTP/UDPp

The Internet Transport Protocols: RTP/UDPp
• Version: 2 bits, already at 2.
• P bit: padded to a multiple of 4 bytes or not.
• X bit: an extension header or not.
• CC: how many contributing sources are present (0-15).
• M bit: marker bit.
• Payload type: which encoding algorithm has been used.
• Sequence number: incremented on each RTP packet sentSequence number: incremented on each RTP packet sent.
• Timestamp: reducing jitter.
• Synchronization source identifier: which stream the• Synchronization source identifier: which stream the

packet belongs to.
• Contributing source identifiers• Contributing source identifiers.

The Internet Transport Protocols: RTP/UDPp

• RTCP (Real-time Transport Control Protocol) is a little
sister protocol (little sibling protocol?) for RTP.
– Does not transport any data
– To handle feedback, synchronization, and the user

interfacete ace
– To handle interstream synchronization.

T th i– To name the various sources.
• For more information about RTP, RTP: Audio and

d f h (ki ddiVideo for the Internet (Perkins, C.E. 2002, Addison-
Wesley)

The Internet Transport Protocols: RTP/UDPp

Smoothing the output stream by buffering packets

The Internet Transport Protocols: RTP/UDPp

THE INTERNET TRANSPORT PROTOCOLS:
TCPTCP

• Introduction to TCP
• The TCP Service Model
• The TCP Protocol
• The TCP Segment Header
• TCP Connection EstablishmentTCP Connection Establishment
• TCP Connection Release
• TCP Connection Management Modeling• TCP Connection Management Modeling
• TCP Sliding Window

TCP Ti M t• TCP Timer Management
• TCP Congestion Control
• The Future of TCP

TCP: Introduction
• TCP (Transmission Control Protocol) provides a reliable

end-to-end byte stream over an unreliable internetwork. For y
TCP, see RFC 793, 1122, 1323, 2108,2581, 2873, 2988,
3168, 4614.

• The communication between TCP entities
• A TCP entity accepts user data streams from local

b k h i i diprocesses, breaks them up into pieces not exceeding
64KB (in practice, often 1500 − 20 − 20 data bytes),
sends each piece as a separate IP datagramsends each piece as a separate IP datagram.

• When datagrams containing TCP data arrive at a
machine, they are given to the TCP entity, which ac e, t ey a e g ve to t e C e t ty, w c
constructs the original byte streams.

• TCP must furnish the reliability that most users want and y
that IP does not provide.

TCP: The Service Model
• For any TCP service to be obtained, a connection must

be explicitly established between a socket on the
sending machine and a socket on the receiving machine.
– Connections are identified by the socket identifiers at

both ends, that is, (socket1, socket2)
– A socket number (address) consisting of the IP

address of the host and a 16-bit number local to that
host, called a port.

– Port numbers below 1024 are called well-knownPort numbers below 1024 are called well-known
ports and are reserved for standard services. (see the
next slide)next slide.)

TCP: The Service Model
• Some well-known ports

– 23 for TELNET
– 25 for SMTP25 for SMTP
– 69 for TFTP

79 f Fi– 79 for Finger
– 119 for NNTP

TCP: The Service Model
• To have many daemons standby
• To have one master daemon inetd or xinetd standby

– The master daemon attaches itself to multiple ports and
wait for the first incoming connection

– When one incoming connection request arrives, inetd
or xinetd forks off a new process and executes the
appropriate daemon on it, letting that daemon handle
th tthe request.

ll i ll d l d i i• All TCP connections are full duplex and point-point.
• A TCP connection is a byte stream, not a message queue.

b d i d d dMessage boundaries are not preserved end to end.

TCP: The Service Model
• All TCP connections are full duplex and point-point.

A TCP ti i b t t t• A TCP connection is a byte stream, not a message queue.
Message boundaries are not preserved end to end.

(a) Four 512 byte segments sent as separate IP datagrams(a) Four 512-byte segments sent as separate IP datagrams.
(b) The 2048 bytes of data delivered to the application in a single

READ CALL.READ CALL.

TCP: The Service Model

(a) Four 512-byte segments sent as separate IP datagrams.
(b) The 2048 bytes of data delivered to the application in a(b) The 2048 bytes of data delivered to the application in a

single READ CALL.

TCP: The Service Model
• When an application passes data to TCP, TCP may send

it immediately or buffer it at its own discretionit immediately or buffer it at its own discretion.
– To force data out, applications can use the PUSH flag,

which tells TCP not to delay the transmission.which tells TCP not to delay the transmission.
• TCP supports urgent data (now rarely used).

– When the urgent data are received at the destination, W e t e u ge t data a e ece ved at t e dest at o ,
the receiving application is interrupted (e.g, given a
signal in UNIX terms) so it can stop whatever it was
d i d d th d t t t fi d th t d tdoing and read the data stream to find the urgent data.
• The end of the urgent data is marked so the

application know when it is overapplication know when it is over.
• The start of the urgent data is not marked. It is up

to the application to figure that out. pp g

TCP: The Overview
• Every byte on a TCP connection has its own 32-bit

sequence numbersequence number.
• The sending and receiving TCP entities exchange data

in the form of segments.in the form of segments.
– Each segment, including the TCP header, must fit in

the 65515 (=65535-20) byte IP payload.
– Each network has a maximum transfer unit or MTU

(1500 for the Ethernet).
• The TCP entities use the sliding window protocol

– Segments can arrive out of order.
b d l d– Segments can be delayed.

– The retransmissions may include different byte
ranges than the original transmissionranges than the original transmission.

TCP: The Header

TCP: The Header
• Source port and destination port: to identify the local

end points of the connection A port plus its host’s IPend points of the connection. A port plus its host s IP
address forms a 48-bit unique end point. The source and
destination end points together identify the connection.

• Sequence number and acknowledgement number: 32
bits long (every byte of data is numbered in a TCP
t)stream).

• TCP header length: how many 32-bit words are
contained in the TCP headercontained in the TCP header.

• 4-bit field not used.
• CWR: Congestion Window Reduced from a senderCWR: Congestion Window Reduced from a sender
• ECE: ECN (Explicit Congestion Notification)-Echo to a

sender

TCP: The Header
• URG bit: the Urgent pointer is in use or not.
• ACK bit: the Acknowledgement number is valid or not.
• PSH bit: PUSHed data or not.PSH bit: PUSHed data or not.
• RST bit: to reset a connection that has become confused

due to a host crash or some other reasondue to a host crash or some other reason.
• SYN bit: to used to establish connections.

– SYN for CONNECTION REQUEST,
– SYN+ACK for CONNECTION ACCEPTED.

• FIN bit: used to release a connection.
• Window size: to tell how many bytes may be sentWindow size: to tell how many bytes may be sent

starting at the byte acknowledged.

TCP: The Header
• Checksum: provided for extra reliability.

• Urgent pointer: used to indicate a byte offset from the
current sequence number at which urgent data are to be q g
found.

• Options: p
– To allow each host to specify the maximum TCP payload it is

willing to accept
– Window scale option
– To use selective repeat instead of go back n protocol

TCP: Connection Establishment

TCP: Connection Release
• TCP connections are full duplex and can be treated as a

i f i l tipair of simplex connections.
• Each simplex connection is released independently of its

iblisibling.
– To release a connection, a party can send a TCP

t ith th FIN bit t hi h th t it hsegment with the FIN bit set, which means that it has
no more data to transmit.
Wh th FIN i k l d d th t di ti i h t– When the FIN is acknowledged, that direction is shut
down for the new data.
When both directions ha e been sh t do n the– When both directions have been shut down, the
connection is released.

• To avoid the two army problem timers are used• To avoid the two-army problem, timers are used.

TCP: Connection Management Policyg y

TCP: Connection Management Policyg y

TCP connection
management finite state
machine (FSM).

The heavy solid line is the
normal path for a client.

The heavy dashed line is
the normal path for a server. p

The light lines are unusual
eventsevents.

Each transition is labeled
by the event causing it andby the event causing it and
the action resulting from it,
separated by a slash.

TCP: Sliding Windowg

TCP: Sliding Windowg
• Nagle’s algorithm

id l i i i di h– Consider a telnet connection to an interactive editor that reacts on
every keystroke.
S l ti 1 t d l k l d t d i d d t f– Solution 1: to delay acknowledgements and window updates for
500 msec in the hope of acquiring some data on which to hitch a
free ridefree ride.

– Solution 2: Nagle’s algithm
• When data come into the sender one byte at a time just sendWhen data come into the sender one byte at a time, just send

the first byte and buffer all the rest until the outstanding byte is
acknowledged. Then send all the buffered characters in one
TCP segment and start buffering again until they are
acknowledged.

• To disable it by TCP_NODELAY option

TCP: Transmission Policyy
• Clark’s solution for silly window syndrome

To prevent the receiver from sending a window update– To prevent the receiver from sending a window update
for 1 byte.

TCP: Timer Managementg
(a) Probability density of ACK arrival times in the data

link layer.
(b) Probability density of ACK arrival times for TCP.

TCP: Timer Managementg
• Retransmission timer

– SRTT (Smoothed Round-Trip Time) (α=7/8)
SRTT= α SRTT + (1- α) R

– RTTVAR(Round-Trip Time VARiation) (β=3/4)
RTTVAR = β RTTVAR + (1 - β) | SRTT – R |

– RTO (Retransmission TimeOut)
RTO = SRTT = 4 * RTTVAR

• Persistence timer: to prevent the deadlock.
• Keepalive timer: to check whether the other side is stillKeepalive timer: to check whether the other side is still

there.
• Other timers such as the one used in the TIMED WAIT state• Other timers such as the one used in the TIMED WAIT state.

TCP: Congestion Controlg
• Congestion window
• Receiver window

TCP: Congestion Controlg
• Congestion Control Algorithm by Van Jacobson (1988)

– To approximate an AIMD congestion window
– To represent congestion signal by packet lossp g g y p
– To measure packet loss by a retransmission timer

To split data into segments (Ack Clock)– To split data into segments (Ack Clock)
– To use the optimal congestion window

TCP: Congestion Controlg
• The way packets are sent into the network must be

t h d t th t k th h t i d fmatched to the network path eve over short periods of
times. (Ack clock)

TCP: Congestion Controlg
• The AIMD rule will take a very long time to reach a

d ti i t f t t k if th tigood operating point on fast networks if the congestion
window is started from a small size.
– Slow start from an initial congestion window of 1

segment
– Additive increase from an initial congestion

window of 1 segment.g
– Slow start followed by additive increase in TCP

Tahoe.Tahoe.
– Fast recovery and the sawtooth pattern of TCP Reno.

T l ti k l d t– To use selective ackowledgements

TCP: Congestion Controlg
Slow start from an initial congestion window of

1 segment

TCP: Congestion Controlg
Additive increase from an initial congestion

i d f 1 twindow of 1 segment.

TCP: Congestion Controlg
Slow start followed by additive increase

in TCP Tahoe.

TCP: Congestion Controlg
Fast recovery and the sawtooth pattern

of TCP Reno.

TCP: Congestion Controlg
Selective ackowledgement

TCP: The Future
• SCTP (Stream Control Transmission Protocol) (RFC 4960) is

message oriented like UDP and ensures reliable in sequencemessage-oriented like UDP and ensures reliable, in-sequence
transport of messages.

• SST (Structured Stream Transport) is an experimental transportSST (Structured Stream Transport) is an experimental transport
protocol designed to address the needs of modern applications
that need to juggle many asynchronous communication activities
in parallel, such as downloading different parts of a web page
simultaneously and playing multiple audio and video streams at
once.

• FAST TCP (Wei et al. 2006)
T ti l TCP• Transactional TCP

• …

PERFORMANCE ISSUES

• Performance Problems in Computer Networks
• Net ork Performance Meas rement• Network Performance Measurement
• System Design for Better Performance
• Fast TPDU Processing

P t l f Gi bit N t k• Protocols for Gigabit Networks

Performance Issues: Performance Problems

• Some performance problems, such as congestion, are
d b t l dcaused by temporary resource overloads.

• Performance also degrades when there is a structural
i b lresource imbalance.

• Overloads can also be synchronously triggered.
– Broadcast storm due to errors.
– DHCP after an electrical power failure.

• Poor performance can occur due to lack of system
tuning.
– Low priority for network processing
– Less buffers for network processingp g
– Setting timeouts incorrectly

Performance Issues: Performance Problems

• Gigabit networks bring with them new performance
problems.
The state of transmitting one megabit from San Diego to Boston
(a) At t = 0,
(b) After 500 μsec,
(c) After 20 msec,
(d) after 40 msec.

Performance Issues: Performance Measurement

• The basic loop for improving network
performanceperformance.
– Measure relevant network parameters and

fperformance.
– Try to understand what is going on.
– Change one parameter to .

• These steps are repeated until the performance isThese steps are repeated until the performance is
good enough or it is clear that the last drop of
i t h b d timprovement has been squeezed out.

Performance Issues: Performance Measurement

• Make sure that the sample size is large enough.
• Make sure that the samples are representative.
• Be careful when using a coarse-grained clock.Be careful when using a coarse grained clock.
• Be sure that nothing unexpected is going on during your

teststests.
• Caching can wreak havoc with measurements.
• Understand what you are measuring.
• Be careful about extrapolating the results

Performance Issues: Performance Measurement

Performance Issues: Design for Better Performance

• CPU speed is more important than network speed.
• Reduce packet count to reduce software overhead.

– Nagle’s algorithm and Clark’s solution.g g
• Minimize context switches.

Four context switches to handle one packet

Performance Issues: Design for Better Performance

• Minimize copying:
– On a 50-MIPS machine, making three copies of each

packet at five instructions per 32-bit word copied
i 75 i i b t > 107Mbrequires 75 nsec per incoming byte. => 107Mbps

– Overhead for header processing, interrupt handling,
d t t it h > 50Mband context switches => 50Mbps

– Memory operations (not register-register operations)
> 16Mb=> 16Mbps

• You can buy more bandwidth but not lower delay.
idi i i b h i (• Avoiding congestion is better than recover it (An ounce

of prevention is worth a pound of cure).
id i• Avoid timeouts.

Performance Issues: Fast TPDU Processing

The fast path from sender to receiver is shown with
a heavy line.

The processing steps on this path are shadedThe processing steps on this path are shaded.

Performance Issues: Fast TPDU Processing

(a) TCP header.
(b) IP header. In both cases, the shaded fields are

taken from the prototype without change.taken from the prototype without change.

Performance Issues: Fast TPDU Processing

• A timing wheel.

Performance Issues: Gigabit Network Protocols

• The problems with gigabit network:
Man protocols se 32 bit seq ence n mbers– Many protocols use 32-bit sequence numbers
• For 56 kbps, the wrap time is over 1 week.
• For 10Mbps the wrap time is 57 minute• For 10Mbps, the wrap time is 57 minute.
• For 1 Gbps, the wrap time is 34 seconds.

Communication speeds have improved much faster– Communication speeds have improved much faster
then computing speeds.

– The go back n protocol performs poly on lines with aThe go back n protocol performs poly on lines with a
large bandwidth-delay product.

– Gigabit lines are fundamentally different from g y
megabit lines.

– The variance in the packet arrival times is as
i h d l i lfimportant as the mean delay itself.

Performance Issues: Gigabit Network Protocols

Performance Issues: Gigabit Network Protocols

• Solutions
– Design for speed, not for bandwidth optimization.
– To use a rate-based protocol rather than a sliding p g

window protocol.
– Packets should be well layoutPackets should be well layout.
– The header and data should be separately

checksummedchecksummed.
– The maximum data size should be large.
– To send a normal amount of data along with the

connection request.
– …

Homework
• 6.4

In both parts of Fig 6 6 there is a comment that the value ofIn both parts of Fig. 6-6, there is a comment that the value of
SERVERPORT must be the same in both client and server.
Why is this so important?Why is this so important?

• 6 9• 6.9
Imagine that a two-way handshake rather than a three-way
handshake were used to set up connections In other words thehandshake were used to set up connections. In other words, the
third message was not required. Are deadlocks now possible?
Give an example or show that none exist.p

Homework
• 6.15

Why does UDP exist? Would it not have been enough to just let user
processes send raw IP packets?processes send raw IP packets?

• 6.17
A client sends a 128-byte request to a server located 100 km away
over a 1-gigabit optical fiber. What is the efficiency of the line during
the remote procedure call?p

• 6.23
Datagram fragmentation and reassembly are handled by IP and areDatagram fragmentation and reassembly are handled by IP and are
invisible to TCP. Does this mean that TCP does not have to worry
about data arriving in the wrong order?

• 6.28
The maximum payload of a TCP segment is 65,495 bytes. Why was

h b hsuch a strange number chosen?

Homework
• 6.32

If the TCP round-trip time, RTT, is currently 30 msec and the
following acknowledgements come in after 26 32 and 24 msecfollowing acknowledgements come in after 26, 32, and 24 msec,
respectively, what is the new RTT estimate using the Jacobson
algorithm? Use α=0.9.

• 6.36
In a network whose max segment is 128 bytes, max segment lifetime g y g
is 30 sec, and has 8-bit sequence numbers, what is the maximum data
rate per connection?

• 6.39
To get around the problem of sequence numbers wrapping around
while old packets still exist one could use 64-bit sequence numberswhile old packets still exist, one could use 64 bit sequence numbers.
However, theoretically, an optical fiber can run at 75 Tbps. What
maximum packet lifetime is required to make sure that future 75-Tbps
networks do not have wrap around problems even with 64-bit p p
sequence numbers? Assume that each byte has its own sequence
number, as TCP does.

