CHAPTER 3 THE
(s 55 B =)

Data Link Layer Design Issues

vy
+ O
>
>
-
—
Z
~
-
>
[T
e,

Error Detection and Correction

Elementary Data Link Protocols
Sliding Window Protocols
Example Data Link Protocols

DATA LINK LAYER DESIGN ISSUES

* Services provided to the network layer

* Framing

e Error control

 Flow control

Data Link Layer Design Issues
* Functions

— Providing a well-defined service interface to the
network layer;

— Dealing with transmission errors;

— Regulating data flow so that slow receivers are not
swamped by fast senders.

* Relationship between packets and frames

Sending machine Receiving machine
Packet Packet
l /Frame W
Header | Payload field Trailer Header | Payload field Trailer

L J

it

Data Link Laye
(a) Virtual
(b) Actual
Host 1 Host 2
.\ i i)
B - B B

Virtual

data path

data path
\ P

JJ

yver Design Issues
154
communication.
communication.
Host 1 Host 2

4 4
3 3 ® ¢
2 2

1

Actual

(b)

* Three types of services:

— Unacknowledged connectionless service,
— Acknowledged connectionless service,
— Acknowledged connection-oriented service.

» Unacknowledged connectionless service (JoHifi A\ 10 1%
R 55)

— No connection 1s established beforehand or released
01“f1

afto
cu L\.«l VV aliul

— The source sends frames; the destination does not
acknowledge. No attempt 1s made to recover any lost
frames in the data link layer.

— Appropriate when the error rate 1s very low.
Appropriate for real-time traffic (Ethernet)

» Acknowledged connectionless service (A fifi i\ [f) L%
R 55)
— No connection
— Each frame sent 1s acknowledged.

— Useful for unreliable channels, such as wireless
systems. (WIFI)

o Acknowled&%ed connection-oriented service (4 ffi A 1)

[[A) 42 AR 55

— A connection 1s established before transmission.

— Each frame sent over the connection 1s numbered
and acknowledged.

— Each frame 1s received exactly once and that all
frames are received in the right order.

* The physical layer = the data link layer - the network
layer

* The physical layer accepts a raw bit stream and attempts
to deliver it to the destination. This bit stream is not
guaranteed to be error free.

* The data link layer transforms an unreliable channel into

nAd A~ flA ntral
a rehablu onc anda ao 110w conuuoi

— The data link layer breaks the bit stream up into
discrete frames (i7) and compute the checksum for
each frame.

— When a frame arrives at the destination, the checksum
1s recomputed. If OK, fine; otherwise deal with errors.

Data Link Layer Desi

* How to break the bit stream up into frames
— Byte count
— Flag bytes with byte stuffing
— Flag bits with bit stuffing
— Physical layer encoding violation.

Data Link Layer Design Issues: Framing
* Byte count: to use a field in the header to specify the number of

characters 1n the frame.
— Count can be garbled by a transmission error.
— Resynchronization problem.
— A character stream. (a) Without errors. (b) With one error.

/ / ﬁracter count j One character
6|7 918

(@|5|1]2|3|4]|5 8 O|1|2|3|4|5|6|8|7|8|9|0|1]2]3
Frame 1 Frame 2 Frame 3 Frame 4
5 characters 5 characters 8 characters 8 characters
Error

/

b)|5|1|2|3|4|7|6|7|8|9|8|0]|1|2[3|4|5|6|8|7|8|92|0(1]|2]|3

Frame 1 Frame 2 Now a
(Wrong) character count

Data LLink L ayer anoqI sues: Framin
» Using flag bytes Wlth byte stufﬁng
(a) A frame delimited by flag bytes.

(b) Examples of byte sequences before and after stuffing.

FLAG| Header Payload field Trailer |FLAG
(a)
Original characters After stuffing
A FLAG B — [A ESC | |[FLAG B
A ESC B — [A ESC | | ESC B

A ESC | |FLAG B — | A ESC | |ESC | | ESC | |[FLAG|| B

A ESC | | ESC B — | A ESC | |ESC | | ESC | | ESC B

(b)

Data Link Lay 1gn Issues: Frami
* Using flag bits With bit stufﬁng. x: flag bits 01111110
(a) The original data.

U

(b) The data as they appear on the line.

(c) The data as they are stored 1n receiver’s memory after
destuffing.

(@) 011011111111111111110010

(b)) 011011111011111011111010010

™~ 1

Stuffed bits

(c) 011011111111111111110010

Data Link Layer Design Issues: Framin

* To use physical layer coding violations

— For example, some LANs encode 1 bit of data by
using 2 physical bits.
* Normally, a 1 bit 1s a high-low pair and a 0 bit 1s

low-high pair. = Every data bit has a transition in
the middle, making it easy for the receiver to

1r\r\ ta tha Wit hatirnda
U\./CLL\./ Lll\.« UlL uuuuucuu.«o

* The combinations high-high and low-low are not
used for data but are used for delimiting frames 1n
some protocols.

Data Link Layer Design Issues: Framin

* To use a combination of a byte count with one of the
other methods for extra safety.

— When a frame arrives, the count field 1s used to
locate the end of the frame.

— If the appropriate delimiter 1s present at that position
and the checksum 1s correct, the frame is accepted

aqg valid
ad vdadlliu.

— Otherwise, the input stream 1s scanned for the next
delimiter.

— Ex: preamble + byte count in Ethernet and 802.11

Data Link Laver Design Issues: Error con

LL

4

A A

* Ensure reliable frame delivery: every frame arrives
without damaging, frames arrive in order.

— To provide the sender with some feedback
* Positive acknowledgement (ACK)
* Negative acknowledgement (NAK)

— To provide timeout timers
* Resend as necessary

— To number frames

* To distinguish retransmissions from originals

What to do with a sender that systematically wants to
transmit frames faster then the receiver can accept them.

* To mtroduce flow control to throttle the sender into
sending no faster than the receiver can handle the traffic.

* Flow control protocol contains well-defined rules about
when a sender may transmit the next frame.

* Two approaches
— Feedback-based flow control (used at DLL)
— Rate-based flow control (not suitable for DLL)

T

| —a
L&

| 524

A)

)

{

Ay

7= L

f—a

CORRECTION

* Error-correcting codes

* Error-detecting codes

Error Detectio

A A \J A

Transmission errors are going to be a fact of life for
many years to come:

— The local loops in the PSTN (trunks and switching
elements are digital)

— Wireless communication.
Error types:
— 1solated errors,

- 111~af ATrrNrQ
vUuldl L11UlD.

Two approaches: to send the data and some extra data
for detecting or correcting errors.

— Error detection;
— Error correction.

Error Detection and Correction: Hamming

distance

n-bit codeword: m message bits + r redundant bits.
n=m-r

Hamming distance of two codeword: the # of bit
positions 1n which two codeword differ

Hamming distance of complete code

— In most data transmission apps, all 2™ possible data
messages are legal, not all 2" possible codewords are
used

— It 1s possible to construct a complete list of legal
codewords, and from this list find two codewords
whose Hamming distance 1s minimum. This distance
1s the Hamming distance of the complete code

Error Detection and Correction: Hamming distanc

A A A AL ALAL A L

The error-detection and error-correcting properties of
a code depend on its Hamming distance.

To detect d errors:

* you need d+/ Hamming distance code. (Because with
such a code there 1s no way that d single-bit errors can
change a valid code into another valid codeword).

~ o~ A

* A simple example of an error-detecting code: a code in
which a single parity bit 1s appended to the data.
For example,

1011010->1011010 0; 1011000—->1011000 1.

A code with a single parity bit has a distance 2 so 1t can
be used to detect single errors.

Error Detectio

A

To use Hamming distance to correct d errors:

* you need 2d+1 Hamming distance code. (Because that way
the legal codewords are so far apart that even with d
changes, the original codeword A 1s still closer to B than
any other codeword C, so 1t can be uniquely determined.)

* A simple example of an error-correcting code, consider a
code with only 4 valid codewords: 0000000000,

1111111111

0000011111, 1111100000, and 1111111111.

— This code has a distance 5, can detect 2 errors. If
0000000111 arrives, the receive know that the original
must have been 0000011111.

— If a triple error changes 0000000000 into 0000000111,
the error will not be corrected properly.

Error Detection and Correction:
Error correction codes

* To design a code with m message bits and » check bits

that w

ill allow all single errors to be corrected:

— Each of the 2™ legal messages has n 1llegal

cod
2m |

ewords at a distance / from 1t. Thus each of the
legal messages requires n+1 bit patterns

dec

1cated to it.

— The total number of bit patterns 1s 2":
(m+r+1)2m<=20=) m"
=2 (mtr+l) <2r

— Given m, this puts a lower limit on the number of
check bits needed to correct single errors.

— This theoretical limit can be achieved using a
method due to Hamming (1950).

Error Detection and Correction:
Error correction codes

 Hamming code for single error:

— The bits of the codeword are numbered consecutively,
starting with bit 1 at the left end.

— The bits that are powers of 2 (1,2,4,8, etc) are check bits.
T'he rest (3, 5,6,7,etc) are filled up with the m data bits.

— Each check bit forces the parity of some collection of bits,
including itself, to be even (or odd). A bit may be
included 1n several parity computations.

— To see which check bits the data bit in position &
contributes to, rewrite £ as a sum of powers of 2. For
example, //=1+2+8 and 29=1+4+8+16. A bit is
checked by just those check bits occurring in its
expansion (e.g., bit 11 1s checked by bits 1, 2, and 8).

Error Detection and Correction:
Error correction codes

* Hamming codes for single error:

— When a codeword arrives, the receiver initializes a
counter to zero.

— It then examines each check bit, k (k=1,2,4,8,...) to
see 1f 1t has the correct parity. If not, 1t adds £ to the
counter.

— If the counter 1s zero after all the check bits have
been examined, the codeword is accepted as valid. If
the counter 1s nonzero, it contains the position of the
incorrect bit.

— For example, 1f check bits 1, 2, and 8 are 1n error, the

inverted bit 1s 11, because 1t 1s the only one checked
by bits 1, 2, 8.

Error Detection and Correction:
Error correction codes

 Hamming codes can be used to correct burst errors
indirectly.

— A sequence of k consecutive codewords are arranged as a
matrix, one codeword per row.
— Transmit the matrix by one column at a time.

— When the frame arrives at the receiver, the matrix 1s
reconstructed, one column at a time.

— If a burst error of length &k occurs, at most 1 bit 1n each of
the k£ codewords will have been affected, but the
Hamming code can correct one error per codeword, so
the entire block can be restored.

— This method uses k7 check bits to make blocks of km data
bits immune to a single burst error of length k or less.

Error Detection and Correction: Error correction codes

 Hamming codes to correct burst errors

Char.

Q@ > —3 3 9 T

T 0 O O

ASCII

1001000
1100001
1101101
1101101
1101001
1101110
1100111
0100000
1100011
1101111
1100100
1100101

\J

Check bits

00110010000
10111001001
11101010101
11101010101
01101011001
01101010110
01111001111
10011000000
11111000011
10101011111
11111001100
00111000101

Order of bit transmission

Error Detection and Correction:
Error correction codes

* Other codes
— Binary Convolutional Codes

—Reed-Solomon Codes

I
t—*

v-Density Parity Check Codes (LDPC)

Error Detection and Correction:
Error detection codes

* Error detection is less expensive than error
correction.

— Given a channel with the error rate as 10 per bit.
Let the block size be 1000 bits.

— To provide single error correcting, 10 check bits are

need; a megabit of data would require 10,000 check
bits.

— To merely detect a block with a single 1-bit error,
one parity bit per block will suffice. Once every
1000 blocks an extra block (1001 bits) will have to
be transmitted. The total overhead for the error
detection + retransmission method 1s 2001 bits per

megabit of data, versus 10,000 bits for a Hamming
code.

Error Detection and Correction:
Error detection codes

* Parity

e Checksum

* CRC

Error Detection and Correction:
Error detection codes

* To detect single error by using parity bit

— Append parity bit to the block to detect the possible
single error

* To detect a single burst of length £ by using parity bit.

— To treat the data block as a matrix n bits wide and k
bits high. To append every row with a parity bit;

— To transmit the block one column at a time;
— To check the parity bit.

Error Detection and Correction:
Error detection codes (Checksum)

 Checksum treats data as N-bit words and adds N
check bits that are the modulo 2N sum of the words

— Ex: Internet 16-bit 1 complement checksum
* Properties:
— Improved error detection over parity bits
— Vulnerable to systematic errors, e.g., added zeros

Internet Checksum Example

7 Note

O When adding numbers, a carryout from the
most significant bit needs to be added to the
result

7 Example: add two |6-bit integers

O =
- O
o o
—
—
o

wraparound {:Z_I;_}lUllIDlllDlllDll

¥

sUm 1

- O
O -
O -
O -
—
o
o
o
-
O -
O -
O -
O -
- O
- O

checksum 0

Error Detection and Correction:
Error detection codes

* Polynomial code or CRC (Cyclic Redundancy Check)

— To treat bit strings as representations of polynomials
with coefficients of 0 and 1 only.

— A k-bit frame 1s regarded as the coefficient list for a
polynomial with k terms, ranging from x*/ to x'.

— For example, 110001 2 x° + x* +x".

— Polynomial arithmetic 1s done modulo 2, according to
the rules of algebraic field theory. There are no carries
for addition or borrows for subtraction. Both addition
and subtraction are 1dentical to exclusive OR.

Error Detection and Correction:
Error detection codes

* Polynomial code or CRC (Cyclic Redundancy Check)

— The sender and receiver agree upon a generator
polynomial, G(x).

— Let M(x) be the polynomial corresponding to some
frame with m bits.

— The polynomial 7(X) represented by the
checksummed frame 1s divisible by G(x).

— When the receiver gets the checksummed frame, it

tries dividing 1t by G(x). If there 1s a remainder, there
has been a transmission error.

Error Detection and Correction:
Error detection codes

* Polynomial code or CRC (Cyclic Redundancy Check)
— Let » be the degree of G(x).

— Divide the bit string corresponding to G(x) into the
bit string corresponding to M(x)x", using modulo 2
division, 1.e. M(x)x" / G(x)

— Subtract the remainder from the bit string
corresponding to M(x)x" using modulo 2 subtraction.
The result is the checksummed frame to be
transmitted. Call 1ts polynomial 7'(x).

— Clearly, T(x) 1s divisible (modulo 2) by G(x).

Frame 1101011011
Generator: 1001 1
Message after 4 zero bits are appended: 11010110110000

1100001010

10011, 110 0] 0110000
100

—_

1

—_
o
(@]
—_

—_ - —

(@]
o
O
o
—

o Remainder

O
o
O
o
OO O

Transmitted frame: 11010110111110

Error Detection and Correction:
Error detection codes

* Polynomial code or CRC (Cyclic Redundancy Check)
— Imagine that a transmission error occurs, so that
instead of the bit string for 7(x) arriving, T(x) + E(x)
arrives.
— Each / bit in £(x) corresponds to a bit that has been
inverted.
* If there are k£ 1 bits in E(x), k single-bit errors
have occurred.
* A single burst error 1s characterized by an initial /,

a mixture of 0s and /s, and a final /, with all other
bits being 0.

Error Detection and Correction:
Error detection codes

* Polynomial code or CRC
— [T(X)+E(X)] / G(X) = E(X)/G(X)
— Those errors that happen to correspond to

polynomials containing G(X) as a factor will slip by;
all other errors will be caught

— All single errors can be detected as long as G(X) has
more than one term

— All double errors can be detected as long as G(X)
does not divide x*+1 for some k. E(X) = x+x/
= xJ(x9 +1). Ex: xP+x!4+1 will not divide x*+1 for
any value of k below 32768

Error Detection and Correction:
Error detection codes

* Polynomial code or CRC

— All errors with an odd # of bits can be detected as
long as G(X) has x+1 as its factor

— A polynomial code with r check bits will detect all
burst errors of length <=r.

— If the burst length 1s r+1, the remainder of the
division by G(x) will be zero 1ff the burst 1s 1dentical
to G(x). This probability is 1/2%!

— When an error burst longer than r+1 bits occurs, or

several shorter bursts occur, the probability of a bad
frame getting through unnoticed 1s 1/2f

Error Detection and Correction:
Error detection codes

CRC-16 CRC-ITU
,r”'-i- .1;H+-1'"J+ I .-.-”'+ -r”+ -1.’5+]
CRC-32

. 2 23 21 16 12 |1 1] b) s 4 J :
X THXT +rT T Y X THY +X 4 X X +x +x+x+1

ELEMENTARY DATA LINK PROTOCOLS

* A Utopian Simplex Protocol

* A Simplex Stop-and-Wait Protocol

* A Simplex Protocol for a Noisy Channel

Elementary Data Link Protocols:
Possible Implementation

«— Computer

4+— Operating System

Network
' Driver
Link J‘/
: Network Interface
Enl— Card (NIC)
PHY
N

Cable (medium)

Elementary Data Link Protocols:
Some Assumptions

* The physical layer, data link layer, and network
layer are independent processes that
communicate by passing messages back and

forth.

* Machine A wants to send a long stream of data
to machine B using a reliable, connection-
oriented service.

e Machines do not crash.

Elementary Data Link Protocols:
Sending and Receiving Frames

* To send a frame
— To accept a packet passed from the network layer

— To encapsulate the packet in a frame by adding data link
header and trailer to 1t

— To transmit 1t to the data link layer on the other machine
* To receive a frame

— Initially, the receiver has just wait for event()

— When something has happened, the procedure returns

— If a frame arrives, the HW computes the checksum

— If OK, 1t checks the control information in the header

— If everything is all right, 1t passes the packet to the network
layer

#define MAX PKT 1024

typedef enum {false, true} boolean;

typedef unsigned int seq nr;

typedef struct {unsigned char data[MAX PKT];} packet;
typedef enum {data, ack, nak} frame kind,

typedef struct {
frame kind kind;
seq nr seq;
seq nr ack;
packet info;

} frame;

/* determines packet size in bytes */

/* boolean type */

/* sequence or ack numbers */
/* packet definition */

[* frame kind definition */

/* frames are transported in this layer */
[* what kind of frame is it? */

/* sequence number */

[* acknowledgement number */

/* the network layer packet */

Ele

(’D
-
c—lk
QO
2
w,
o
=
o
t—4
=

[* Wait for an event to happen; return its type in event. */
void wait for event(event type *event);

[* Fetch a packet from the network layer for transmission on the channel. */
void from network layer(packet *p);

[* Deliver information from an inbound frame to the network layer. */
void to network layer(packet *p);

[* Go get an inbound frame from the physical layer and copy ittor. */
void from physical layer(frame #*r);

[* Pass the frame to the physical layer for transmission. */
void to physical layer(frame *s);

[* Start the clock running and enable the timeout event. */
void start timer(seq nr k);

[* Stop the clock and disable the timeout event. */
void stop timer(seq nr k);

[* Start an auxiliary timer and enable the ack timeout event. */
void start ack timer(void);

[* Stop the auxiliary timer and disable the ack timeout event. */
void stop ack timer(void);

[* Allow the network layer to cause a network layer ready event. */
void enable network layer(void);

/* Forbid the network layer from causing a network layer ready event. */
void disable network layer(void);

/* Macro inc is expanded in-line: increment k circularly. */
#define inc(k) if (k <MAX SEQ)k=k+ 1;elsek=0

A Utopian simplex protocol
* Data are transmitted in one direction only.

* The communication channel never damages or loses
frames.

* Both the transmitting and receiving network layers are
always ready.

* Processing time can be 1gnored.
* Infinite buffer space 1s available.

/*# Protocol 1 (Utopia) provides for data transmission in one direction only, from
sender to receiver. The communication channel is assumed to be error free
and the receiver is assumed to be able to process all the input infinitely quickly.
Consequently, the sender just sits in a loop pumping data out onto the line as
fast as it can. */

typedef enum {frame arrival} event type;
#include "protocol.h”

void sender1(void)

{

frame s; /* buffer for an outbound frame */
packet buffer; [+ buffer for an outbound packet */

while (true) {

from network layer(&buffer); [* go get something to send */
s.info = buffer; [* copy it into s for transmission */
to physical layer(&s); [* send it on its way */
} /* Tomorrow, and tomorrow, and tomorrow,

Creeps in this petty pace from day to day
To the last syllable of recorded time.
— Macbeth, V, v */

void receiveri(void)

{

frame r;
event type event; [* filled in by wait, but not used here */

while (true) {

wait for event(&event); [* only possibility is frame arrival */
from physical layer(&r); /* go get the inbound frame */
to network layer(&r.info); [* pass the data to the network layer */

A simplex stop-and-wait protocol
* Data traffic 1s still simplex.

* The communication channel 1s assumed to be error free.

* The sender 1s always ready. The receiver 1s NOT always
ready or the receiver has limited buffer space.

— The sender simply 1nserts a delay into protocol 1 to slow

it down sufficiently to keep from swamping the receiver.
—> low utilization of bandwidth.

— The receiver provides feedback to the sender, permitting
the sender to transmit the next frame.

* Protocol (p2) ensures sender can’t outpace receiver:
— Recerver returns a dummy frame (ack) when ready

— Only one frame out at a time — called stop-and-wait
— We added flow control!

Stop-and-Wait(Normal)

Data

ACK

Data next

ACK

Data following

/* Protocol 2 (Stop-and-wait) also provides for a one-directional flow of data from
sender to receiver. The communication channel is once again assumed to be error
free, as in protocol 1. However, this time the receiver has only a finite buffer
capacity and a finite processing speed, so the protocol must explicitly prevent
the sender from flooding the receiver with data faster than it can be handled. */

typedef enum {frame arrival} event type;

#include "protocol.h”

void sender2(void)

{

frame s;
packet buffer;
event type event;

while (true) {

from network layer(&buffer);

s.info = buffer;
to physical layer(&s);
wait for event(&event);

[+ buffer for an outbound frame */
[* buffer for an outbound packet */
/* frame arrival is the only possibility */

/* go get something to send */

[* copy it into s for transmission */

[+ bye-bye little frame */

/* do not proceed until given the go ahead */

void receiver2(void)

{
framer, s: /* buffers for frames */
event type event; [* frame arrival is the only possibility */
while (true) {
wait for event(&event); /* only possibility is frame arrival */
from physical layer(&r); [* go get the inbound frame */
to network layer(&r.info); /* pass the data to the network layer #/
to physical layer(&s); /* send a dummy frame to awaken sender */

A simplex protocol for a noisy channel

* Data traffic 1s still simplex.
* The communication channel 1s NOT free of errors.
* The receiver 1s NOT always ready.

* The possible solutions:
— Protocol 2 + timer = duplicate packets
— Protocol 2 + timer + to number the frame

* Protocols in which the sender waits for a positive
acknowledgement before advancing to the next data item
are often called PAR (Positive Acknowledgement with
Retransmission) or ARQ (Automatic Repeat reQuest)

Elementary Data Link Protocols:
Protocol 3

* ARQ (Automatic Repeat reQuest) adds error control
— Receiver acks frames that are correctly delivered
— Sender sets timer and resends frame 1f no ack

* For correctness, frames and acks must be numbered

— Else receiver can’t tell retransmission (due to lost
ack or early timer) from new frame

— For stop-and-wait, 2 numbers (1 bit) are sufficient

Stop-and-Wait(Data Error)

A B
Data
NAK
Data(Retransmission)
ACK

Data next

Stop-and-Wait(Data Lost)

A B
Data

3 Data(Retransmission)
Time Out

ACK

Data next

Stop-and-Wait(ACK Lost)

A B

| Data
|
! ACK
|
I <+

— Data(Retransmission)

Time Out J| Discard this Data
ACK

Data next

void sender3(void) {
seq nr next frame to send;

Sender loop (p3): frame s;

packet buffer;
event type event;

next frame to send = 0;
fiom network layer(&buffer);
while (true] {
g.info = buffer;
s.5eq = next frame to send:
Send frame (or retransmission) —— to physical layer(&s);
Set timer for retransmission ——> start timer(s.seq);
Wait for ack or timeout — wait for event{&event):
— if (event == frame arrival) {

from physical layer(&s);
If a good ack then set up for the if ig,a,’:’k L next ¥ra::'ne }t::. send) {

next frame to send (else the old stop timer(s.ack):

frame will be retransmitted) frem network layer(&buffer);
inc(next frame to send);

void receiverd(void)

Receiver loop (p3): {

seq nr frame expected;
framer, 5

event type svent;

frame expected = 0;
while (true) {
wait for event{&event):
Wait for a frame —> |f ([event == frame arrival) {
from physical layer(&r):

If It's new then take { if (r.seq == frame expectad){

it and advance to network layeri&r.info);
expected frame inc{frame expected);

}

s.ack =1 - frame expectad:

Ack current frame —— |
to physical layer(&s);

Utlization of Stop-and-wait

A B
Tframe y Data
Tprop 25 N ayays
ACK Utilization =
Tframe
Torop = Data next o e
. Distance , 2 Torop T Thrame
Speed of Signal
ACK
o= Tprop/ Tframe
Tframe -
_Frame size Utilization=1/2 a + 1)
Bit rate

Utilization Sample

* Satellite Link: Propagation Delay t =270 ms
— Frame Size = 4000 bits
— Data rate = 56 kbps = t;.,,. =4/56 =71 ms

= Lorop [tonme = 270/71 = 3.8
—U=1/2a+1)=0.12
* Short Link(1 km) : t
— Frame Size= 4000 bits
— Data rate=10 Mbps = t;. . =4k/10M=400 u s
torop /trame —2/400=0.012

—U=1/Qo+1)=0.98

= us

Sliding Window Protocols

A B

Data 1

Data 2 .

Data 3 —— ACK

Data 4 [————= - ACK 3

Data 5 [T————= >
ACK 4

Data 6 R ~ AEK 5

ACK 6

Utlization of Shiding-window

Tframe

B

Utilization =

N Tframe

Utilization =

N/Q2o+1)
1 fN>Q2o+1))

Sliding Window

* Window = Set of sequence numbers to
send/recerve

e Sender window
— Sender window increases when ack received

— Packets 1n sender window must be buffered at
Source

— Sender window may grow in some protocols

Piggybacking

A B
Data 1
Data 2 , ACK 1
Data 3 —— BEK +Dat
‘ — — ata

Sliding Window (Transmitter)

Frames already transmitted Frames may be transmitted

<
<

v
A

[

N

Of1123f1415(6[1710f1112(3f4151617

e e ——— :
/ / _ > - >
Frame

Last Window shrinks Window expands
Sequence Frame from trailing edge from leading edge as
Number Transmitted as frames are sent acknowledgments

are received

Sliding Window (Receiver)

Frames already received Frames may be received

<
<

v
A

Of1123f1415(6[1710f1112(3f4151617

e e 1
/ / _ > - >
Frame

Last Window shrinks Window expands
Sequence Frame from trailing edge from leading edge as
Number acknowledged 35 frames are received acknowledgments

are sent

I fJ N aVey ‘ A II A N\ A1 E I V\
SIIUILI IS VVili IUUVV LAdII IIJ
Source System A Soutce c,,} stem B
] -
IENRAEAERERAREAERES INEENERENABENE RE
T
.Fg\b
Tl |2||3!4! g._le.'?lﬂll 2] 3[4]s] 47 T ol I2I3I4 sle] Aol 12 [3]4] sl 47
|
- ACKS— Tl Dl Al L T T d 7
INNPEREGEONRERERE
F3
}‘_ [-
e A BN ERE N NAEA RGN
IEREEEEEAR FEERERE —\;5*
e
> INNEEAEAEANPEAEEH
NP EAEAEARPEABEE ——
| I

Sliding Window

Sender 7 0 7 0 7

(& 1 (& 1 (& 1 B 1

9 2 9 2 o i 5 2
3 4

FReceihver

(a) {b) (c) (d)

Fig. 3-12. A shiding window of size 1, with a 3-bit sequence
number. (a) Inmtially. (b) After the first frame has been sent.
(c) After the first frame has been received. (d) After the first

acknowledgement has been received.

v, = =3 N\
LIDING WINDOW PROTOCOLS (V&3 & H 1%

* Protocol 4: A one-bit sliding window protocol
* Protocol 5: A protocol using go back N

* Protocol 6: A protocol using selective repeat

Sliding Window Protocols: Protocol 4
void protocold (void) {
EHEh I"'I‘DdE iE SEﬂdEF saq nr naxt frame to send:
_ seq nr frame expected:
and receiver (p4). frame r, s:
packet buffer;

event type event;

naxt frame to send=0:
frame expected =0;
- from network layer(&buffer);
s.info = buffer;
s.seq = next frame to send;
= sack=1-frame expected:
~ to physical layer(&s),
start timer(s.seq);

FPrepare first frame

Launch it, and set timer ———

Wait for frame or timeout

If a frame with new data
then deliver it

If an ack for last send then
prepare for next data frame

Otherwise it was a timeout)

Send next data frame or

retransmit old one; ack
lhe lasl dala we received

while (true) {
— wait for event|(&eavent);
if (&vent == frame arrival) {
from physical layer(&r),
if (r.seq == frame expected] {
to network layer{&r.info):

inc(frame expected);

}

if (r.ack == next frame to send){
stop timer(r.ack):
from network layer(&buffer);

inc(next frame to send);
|

}

3 info = buffar:

s.seq = naxt frame to send:

s.ack = 1 - frame expected;
~to physical layer(&s);

_ start timer{s.seq),

Slid1

No combination of lost frames or premature timeouts
can cause the protocol to deliver duplicate packets to

either network layer, or skip a packet, or to get into a
deadlock.

* A peculiar situation arises 1f both sides simultaneously

rotocols

4

Protocol

The notation 1s (seq, ack, info). An asterisk * indicates where a
network layer accepts a packet. (a) Normal case. (b)Abnormal case.

A sends (0, 1, AO) ~_
B gets (0, 1, AQ)*

/ B sends (0!| 0ll BO)
A gets (0, 0, BO)*

peenee Al —— gets (1, 0, A1)*
Agets (1, 1, By =— °oenas (11,51
Asends (0,1, A2)—__ 5 et 0.1, A0
A gets (0, 0, B2)* = B sends (0, 0, B2)

PSS S AS)\ B gets (1, 0, A3)"
B sends (1, 1, B3)

Time

B sends (0, 1, BO)

B gets (0, 1, AO)"
B sends (0, 0, BO)

B gets (0, 0, AQ)
B sends (1, 0, B1)

A sends (0, 1, A0)7<

A gets (0, 1, BO)*

A sends (0, 0, A0)

A gets (0, 0, BO)

e B gets (1, 0, A1)"
B sends (1, 1, B1)

A gets (1, 0, B1)*

B sends (0, 1, B2)

(b)

Go-back-N ARQ(Data Error)

A
Data 1
_: Data 2
§' Data 3

o _
9 Data 4
—> _ Resend Data 2

Resend Data 3

B

» ACK 1
—=—1 Discard 2

» Discard 3

» Discard 4

e Vala

" ACK 2

| ACK 3

1 buffer

Go-Back-N ARQ

LliTimeuut interval —————m

A

-

,a"‘-b"‘{-n’
i . K
{18

Gl (/7] [&] 9] [10
\f /
'tu ; 'q': "nf

%

i

N 4

rror - Frames discarded by data link layer

Timg ———=

Window Size of Go-Back-N

e Receive Window Size=1
* Send Window Size <= MAX SEQ (0...N)

 > >
—
=
a
o
=t
ACKS| Jlost | NG
- —
— 'l
ol new Send to resend discard

" Network layer

Selective Repeat ARQ

|--liTirneuaut interval ———me

Error Buffered by data link layer Packets 2-8 passed
to network layar

Window Size of Selective Repeat ARQ

* Send Window Size <= (MAX SEQ+1)/2
e Receive Window Size = Send Window Size
 Receive Buffer Number = Window Size

Sender [0123456(7 (01234567 (0123456 (01234567

Send 7 packets Time out resend

Ack all lost

Get 7 packets Is new or resend?

Heceiver |0 1234 36|/ IIIIELHEE 0123456 01234361

3) b)) d

Init window New window

GBN vs. SR

 Note that reliable data communication 1s also
important for the Transport layer

e Is TCP GBN or SR?

* TCP uses GBN with buffers which has
improved performance than pure GBN

EXAMPLE DATA LINK PROTOCOLS

 Packet over SONET

 ADSL (Asymmetric Digital Subscriber Loop)

« Packet over SONET.
(a) A protocol stack.
(b) Frame relationships

ot | IP packet |
outer. P IP '
PPP PPP | _PPP frame |
i Y]
SONET Optical | goNET [SONET payload |[SONET payload

fiber
— 4 4
(a)

(b)

[T
S
Qo
a
p—a
U
<—I~
oo
[—1
=3
:
i,
=
<
=
Qo
(@
=3
&

Packet ovVer SONET

* PPP provides three features

— A framing method that unambiguously delineates the
end of one frame and the start of the next one. The
frame format also handles error detection.

— A link control protocol (f #4271 1) for bringing
lines up, testing them, negotiation options, and bring
them down again gracefully when they are no longer
needed.

— A way to negotiate network-layer options in a way
that 1s independent of the network layer protocol to
be used. The method chosen 1s to have a different
NCP (Network Control Protocol, X%l #riX) for
each network layer supported.

Example Data Link Protocols:

R

Packet over SONET

« The PPP full frame format for unnumbered mode operation

Bytes 1 1 1 1or2 Variable 20r4 1

((
e B

Flag Address | Control | p 0 Payload | Checksum

01111110 11111111 | 00000011

((
]

e Delimiters: 01111110

* Address: 11111111

* Control: 00000001

* Protocol: To tell what kind of packet 1s in the Payload field.

* Payload: of variable length, up to some negotiated maximum.
* Checksum: CRC checksum.

Example Data Link Protocols:

R

Packet over SONET
State diagram for bringing a PPP link up and down

Carrier Both sides Authentication
detected agree on options successful

N /

/—- ESTABLISH | AUTHENTICATE
\ Failed
DEAD , NETWORK
Failed

/‘ TERMINATE ‘/ OPEN -J\

Carrier Done NCP
dropped configuration

Example Data Link Protocols:
PPP over SONET

* Typical Scenario (establishing a connection)

— The PC first calls the ISP’s router via a modem. The
router’s modem answers the phone and establish a
physical connection.

— The PC sends the router a series of LCP packets in
the payload field of one or more PPP frames. These
packets and their responses select the PPP
parameters to be used.

— Once the parameters have been agreed upon, a series

of NCP packets are sent to configure the network
layer. (DHCP, NAT)

— Now, the PC 1s an Internet host and can send/receive
[P packets.

Example Data Link Protocols:
PPP over SONET

* Typical Scenario (releasing a connection)

— When the user 1s finished, NCP tears down the
network layer connection and frees up the IP address.

— Then LCP shuts down the data link layer connection.

— Finally, the computer tells the modem to hang up the
phone, releasing the physical layer connection.

DSL

Local

IP
PPP / modem
PC
AALS
4 Ethernet
ATM
= Ethernet ADSL
N A < ¥

L

loop

PP

AALS

ATM

Link

ADSL

Y

Customer's home

DSLAM
/(with router)

Y

ISP’s office

Bytes

Example Data Link Protocols:

e

ADSL
AALS frame carrying PPP data

1or2 Variable 0to 47 2 2 4
PPP protocol PPP payload Pad Unused Length CRC
Y f
AALS payload AALS trailer

Example Data Link Protocols: PPP:

Packet over SONET
cout | IP packet |
outer. P P !
PPP PPP | PPPframe |
[[
. Y | |
SONET oOptical | soNET [SONET payload |[SONET payload

fiber
— 4 4
(a) (b)

Example Data Link Protocols: PPP:
ADSL(Asymmetric Digital Subscriber Loop)

IP P DSLAM
DSL :
PPP /m:::dem PPP /{wﬂh router)
o PC AALS AAL5)
Ethernet Link -)
ATM ATM [it t L
nternet
== Ethernet ADSL Local | ApsL
loop ~
L J \)
Y Y
Customer's home ISP’'s office

Example Data Link Protocols: PPP:
ADSL(Asymmetric Digital Subscriber Loop)

Bytes 1or2 Variable 0 to 47 2 2 4

PPP protocol PPP payload Pad Unused Length CRC

Y f
AALS payload AALS trailer

Homework

2. The following character encoding 1s used 1n a data link protocol:
A: 01000111 B: 11100011 FLAG: 01111110 ESC: 11100000

Show the bit sequence transmitted(in binary) for the four-character
frame A B ESC FLAG when each of the following framing methods
1s used:

(a) Byte count.

Homework

7. In the textbook, the authors show that for a channel with error rate
107-6, error detecting based retransmission is more efficient than error
correcting (see 271 slide). Please give ranges of the channel error rate
in which error correcting 1s more efficient, considering only for blocks
(1000 bits) with at most 1 bit error.

8. Hamming code 1s an effective way for error correcting. Show that
the # of check bits(i.e. r) in the Hamming codes described in the

textbook(e.g., Fig.3-6) (almost) achieves the low bound of Eq (3-1).

Homework

9. Suppose you have the following 12-bit message: 010100111111

(a) Numbering bits from right to left (ie least-significant bit on the
right), insert check bits according to to Hamming’s 1-bit error
correction system. Indicate which bits are check bits and which are
message bits.

(b) Hamming’s scheme only corrects 1-bit errors. Since it’ s a
distance 3 code, it could also be used to detect 2-bit errors.
Describe a 3-bit error (3 *1-bit errors) in the above codeword
affecting only message bits

(not check bits) that would be undetected (and of course
uncorrected). Be sure to describe how and why the algorithm fails.

Homework

16.Consider an original frame 110111011011. The generator

polynomial x*4+x+1, show the converted frame after appending the
CRC.

22.A 3000-km-long T1 trunk is used to transmit 64-byte frames. How
many bits should the sequence numbers be for protocol 5 and protocol
6 respectively? The propagation speed 1s 6usec/km.

Homework

32.Frames of 1000 bits are sent over a 1-Mbps channel using a
geostationary satellite whose propagation time from the earth is 270
msec. Acknowledgements are always piggybacked onto data frames.
The headers are very short. Three-bit sequence numbers are used.
What 1s the maximum achievable channel utilization for

(a) Stop-and-wait?
(b) Protocol 5?
(c) Protocol 6?

Homework

33.Compute the fraction of the useful data bandwidth for protocol 6
on a heavily loaded 50-kbps satellite channel with data frames
consisting of 40 header and 3960 data bits. Assume that the signal
propagation time from the earth to the satellite is 270 msec. ACK
frames never occur. NAK frames are 40 bits. The error rate for data
frames i1s 1%, and the error rate for NAK frames is negligible. The
sequence numbers are 3 bits.

