
Low-cost Communication for Rural Internet Kiosks Using
Mechanical Backhaul

A. Seth, D. Kroeker, M. Zaharia, S. Guo, and S. Keshav
School of Computer Science, University of Waterloo

Waterloo, ON, Canada, N2L 3G1

ABSTRACT
Rural kiosks in developing countries provide a variety of
services such as birth, marriage, and death certificates, elec-
tricity bill collection, land records, email services, and con-
sulting on medical and agricultural problems. Fundamental
to a kiosk’s operation is its connection to the Internet. Net-
work connectivity today is primarily provided by dialup tele-
phone, although Very Small Aperture Terminals (VSAT) or
long-distance wireless links are also being deployed. These
solutions tend to be both expensive and failure prone. In-
stead, we propose the use of buses and cars as ‘mechani-
cal backhaul’ devices to carry data to and from a village
and an internet gateway. Building on the pioneering lead of
Daknet [15], and extending the Delay Tolerant Networking
Research Group architecture [24], we describe a comprehen-
sive solution, encompassing naming, addressing, forwarding,
routing, identity management, application support, and se-
curity. We believe that this architecture not only meets the
top-level goals of low cost and robustness, but also exposes
fundamental architectural principles necessary for any such
design. We also describe our experiences in implementing a
prototype of this architecture.

Categories and Subject Descriptors: C.2.1 [Network
Architecture and Design]: Store and forward networks, Wire-
less communication

General Terms: Architecture, Low-cost, Networking.

Keywords: System design, delay tolerant networks, me-
chanical backhaul, rural communication, low-cost.

1. INTRODUCTION
Rural kiosks in developing countries provide a variety of

services such as birth and death certificates, bill collection,
email, land records, and consulting on medical and agricul-
tural problems. They are well-suited to this purpose be-
cause both the capital and operational expenses of the kiosk
are spread among a fairly large user base, greatly reduc-
ing the per-user cost. Even with very low user fees (10-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiCom’06, September 23–26, 2006, Los Angeles, California, USA.
Copyright 2006 ACM 1-59593-286-0/06/0009 ...$5.00.

15 cents/transaction), an entrepreneur can make enough
money to profitably provide government-to-citizen and fi-
nancial services.

Kiosks are unproductive without reliable Internet connec-
tivity. Today, kiosks connect primarily using dialup lines,
Very Small Aperture (satellite) Terminals, or rarely, long-
range WiFi. Unfortunately all three solutions suffer from
insuperable problems. Dialup land lines are slow, unreli-
able, and subject to environmental extremes which degrade
their availability. In rural areas, repair delays of three to
four days are common. VSAT terminals are reliable, but
require considerable up-front capital expenditure as well as
expensive monthly fees. Their cost-per-bit is therefore high.
Finally, long-range WiFi requires considerable planning for
a large scale deployment. Line-of-sight is necessary for most
technologies, and a constant power supply is needed at each
relay tower. Early adopters such as N-Logue and Drishtee
in India report unexpected problems such as a long-range
link being overpowered by a laptop near one of the towers.
In practice, tower heights of at least 18m have been reported
to be necessary, which turn out to be quite expensive [11].

Looking to the future, it is likely that high-speed 3G cell
phone technologies such as EvDO will eventually reach rural
areas. However, rural areas are usually poor, so it is unlikely
that high-speed data services from cellular providers will be
offered any time soon.

Given this situation, we would like to probide low-cost
and reliable connectivity to rural kiosks. In this paper, we
present an architecture that uses buses and cars (‘mechan-
ical backhaul’) to ferry data to and from a kiosk, building
on the pioneering work of Daknet [15]. This design deci-
sion has repercussions on the entire network architecture.
We therefore present principles for naming, addressing, for-
warding, and routing that are needed by any system that
uses mechanical backhaul. We also report on our experi-
ences with implementing this architecture in the context of
the Delay Tolerant Networking architecture proposed by the
IRTF DTN Research Group [24]. Currently, we have imple-
mented most aspects of our design (as detailed in Section
12), and we deployed a first prototype in the field in May
2006. The focus of our presentation is on the opportunity,
challenges, and architecture, rather than on performance
measurements, which we plan to report in future work.

2. GOALS

• Low cost: To be widely deployed, our system has to
be low-cost. We would like to keep the capital cost per
kiosk to be under US $250 and the operational costs

334

to be as low as possible. For example, we would like
a kiosk supporting a user base of about 500 users to
charge no more than US$0.15/month for email service.

• Reliable: To be useful, the system has to be reli-
able, tolerating power outages at kiosks, ferry failures,
packet loss, and disk corruption. Moreover, this reli-
ability has to be designed in, because the system will
be operated by technically untrained users.

• High bandwidth: The system has to be scalable
to support applications that require large amounts of
data to be transferred to and from the Internet. For
example, digital photographs uploaded from a kiosk
can be more than 2 MB in size, and cannot be eas-
ily uploaded over a dialup connection. Video clips are
even larger.

• Disconnection tolerant: We require communica-
tions to be disconnection tolerant for two reasons. First,
this allows the system to work reliably despite power
outages, which are endemic in developing countries.
Second, it allows us to trade delay for cost. That is,
we can reduce costs by tolerating message delays of up
to a few days. Because of disconnections, both ends
of a transport connection may not be simultaneously
present [7], precluding the use of standard TCP/IP to
provide end-to-end connectivity.

• Support both kiosk and laptop/PDA users: We
envision that some users will be using shared PCs in a
kiosk to access networked services, while other users,
such as government or NGO employees, may have a
PDA or laptop–or even a cellular smartphone–that is
out of coverage area in villages. We would like to sup-
port both classes of users.

• Allow user mobility: Field studies show that many
villagers routinely move from village to village within
a 15-20km radius [11]. We would like to allow such
villagers (or health care workers having laptops/PDAs,
who also move from village to village) to access their
data from the closest kiosk.

• Data privacy: Banking is a critical need in rural ar-
eas. Lacking banks, farmers are forced to pay usurious
rates to money-lenders. To break this cycle, banking
communications, which need to be private and rea-
sonable secure, must be provided. We cannot use a
standard solution such as IPSEC because PKI does
not work well in disconnected environments [18].

• Interoperability: Clearly, applications such as VoIP
are incompatible with mechanical backhaul. Never-
theless, to the degree possible, we would like the users
to be able to access Internet services on legacy servers
without modification to these servers.

• Policy based use of all available networks: We
would like a kiosk to be able to use all channels of com-
munication (including cell phone and dialup) based
upon intelligent policies. For example, some applica-
tions might require immediate data transfer and di-
alup may be the only option possible, as opposed to
email or land-record applications that are inherently
tolerant to delays and more suited to use a mechanical
backhaul communication mechanism.

3. DO WE NEED A NEW SOLUTION?
Before describing our solution, it is worth considering if

the goals presented in Section 2 can be achieved using exist-
ing research. First off, it is clear that a legacy solution, that
is, naming nodes with DNS names, addressing them with
IP addresses, and using TCP end-to-end, will not work, be-
cause the two-ends of a connection, i.e. kiosk users and
legacy servers, are never simultaneously present [7]. More-
over, standards such as SSL for security do not cope well
with long end-to-end delays. Nevertheless, recent research
presents solutions which on surface appear to meet all our
goals. For instance, past work has addressed disconnection
tolerance [20], support for mobile users [13, 16, 22], interop-
erability with legacy servers using proxies [14], and use of
multiple networks and NICs [5].

However, all these solutions have three problems. First,
they are point solutions that do not form a single coherent
system. It is not possible to simply mix and match the solu-
tions to achieve our goals. Second, they have been designed
in the context of laptops and PDAs that are almost always
connected, with short disconnected periods, and, when con-
nected, are connected at relatively high speeds. Finally, they
do not focus on low cost and reliability. Introducing these
design constraints greatly changes the problem.

This motivates us to seek a custom-built solution to our
problem, using, where possible, design principles advocated
in existing research. We return to a more detailed evaluation
of past work in Section 13.

4. AVAILABLE TECHNOLOGIES
We leverage the following fundamental technologies to

meet our goals:

• Cheap storage: Storage today is cheap, costing less
than US$1/GB, and rapidly getting cheaper. There-
fore, we envision several tens of GB of reliable (RAID)
storage at a kiosk, on a bus, and anywhere else needed
in the network to store data in transit.

• Wireless networks: Wireless (802.11x) network cards
are ubiquitous, cheap, and, for the most part reliable.
Wireless allows us to make opportunistic use of buses
and cars that happen to drive past a kiosk, and then
exchange data as they drive past a server that has a
persistent Internet connection.

• Delay Tolerant Networking overlay: The DTN
Research Group architecture provides a delay and dis-
ruption tolerant bundle-forwarding architecture. At
its core, the architecture describes how a set of DTN
routers form an overlay to cooperatively store and for-
ward bundles of information [7]. DTN routers are con-
nected by links that are sometimes, or often, down, and
can be persistent, scheduled, or opportunistic. The
DTN architecture is ideally suited to our needs because
it supports the opportunistic and scheduled links pro-
vided by buses. Although DTN routing schemes are
yet to be defined, its naming and addressing conven-
tions are simple and extensible, and the bundle for-
warding engines are available as open source. We have
therefore built our design as an extension to this ar-
chitecture.

335

• Cellular overlay: Unlike 3G data services, which are
expensive to deploy, GPRS-like data services at low bit
rates (4-8 kbps) are nearly ubiquitous worldwide, even
in rural areas. It appears to be straightforward to use
recycled cell phones as GPRS modems. We therefore
seek to exploit this connectivity, where available, to
provide a cheap and reliable control plane.

5. PRINCIPLES
Before embarking on any architectural design, it is use-

ful to identify the principles embodied in the architecture.
These principles allow us to intelligently navigate the infi-
nite space of possible designs. We believe these principles
are applicable to any realistic architecture that uses mechan-
ical backhaul and has goals substantially similar to ours. We
hasten to add that we do not claim these principles to be
novel; instead, we claim that these are the principles relevant
to our context.

• Lowered cost through shared infrastructure: Low
cost can only be achieved by sharing every compo-
nent of the architecture. Therefore, we need to share
not only the Internet gateway, but also the storage on
the bus, and every element in the kiosk. Of course,
unrestricted sharing can be both insecure and unfair.
Therefore, all shared elements need to be appropriately
managed.

Note that the proposed One Laptop Per Child project
[25] does not share end-systems. Therefore, we do not
believe that this project can achieve the cost targets
achievable using shared kiosks.

• Store and forward of self-describing data: This
is necessary for tolerating disconnections and disrup-
tions. Store and forward allows a node to deal with
failed links. Moreover, by making bundles self-describing,
in the same way that an email message is self-describing,
allows easy recovery from power failures at nodes and
bad routing decisions.

• Decoupling location and addressing: Because users
are mobile, their identifiers must be location-independent.
This means that we need some way to map from a
user’s ID (which is the eventual destination of a data
packet) to the ID of his or her current location (i.e.
address).

• Opportunistic link use: The opportunistic use of
links increases sharing of infrastructure nodes such as
kiosks and buses and thus reduces cost. Moreover, this
principle dictates that we should attempt to use every
available NIC at a kiosk based upon intelligent poli-
cies. Therefore, kiosks should exploit not only buses,
but also dialup links, and VSAT connections, when-
ever required.

• Separate data and control plane: The clean sepa-
ration of the data and control planes allows us to use
almost-always available cellphone links for the control
plane, and opportunistic WiFi or Bluetooth links for
the data plane. In particular, using the lightweight
control plane for routing updates allows us to over-
come pathological routing problems that arise when
routing or location updates are delayed.

Figure 1: Example topologies

• Proxies for legacy support: We use disconnection-
aware proxies to allow applications on a kiosk to inter-
operate with existing Internet applications.

• Replication for reliability: We replicate data on
disks (RAID 1) and contemplate replicating bundles
on the network to increase reliability at the expense of
wasted resources. Disk is cheap enough that this waste
is unremarkable. However, it is not clear whether, and
to what degree, packet replication is needed. Finally,
we envisage that ferries can carry a set of spare parts
that can be used, as needed, by kiosks along its path.

6. ARCHITECTURE OVERVIEW
This section presents an overview of our architecture out-

lining the data and control flow in our system.
Kiosks play a central role in our architecture. A kiosk

consists of a kiosk controller, a server that provides network
boot, a network file system, user management, and network
connectivity by means of dialup, VSAT, or mechanical back-
haul. A kiosk controller is assumed to have a WiFi NIC,
and very likely a GPRS/EDGE or dialup connection. Our
prototype uses headless and keyboard-less low-power single-
board computers from Soekris Corp. as kiosk controllers,
although the functionality can be implemented in any com-
modity PC. Our choice of a Soekris device was due to that
fact that it only draws 7W, and can therefore be powered
by a battery-backed solar cell. Moreover, the lack of I/O
devices discourages tampering.

The kiosk is expected to be used by two types of users,
shown in Fig. 1. Most users would use a public access termi-
nal that boots over the network (using RAM disk) from the
kiosk controller, and can then access and execute application
binaries provided by the kiosk controller over NFS. Recycled
PCs that cost around $100 are ideally suited to function as
public access terminals, and spare parts are widely available
worldwide too. Moreover, as a shared resource, they are an
order of magnitude cheaper than any dedicated resource.

A second class of users, such as wealthier villagers, govern-
ment officials, or NGO partners, could access one or more
kiosks, or a bus directly, using their own devices, such as

336

smart phones, PDAs, and laptops. Such users would use
the kiosk-controller or bus essentially as a wireless hotspot
that provides store-and-forward access to the Internet. Iden-
tity management and mobility support for hotspot users is
a key requirement supported by our architecture.

Although kiosk controllers can communicate with the In-
ternet using a variety of connectivity options, our focus is
on the use of mechanical backhaul. This is provided by cars,
buses, motorcycles, trains, and even bullock carts that pass
by a kiosk and also an internet gateway (which is described
in more detail below). We call such entities ferries. A ferry
has a small, rechargeable, battery-powered computer with
20-40GB of storage and a WiFi card. It opportunistically
communicates with the kiosk controllers and internet gate-
ways on its path. During an opportunistic communication
session, which may last from 20 seconds to 5 minutes, any-
where from 100KB-50MB of data can be transferred in each
direction. This data is stored and forwarded in the form of
self-identifying bundles.

Ferries upload and download data opportunistically to
and from an Internet gateway, which is a computer that has
a WiFi interface, storage, and an always-on connection to
the Internet. The gateways are likely to be present in cities
having DSL or cable broadband Internet access. A gate-
way collects data opportunistically from a ferry and stages
it in local storage before uploading it to the Internet. It also
downloads bundles on behalf of kiosk users, and transfers
them opportunistically to the appropriate ferry, governed by
a routing protocol. In our implementation, we use a Soekris
device both for ferries and for gateways.

We use the term DTN router to refer to any device that is
connected to more than one other device either on different
NICs, or at different points in time. In this sense, the ferry is
just a mobile DTN router, and Internet gateways and kiosk
controllers are examples of fixed DTN routers.

We expect that communication between a kiosk user and
the Internet would primarily be to use existing services such
as Email, financial transactions, and access to back end sys-
tems that provide government-to-citizen services. Systems
that provide such services are typically unable to deal well
with delays and disconnections. Therefore, we propose the
use of a disconnection-aware proxy that hides disconnec-
tion from legacy servers. The proxy is resident in the In-
ternet and essentially has two halves. One half establishes
disconnection-tolerant connection sessions with applications
running on a recycled PC or on mobile user’s device. The
other half communicates with legacy servers. Data forward-
ing between the two halves is highly application dependent.
For example, a proxy that fetches email from a POP server
on behalf of a user needs to implement the POP protocol.
To support application-specific protocols, we allow appli-
cations to instantiate an application-specific plugin at the
proxy. Our system can support multiple proxies; for each
gateway we use the proxy closest to it in terms of the RTT
between them so as to gain maximum TCP throughput. In
the rest of the discussion we assume a single proxy to keep
the explanations simple.

Finally, the last component of our architecture are the
legacy servers that are typically accessed using TCP/IP and
an application-layer protocol such as POP, SMTP, or HTTP
by a proxy. We do not require any changes to legacy servers.

Figure 2: Network model

6.1 Network model
We model the system as shown in Fig. 2. The Internet IP

core is a fully connected cloud where all nodes form an over-
lay clique. The core is connected using low-speed links to the
Internet gateways I1-I3. Each ferry on a particular route is
represented by a ring of nodes, with each node representing
a point in the ferry’s trajectory where it communicates with
a kiosk or user. The weight of an edge on the ring can be
used to represent the transit time between contacts. Note
that some ferry routes go past multiple Internet gateways,
while others go past none.

Kiosks such as K1 - K3 hang off the ferry ring. Some
kiosks, such as K1 and K3 can be used to route bundles from
one bus route to another. Finally, users are attached to a
single kiosk (e.g. U3), to multiple kiosks (e.g. U4), directly
to a ferry (e.g.. U1), or directly to multiple ferries (e.g. U2).
For the purpose of routing, we distinguish between users who
always access a ferry at a particular point in its trajectory,
such as from a farm house, and users who opportunistically
download data from a ferry at some (potentially varying)
point in its trajectory. We represent the former as a node
along the ferry’s trajectory because it is possible to speak
meaningfully about paths and edge weights. The latter are
not represented in the graph, and, for routing, we treat them
as if they are located on the ferry itself. If such a user were
to move from one ferry to another, we update their location
from one ferry to another.

The performance achievable by this system can be charac-
terized by two metrics: the overall client-to-server through-
put achievable, and the mean end-to-end delay. In terms of
throughput, the path from a legacy server or proxy to an
Internet gateway is highly constrained by the speed of the
gateway’s access link [15]. This link operates typically at
100 kbps over a DSL connection. Therefore, to maximize
performance, we should keep the Internet gateways as busy
as possible, balancing load amongst all available gateways.

In terms of end-to-end delay, naturally, ferry transfer la-
tencies can add hours or days to a communication path.
Surprisingly, a significant contributor to end-to-end delay is
not only the ferry transit time, but also the wait time at an
Internet gateway awaiting upload. To see this, note that a
bus can pick up 20MB at each kiosk it visits [15], so, if it

337

Figure 3: Data path

visits 10 kiosks, which we expect to be the median, it would
pick up 200 MB. Of this, perhaps 80% or 160MB would need
to be transferred over an Internet link. At 100 kbps, this
will take nearly 4 hours. If more than one bus were to share
a single gateway, the delay can be substantially larger. So,
with a poor choice of routing, a gateway could introduce a
few days worth of delay for data arriving on a single ferry
contact!

6.2 Protocol architecture and data path
We now trace the flow of data from a client to a legacy

server, shown in Fig. 3. The client software application
executes either on a mobile device or on a recycled PC, and
the subsequent discussion applies equally to both situations.

Applications may either be aware of our architecture, or
not. If they are, then the application directly communi-
cates with a Opportunistic Communication Management
Protocol (OCMP) [19] daemon. This protocol, implemented
in Java, maintains a client-to-server disconnection-tolerant
session with the help of application-specific plugins run-
ning at the client and at the proxy. Besides maintaining
a disconnection-tolerant session, OCMP also manages mul-
tiple client NICs and provides application-specific ID to end-
system ID translation at the proxy (details can be found in
Section 7).

In order to support disconnection-tolerant applications on
the client that are not aware of OCMP, we run a modified
dummy server on the mobile itself, the kiosk-controller, or
the ferry. This server pretends to be the legacy server. For
instance, this server could be a Jabber server or an email
server. On receiving data from the client, the modified
server invokes OCMP which encapsulates client data into
bundles. This allows us to support legacy client applications
with no modifications. Of course, the application needs to
be inherently delay tolerant – our approach cannot mask the
inherent delays in the communication path.

Once OCMP receives data, it stores it in a local on-disk
database. This allows it to gracefully tolerate power disrup-
tions that may bring down the kiosk controller, perhaps as
often as several times a day.

When an opportunistic connection presents itself, OCMP
hands bundles for transmission to a DTN Bundle Protocol

Agent [4], which invokes a routing and flow control protocol
(described in Section 11) to decide which bundles to transfer
on the opportunistic link. The selected bundles are trans-
ported, typically using TCP/IP, to a DTN router on the
ferry. We use the standard bundle protocol for this transfer,
as described in [4]. When the ferry goes past an Internet
gateway, or a kiosk is used to route between ferries, rout-
ing and flow control are again invoked to select bundles for
transmission to the gateway. These are then transferred to
the gateway using the bundle protocol. The destination of
the bundles is either one of the proxies (for legacy appli-
cations) or the bundle-aware server. The Internet gateway
accepts custody of the bundles and schedules them for trans-
mission on the internet link, keeping in mind bundle priority
and any other scheduling decisions.

Bundles meant for legacy servers that arrive at a proxy are
demultiplexed and handed to the appropriate application-
specific plugin. This plugin then invokes a connection to
the legacy server over TCP/IP and delivers the data.

Data flowing in the reverse direction is symmetric. The
proxy registers itself on behalf of the clients to receive, for
example, email destined to them. On receiving data, the
application-plugin on the proxy establishes a disconnection-
tolerant connection to the client and queues bundles for
transmission. These are then delivered to the OCMP stack
running either on the client or the kiosk-controller using
OCMP layered over DTN, and thence to the client applica-
tion.

The next few sections expand on this overview. We start
with a detailed description of naming, addressing, and loca-
tion management.

7. NAMING, ADDRESSING, AND
LOCATION MANAGEMENT

In our system, a user’s human-readable name is his or
her telephone number (IMSI) or email address. For unifor-
mity, the system translates both into 20-byte strings with a
SHA-1 hash. We call such a string a Globally Unique ID or
GUID. Because of its length, we assume that users with dis-
tinct names will almost surely map to distinct GUIDs. We
also use the same GUIDs for forwarding, thus our system
forwards bundles using names rather than addresses.

Creating GUIDs from a hash of a human readable name
allows translation from a human-readable name to a fixed-
length numeric GUID to be carried out without any addi-
tional infrastructure. In contrast, with DNS names, a sender
needs to use the DNS service to find its correspondent’s IP
address, and with HIP, a sender needs to determine the cryp-
tographically signed ID of its correspondent using PKI. This
choice of GUIDs is also motivated by our security architec-
ture (Section 9): essentially, the SHA-1 hash of a user’s
name is also that user’s public key [2].

Every user in our system registers itself with at least one
DTN router at a kiosk, bus, or Internet gateway, called its
custodian. A custodian is similar to a mail server in an
email system, in that it holds data on behalf of a potentially
disconnected user, and that it participates in a routing pro-
tocol to forward bundles between users. A custodian can be
thought of as a rendezvous point that coordinates a sender
and receiver, in the same way as a Foreign Agent in Mobile
IP [16], an anchor point in Hierarchical Mobile IP [21], or
an I3 server in I3 [22]. Note that from the perspective of the

338

system, as long as bundles are delivered to the custodian,
they will be somehow picked up by the user. Custodians
play multiple roles in our architecture. They store bundles
on behalf of a user to be picked up later. They also act as
an anchor point for mobile users and as a gateway to limit
the spread of routing updates. A user’s custodian must be
able to reach that user either directly, i.e. on a one-hop link,
or by means of a series of DTN routers that need only the
user’s GUID to deliver bundles to it. Each custodian keeps
track of the user GUIDs that are registered with it, and
whether the bundles will be directly picked up by the user
or they have to be routed further. If the bundles have to
be routed further, then a bit is flipped in the bundle header
to indicate that the bundles are to be forwarded to the user
rather than to the intermediate custodian.

The full ‘address’ of a user is the tuple with two names:
[custodian GUID, user GUID]. If a sender does not know the
custodian GUID, it can use the special form [‘unbound’, user
GUID]. This instructs a DTN router to forward the bundle
on its default path to a router that can eventually find the
user’s custodian and forward bundles to it. To resolve un-
bound bundles, we assume that a redundant and fault tol-
erant server on the Internet (which may be implemented as
a multi-site cluster or a distributed hash table for scalabil-
ity) stores a lookup table or registry with a mapping from
a user’s GUID to its custodian’s GUID. Following cellular
telephony terminology, we call this lookup table the Home
Location Register (HLR). A user can simultaneously regis-
ter with multiple custodians; in this case, the HLR resolves
the user’s GUID to the GUIDs of multiple custodians, all of
which represent viable routes. A user can also be identified
by multiple GUIDs based on different public identifiers. In
this case, the HLR maintains records mapping the different
GUIDs.

When a user moves, the HLR is updated if and only if
the user changes her custodian. Users can potentially send
location updates anticipating future movements if they know
their eventual destination, so that the data can be forwarded
in advance to the closest custodian.

Fig. 1 shows three example cases. In the first case, a
static user who visits a single kiosk defines the associated
kiosk controller as her custodian and registers with it. The
controller then retains all data for the user locally. In the
second case, a user who moves between neighboring villages
define her custodian as a DTN router higher up in the hier-
archy towards the Internet. In this case, the custodian uses
a routing protocol (described in Section 8) to direct bundles
to the user. In the third case, a mobile DTN router, such
as a bus, is defined as the custodian, for example, to deliver
data to a rural farmhouse PC that is far from any village
kiosk.

7.1 Setting up the HLR
The HLR keeps track of the custodian(s) associated with

each user. How should it be kept up to date by a potentially
disconnected user? We first describe a solution that assumes
that every user is associated with a single custodian.

In case of a user who will always access the system from a
single kiosk (the common case), when a user is added to the
system, the user’s ID is registered with the kiosk controller,
which is also its local DTN router. In the case of a mobile
user, it opportunistically associates with any available DTN
router, which we call its local DTN router.

On association, the local DTN router updates the routing
protocol (for instance by creating a Link State Packet) to
indicate that it can reach the user. The router also informs
the user of its choice of nearby custodians (which may be a
nearby kiosk, a custodian in the Internet, or the bus itself).
The user chooses one or more custodians and informs the
local DTN router of its choice.

At a future time, the DTN router informs the custodian
of the user’s request. The custodian updates its state to
indicate that the user is now registered with it. If the custo-
dian has not seen the user before, then the HLR needs to be
updated to reflect the new custodian choice. The custodian
updates the HLR by sending a registration message to the
HLR. This message is also sent to the user’s previous custo-
dian to free up any old bundles: these old bundles are then
sent to the new custodian, as described below. As a final
step, the old custodian removes any state associated with
that user.

If a user has multiple custodians, then the sender, (or, for
unbound bundles, the Internet gateway that discovers the
set of custodians associated with the user) adds multiple
custodian GUIDs in the bundle header of a bundle destined
to that user, in addition to the user’s GUID. The forwarding
engine in the DTN router uses the custodian headers to
deliver one copy of the bundle to each custodian named in
the header. It is left to an application-layer protocol to
delete (or to allow the time out of) bundles that have been
delivered to the user, but are still pending delivery at one
or more custodians.

7.2 Dealing with race conditions
Mobility intrinsically introduces race conditions. Bundles

may be sent to one of the mobile’s old custodians or local
DTN router before it has heard of the mobile or after it has
moved to a new custodian. Because these race conditions
are not easily avoidable, we have designed our protocols to
work correctly, though with reduced efficiency, in case of
races. The basic design principles are to update location
information before old information is deleted i.e. make-then-
break and to be generous in accepting bundles. This way,
bundles may be sent to an out-of-date location, but are very
likely to be eventually delivered to the right destination.

Consider a mobile registered with custodian Old that moves
to custodian New. On receiving a registration, custodian
New first updates the HLR to point to itself, then tells Old
that it is no longer the custodian. Bundles sent to the user
after the HLR change will arrive at New correctly. However,
bundles in flight may incorrectly arrive at Old. Worse, they
may have been forwarded by Old on the path towards the
user.

Bundles at Old that have not been picked up before the
arrival of the custodian update message are forwarded to
New when the update message arrives at Old. To sweep up
bundles that have been forwarded to the user from Old, it
forwards the custodian update message on the path to the
user and every DTN router along the path resends these
bundles to New by changing the custodian portion of the
address to ‘unbound’ and resending the bundle. Once this
is done, the mobile user’s state is removed from Old, and
by every DTN router along the path from Old to the user.
Subsequently, any bundles arriving to Old for that user will
be bundles arriving to an unknown user, which we describe
next.

339

Bundles that arrive to a custodian with a destination
GUID that is unknown to that custodian (i.e do not have an
entry in that custodian’s local state) have arrived before the
user has registered with the custodian, or after the custodian
has cleaned up that user’s state. In this case, the custodian
first looks up the HLR to find the new custodian for that
user. If the HLR has the new custodian for the user, then
the custodian forwards the bundle to the new custodian. If
the HLR has no information, then the custodian saves the
bundle and awaits a registration until the bundle’s time to
live expires, with periodic HLR lookups to see if it can be
handled by some other custodian.

8. ROUTING
The goal of a routing protocol is to map, at each DTN

router, from a destination GUID (of a custodian or user) to
the next hop link.

Getting bundles from a user or any DTN router to an
Internet-based proxy is straightforward if we use default
routing. Similar to the way routers are configured with a
default route in the Internet, we also manually configure ev-
ery DTN router with a default link which is the link on which
to send a bundle whose destination custodian is ‘unbound’.
For example, an end-point’s default link would point to one
of the ferries, which would have a default route to one of the
Internet gateways.

Having a single default route is not fault-tolerant. To
deal with failures, unbound bundles can be flooded in the
disconnected region. This will lead to the same bundle be-
ing received by multiple gateways.Therefore, on receiving
an unbound bundle, the gateway looks up the destination’s
GUID in the HLR to find its current proxy or gateway node,
and then conducts a simple handshake protocol among other
gateways in the disconnected region to avoid sending du-
plicate bundles to the same proxy or gateway. For small
disconnected regions, we believe that flooding provides suf-
ficient redundancy to achieve reasonably good performance
in most cases.

The reverse path (i.e from proxy to kiosk) is much harder
to determine. The proxy needs to know the best Internet
gateway to use, and the Internet gateway needs to know how
to reach the user’s custodian. Finally, the custodian needs to
know how to reach the user. Unfortunately, general routing
in DTN is an unsolved problem. We therefore present three
alternative routing protocols.

8.1 Flooding
Here, the proxy floods bundles into the entire DTN net-

work. Reachability is guaranteed, but scalability is a prob-
lem, particularly given that the bottleneck link capacity,
which is the access link from an Internet gateway, has a
capacity of typically around 100kbps, or around 1 GB/day.
Opportunistic links may also become a bottleneck because
they are likely to have a maximum connection duration of
only a few minutes, and flooding may result in excessive du-
plication of the same data on multiple links. So, flooding is
unlikely to be useful in any but the smallest deployments.

8.2 Reverse path forwarding
This scheme is more efficient than flooding, but it gains

efficiency at the cost of increased system fragility. In a nut-
shell, reverse path forwarding uses a locationing update to
simultaneously set up forwarding tables along a sink tree,

therefore combining locationing and routing. As we shall
see, it also requires that custodians be either present at, or
be associated with, a single Internet gateway, and, more-
over, to be present on the path from the user to the Internet
gateway.

In this scheme, the system uses only a single path to ev-
ery entity in the system – all alternate paths are ignored.
Therefore, the problem of reaching a user reduces to find-
ing a unique path from a sender to every custodian for that
user, and from every custodian to every user registered with
that custodian.

We create paths to custodians by associating a unique In-
ternet gateway with each custodian, and storing the Inter-
net gateway’s IP address in the HLR, in the same way as for
Internet-accessible custodians. Unbound bundles associated
with a particular custodian, therefore, automatically reach
the Internet gateway as described earlier. The choice of In-
ternet gateway for each custodian, and setup of a reverse
path from the Internet gateway to a custodian and from a
custodian to a user, are done using reverse path forwarding
as described next.

Specifically, we define a special control message called
the REGISTER message. When a mobile registers with a
new local DTN router, or a new user is created at a kiosk,
the user sends a REGISTER message containing the user’s
GUID and the GUID of its custodian, that is forwarded
along the default path to an Internet gateway. Along the
way, we require it to touch the custodian, therefore the
custodian must lie on this path. As the REGISTER mes-
sage propagates to an Internet gateway, all the DTN routers
along the way record the previous hop of the message (i.e.
the TCP/IP address of the previous DTN router) in their
forwarding tables to be the next hop for any data addressed
to the user. Thus, data to be transferred to the user follows
the reverse of the default path taken by the REGISTER
message, while data to be transferred to the Internet from
the user follows the default path.

When an Internet gateway gets a REGISTER message, it
updates the HLR to map the user’s GUID to the GUID of
the user’s custodian as well as to its own IP address. All
future communication with the user happens through that
Internet gateway.

The same procedure is followed by custodians to select the
Internet gateway they are associated with. Ferries also send
REGISTER messages to discover the custodians reachable
by them.

Reverse path forwarding is useful for routing bundles on
shortcuts. That is, if the destination’s GUID is known to
a DTN router along the default path, then a reverse path
exists to that destination, and bundles can be sent there
directly. This allows, for example, a bus going from one vil-
lage to another to carry bundles between the villages without
having to go through the Internet. This allows rapid and se-
cure user-to-user communication without the mediation of
a server. The use of reverse path forwarding has both its
pros and cons though. On the one hand, in the absence of
a definitive solution to the DTN routing problem, it offers
a simple way to set up the routing tables in a network. On
the other hand, these tables are fragile: if a link were to
break, or a DTN router were to fail, the protocol does not
recover gracefully from this failure. The lack of fault toler-
ance can be handled in several ways. For instance, a user or
DTN router can periodically send a REGISTER message to

340

refresh paths to it. These protocols would limit outages to
approximately one update period, which may be sufficient
in practice. Another disadvantage of this protocol is that it
relies on manually configured default routes, and can result
in sub-optimal performance. We are currently looking into
how link state routing, described next, can be coupled with
reverse path forwarding for better performance.

8.3 Link state routing
Link state routing has been proposed in recent work on

practical DTN routing [10, 12]. In this work, standard link
state packet flooding is used to construct network topology
graphs, where link weights are set to the expected link delay.
A shortest-path algorithm is then used to create forwarding
tables. We believe that the solution described here can be
used in our system (though as of now, our system only im-
plements simple reverse path forwarding).

The problem of choosing link weights, in general, is a dif-
ficult one. The weights should represent not only bus sched-
ules, but the proxy-gateway links should also take into ac-
count the queue-lengths at a proxy for data destined to dif-
ferent kiosks. This is because the proxy can reduce end-to-
end delay by intelligently scheduling bundles on the proxy-
gateway link ahead or behind of each other, depending upon
the bus schedules from the gateways to the different kiosks.
Essentially, the problem is complex because the time scale
of data forwarding on the proxy-gateway link is the same as
the time scale of routing. We do not yet have a complete so-
lution to this problem, although a first attempt has recently
been made in [9].

Note that even the bus schedules may not be very accu-
rate because buses can get delayed or rerouted on a more or
less random basis. Thus, the topology graph at each DTN
router should be represented such that incremental changes
can be made to it, based on local observations and peri-
odic control plane updates. We are currently looking into
adapting the work from [10,12] into our network model, and
extending it with routing and scheduling based on approxi-
mate information and incremental updates.

9. SECURITY
We would like our solution to provide secure, private com-

munication, but not at the cost of complexity to a degree
that makes the system unusable. Unfortunately, traditional
security mechanisms like Public Key Infrastructure (PKI)
and Certificate Revocations Lists (CRLs) are inefficient, com-
plicated, and sometimes unusable in our environment for the
following reasons.

• PKI decouples user-identity from the public/private
key pair. This requires a round trip to a central or
replicated lookup database of user-id against public-
key whenever a secure end-to-end communication chan-
nel has to be established. This can substantially delay
actual data transmission. Of course, if a cellular or
dialup control plane is available, large communication
delays can be avoided. However, this requires both
end-points to be enabled for cellular communication,
and is an unreasonable assumption to make for all sit-
uations.

• In order to evict malicious or compromised entities
from the system, CRLs have been used to allow any

entity to become aware of other entities whose secu-
rity keys have been compromised. However, CRLs are
unsuitable when updates can be excessively delayed.

For these reasons, we use the new security architecture
based on Hierarchical Identity Based Cryptography (HIBC)
described in detail in [18], and a briefly outlined next.

9.1 Hierarchical Identity Based Cryptography
Boneh and Franklin [2] proposed the first practical Iden-

tity Based Cryptography (IBC) scheme and many variations
have subsequently been described in the literature. Unlike
traditional PKI, where a user obtains the public/private key
pair from a certifying authority, public keys in IBC can be
any string, but private keys are obtained from a trusted
authority called the Private Key Generator (PKG). Hierar-
chical IBC extends IBC by establishing a cooperative hier-
archy of PKGs. The top-level PKG is called the root PKG,
and the other PKGs are called domain PKGs, each of which
inherits the first part of its public ID from its parent. A de-
tailed description of Hierarchical Identity Based Encryption
(HIDE) and Hierarchical Identity Based Signature (HIDS)
is given in [8].

IBC is ideally suited for creating a secure channel in a
disconnected environment because the public key of an en-
tity can simply be its public ID, and hence a lookup step
is not required. For example, the public ID for a user can
be the email address or IMSI of the user itself, and users
can even communicate this to each other over a telephonic
conversation. Another advantage is that the possession of
a valid private key implies that the certification authority
has certified the identity. Therefore, a valid signature serves
as an assurance of authentication, thus eliminating an ex-
tra certificate verification step. The need for CRLs is also
avoided by having time based keys, as explained below.

9.2 Incorporating HIBC
Key establishment: We assign a unique public ID to

each entity in the system, where entities can be users or
DTN routers. Users can choose to have their existing email
address or IMSI as their ID or they can apply at a kiosk
for a system-id of the form user@provider. A single user
can even have multiple IDs, in which case a mapping will
be maintained by the HLR. The HIBC public keys are de-
rived as SHA-1 hashes of the public IDs, and an initial setup
procedure is used to register public IDs with the system
and acquire the corresponding private keys. This procedure
is described in [18], and uses symmetric key encryption to
fetch private keys from the PKG over the network of DTN
routers. The kiosk controller grants a one-time symmetric
key to each new user. The PKG is responsible to securely
supply the kiosk controller with new sets of symmetric keys
for this purpose. The genuineness of a user requesting a pub-
lic ID is ensured through manual inspection of identification
documents by kiosk operators in the same way as cellular
subscriptions are verified by mobile phone franchisees.

Users who access the system through mobile devices like
PDAs or laptops can store the keys on their personal ac-
cess devices. Those users who use public access terminals
at kiosks can have their keys stored securely at the kiosk
controllers or carry them in USB flash drives. In case USB
drives are not available, users can be given registered photo-
id cards embossed with their public IDs. Thus, if a kiosk
user moves to a new kiosk and does not have the facilities to

341

carry the keys with herself, then she can present her photo-
id card to the kiosk operator to gain access to the facilities.
Her keys can later be fetched securely from either the PKG
or from the old kiosk.

Secure communication: Once the keys and system pa-
rameters have been established, HIBC is used for the cre-
ation of an end-to-end secure channel: the sender encrypts
all data with the public key of the recipient, and only the re-
cipient can decrypt the data. This provides confidentiality,
integrity, and authenticated access. Note that the recipient
can either be another user, or an application end-point like
an email server. The sender can either be a mobile user, or
a kiosk controller that has secure access to the keys of the
user.

Mutual authentication: When a mobile host or DTN
router establishes an opportunistic connection with another
mobile DTN router, it tries to connect to the DTN router
and both entities participate in a mutual authentication pro-
cedure. This is used to ensure that malicious users and rogue
DTN routers are not involved in the communication session.

Control plane security: Besides allowing end-to-end
secure channels, HIBC also protects the infrastructure from
a class of attacks on the location management subsystem.
Recall that a mobile host sends control messages whenever it
changes its location. We use HIDS between the mobile host
and the location registers being updated, with the system
parameters of the mobile host’s HIBC system piggybacked
on the message. This ensures safety from fabrication of con-
trol messages, redirection attacks, and the creation of dead-
ends by unauthorized updating of location registers.

Auditing: Custodians in DTN send messages to the end-
systems when custody has been transferred. We require
custodian DTN nodes to sign these messages for the bun-
dles that they take custody of, in order to ensure safety
from spoofing. End users can store these acknowledgements
for auditing. Since the HIDS scheme itself ensures non-
repudiation, audit logs can be used as proof of custody trans-
fer.

Private key compromise: A drawback of using a pub-
lic ID such as an email address or IMSI as the public key
is that if the corresponding private key gets compromised,
then the public ID has to be changed as well. We provide
safeguards for this by allowing the users to store their basic
private keys on a secure kiosk controller or home desktop,
and periodically refresh the keys they carry on their personal
mobile devices. In case the mobile device gets stolen or lost,
the temporary keys will expire soon after and render the
device unusable for decryption purposes. These refreshable
keys are meant only for end-to-end data transfer, and pro-
vide a practical way to ensure forward secrecy by extending
the HIBC trees per user by an extra level.

Key revocation: Unlike the method used for handling
private key compromise described above, key revocation is
done by having the PKGs periodically refresh a variant of
the basic private keys of all the entities. These keys are only
used for mutual authentication and not for secure end-to-end
data transfer. This method provides a practical alternative
to CRLs for user revocation.

10. APPLICATION SUPPORT
We would like to provide a simple API for application de-

velopment that supports session persistence, intelligent use
of multiple networks, and use of unmodified legacy servers.

Figure 4: OCMP/DTN integration

The Opportunistic Connection Management Protocol (OCMP)
[19] provides these features. An OCMP client running on a
mobile device can communicate opportunistically over mul-
tiple network interfaces to an Internet proxy. Legacy appli-
cation protocols are hidden from the client through application-
specific plugins that talk to legacy servers on behalf of the
client.

OCMP differentiates between shared-control, application-
control, and application-data packets. Shared-control pack-
ets are used primarily for connection state updates between
the mobile device or kiosk-controller and the OCMP proxy
(common to all applications); application-control packets
are used for conveying application-specific parameters be-
tween the plugins on the client and proxy; and application-
data packets are used for bulk data transfer. On the client
side, an OCMP plugin is instantiated for every transac-
tion (send or receive) by a legacy application. The plugin
can create multiple data streams to the proxy, where each
disconnection-tolerant stream is recognized by a unique ses-
sion identifier. The proxy then reassembles the data of each
stream, and passes it to a corresponding application plugin
on the proxy side. This plugin can also receive application-
control packets to reconstruct the application state required
to instantiate a legacy transaction on behalf of the client. A
similar procedure is followed for legacy communication from
a server to the mobile device.

We extend OCMP to operate on an end-to-end basis even
across multiple levels of disconnections. We do this by mod-
eling DTN as a network interface for OCMP that imple-
ments its own transport layer protocol.

When OCMP detects a WiFi network, it examines the
SSID to determine whether the network belongs to a DTN
router that is a part of our infrastructure, or it is a third
party WiFi network connecting into the Internet. A dif-
ferent type of connection is instantiated accordingly. Each
connection instance in OCMP is encapsulated in a Connec-
tion object, and a collection of such objects is maintained in
a ConnectionPool object. Therefore, we have implemented
a new Connection object for DTN that talks to a DTN bun-
dle protocol agent (BPA) running either locally or on a DTN
router. This is shown in Fig. 4, and discussed as follows.

342

OCMP on kiosk controller: A BPA runs locally on
the kiosk controller. Thus, whenever OCMP detects a new
network from a mobile DTN router, it opens a connection to
the local BPA, and the BPA connects to the corresponding
BPA on the mobile DTN router. OCMP then sends data
to the local BPA which encapsulates it in DTN bundles and
forwards the bundles to the correspondent BPA. Custody
transfer acknowledgments are relayed back from the BPA
to the DTN Connection object in OCMP. Thus, OCMP is
made to believe that it is actually talking to a proxy in
the Internet, but the BPA successfully masks the absence
of an end-to-end route to the Internet. Similar steps are
followed for data to be downloaded to the kiosk controller
from the mobile DTN router. Note that the BPA passes
data to OCMP only for kiosk users. For mobile users who
use the kiosk controller only as a DTN router, this data is
retained at the BPA itself.

OCMP on mobile host: A BPA does not run locally
on the mobile host, but OCMP connects wirelessly to the
BPA on the kiosk controller or a DTN router, and transfers
data to it over the BPA’s RPC interface. The subsequent
working is identical to the previous case.

OCMP on proxy: For data to be sent to a kiosk con-
troller or a mobile host, the proxy first checks whether the
endpoint is registered with a custodian in the Internet region
or not. This step is crucial for the proxy to decide whether
to retain the data in OCMP or to push it into the DTN
overlay by routing it to an appropriate Internet gateway. In
the former case OCMP layers itself on TCP/IP and for the
latter case, the proxy instantiates a connection to the BPA
running locally and dispatches all the data to this BPA for
eventual delivery to the user’s custodian.

11. OPPORTUNISTIC LINK USE
We now present the sequence of actions that happen when

an opportunistic connection is detected by a kiosk-controller
or mobile device due to the arrival of a ferry. It serves to
illustrate how the naming, addressing, forwarding, and secu-
rity schemes come together at different layers of the protocol
stack.

1. Link association: The WiFi NIC on the ferry uses
active beaconing to broadcast its presence. The WiFi
card on the kiosk controller detects the peer WiFi node
when it comes in range, and attempts to authenticate
and associate with it.

2. OCMP and BPA initiation: OCMP running on the
kiosk-controller detects a successful association, recog-
nizes the SSID of the WiFi network, and notifies the
BPA to connect to its correspondent BPA on the ferry.

3. Mutual authentication: The BPA on the kiosk con-
troller tries to open a TCP connection to the corre-
spondent BPA on the mobile DTN router on a well
known port. Both the entities then run a challenge-
response protocol to mutually authenticate themselves
as described in [18].

4. Data download: Upon successful authentication, the
kiosk BPA requests the ferry BPA for any data ad-
dressed to the users registered at the kiosk. If data is
available, it is downloaded, decrypted, and passed on
to OCMP. OCMP reassembles the data and redirects
it to appropriate application specific plugins.

5. Data upload: If there is upload data pending, OCMP
dispatches its data to the BPA. The subsequent steps
involved for data upload are similar to the download
process.

6. Routing: To enable routing based on load statistics,
we allow the kiosk BPA to query the mobile DTN
router about queue sizes and routing metric informa-
tion, and source route the DTN bundles for upload ac-
cordingly. The information can also be authenticated
and verified if needed. The ferry can continue to query
other routers on the way, to decide optimal and load
balanced routes for the bundles it is carrying.

7. Session persistence: OCMP application plugins can
specify a session identifier for each data transaction
like a file upload or download. This is used to identify
the application endpoint at both the proxy as well as
the kiosk controller to which data is finally redirected
after reassembly. End-to-end session level ACKs are
used to ensure that the data finally reaches its des-
tination by incorporating a retransmission timeout in
case some data gets lost in the DTN overlay due to
system failures.

12. IMPLEMENTATION AND STATUS
We have implemented the architecture using the OCMP

[19] and the DTN-2 [6] reference implementations. In this
section, we outline the implementation and the current sta-
tus of our work.

12.1 Simplifications
Our prototype makes some simplifications to the general

architecture. (a) We treat every Internet gateway as the
custodian for all users accessible through it. (b) We have
only implemented reverse path forwarding, so all communi-
cation to a user is on a single path. (c) We have not yet
implemented a cell-phone based control plane,and (d) data
replication.

12.2 Implementation environment
The two main software components in our design are the

OCMP stack and the DTN router, implemented in the form
of a Bundle Protocol Agent (BPA). The OCMP stack pro-
vides application support and is implemented in Java. The
DTN reference implementation BPA, extended as described
in Section 10, is written in C++ and runs on the kiosk-
controller, ferries, and at the proxy.

OCMP implementation has been described in [19] and we
do not describe it further for reasons of space. We next
describe the extensions made to the DTN2 reference imple-
mentation.

• Control plane: In the current DTN2 implementation
a bundle router is responsible not only for bundle for-
warding decisions, but also for inter-router signaling.
We have rewritten the bundle router class to allow a
separate application to add, delete, and modify routes.
This application, addressable by a special GUID, is
responsible for implementing reverse path forwarding,
link detection, mutual authentication, and user regis-
tration. The control plane application can also (but

343

does not currently) make use of other network inter-
faces like a dialup or GPRS connection for exchange
of routing updates.

• Reverse path forwarding: We have added reverse
path forwarding to the reference implementation using
handshakes between neighboring control applications.

• HLR: We have implemented the HLR using the pub-
licly available OpenDHT distributed hash table [17].
Internet gateways use the OpenDHT API to install
and update GUID translation tables that are then stored
in the Bamboo DHT.

• Addressing namespace: The DTN2 reference im-
plementation allows the definition of customized names-
paces. We have used this feature to define our own
namespace, called ‘tca’. In this namespace, users and
DTN routers are addressed as tca://custodian/GUID,
which conveniently represents both the custodian and
user GUIDs in standard URI format.

12.3 Identity management
Users at kiosks store files and access applications hosted

by the kiosk-controller. Therefore they need user IDs on
the kiosk operating system. We are currently using Linux-
based kiosk controllers, so we assign each user a Unix UID.
To send and receive bundles, we map these UIDs to GUIDs
in a file called /etc/idmap. When sending data, either the
OCMP-aware application, or an OCMP-aware server, use
this mapping to translate from the application’s UID to a
GUID, which is placed in the bundle’s ‘sender’ field. Sym-
metrically, on receiving a bundle with a particular GUID,
the OCMP demultiplexing engine uses this map to trans-
late to the UID of the user, and hands the bundle to the
appropriate application. The /etc/idmap file is managed by
the kiosk owner, and entries are inserted when new users
join the system.

12.4 Applications
Our system supports several delay-tolerant applications,

including email, Jabber (Instant Messaging), FTP, HTTP-
GET, and blog updates. These are described in related
work [19] and we elide details in the interests of space. More-
over, over 200 e-governance applications have been imple-
mented by our partners, eGovServices [26]. These include
mutual fund registrations, birth and marriage certificates,
railway reservations, electricity bill payments, and other ap-
plications involving financial and non-financial transactions.
These applications have already been designed in a discon-
nection tolerant fashion. Transaction data is written into a
single file that is transferred across to the Internet using our
framework. Operators then manually execute these trans-
actions and deliver receipts to the users in the same fashion.

12.5 Status
We have implemented OCMP, all of the DTN extensions,

and (separately), the security protocols. We are currently
integrating the security protocols into the control-plane. In
May 2006 we deployed our systems in Anandpuram, a village
in South India about 20 km from the city of Vishakapatnam,
in collaboration with eGovServices.

The Vishakapatnam District Rural Development Agency
(DRDA) has set up over 40 kiosks around Vishakapatnam,

and the Anandpuram kiosk is part of this initiative. At
the kiosk, we set up a recycled PIII PC as a public access
terminal, and connected the kiosk PC and the recycled PC
with a Net4801 Soekris Single Board Computer (SBC) as
the kiosk controller. We used a similar SBC as the Internet
gateway with DSL broadband (128 kbps) at the DRDA head
office in Vishakapatnam. At both places, we used external 9
dBi omni-directional antennas for wireless connectivity, and
40 GB hard-disks for local storage. The kiosk SBC runs from
a 42 AH battery that is charged by two 1.2A @ 12V solar
panels, and the gateway SBC runs on UPS. This ensures 24
hour uptime for both the nodes. For the ferry, we chose a
government vehicle that regularly goes between the head-
office and the kiosk for a microfinance initiative also led
by the DRDA. We installed a similar Net4801 SBC in the
vehicle, powered it from the vehicle battery, padded it with
foam to protect it from vibrations, and attached an external
7 dBi omni-directional antenna with a magnetic mount base
that sits outside on the trunk. Finally, we integrated the
eGovServices e-governance portal with the OCMP API to
allow for delay tolerant connectivity. Further details on the
deployment are available at [27].

13. RELATED WORK
Our work extends a wealth of past work on disconnec-

tion tolerance, mobility management, semantic-free naming,
data privacy, and routing. We have outlined the principles
derived in past work in Section 3. Here, we consider systems
that are most closely related to ours.

The use of data ferries in the context of MANETs and
sensor networks is well known; for example, see [23]. Cur-
rent work on DieselNet [3] is also relevant. However, these
systems essentially present point solutions that only address
a few of the goals outlined in Section 2. Moreover, existing
work is not directly applicable to low-cost and reliable kiosk
networking in rural areas.

The work closest to ours in spirit is that of Daknet [15].
They use MAPs (Mobile Access Points) mounted on buses
or vans, which regularly traverse villages and come in wire-
less contact with rural kiosks to opportunistically upload
and download data. Buses were fitted with omnidirectional
antennas, and kiosks with omnidirectional or directional an-
tennas depending upon the orientation of the kiosk with the
road. Data sessions of an average duration of 2:34 minutes
were measured, during which up to 20 MB of data could
be transferred. We have experienced similar performance
because our operating environment is practically the same
as that of Daknet. However, Daknet does not implement
a generic architecture that can be used to build new ap-
plications, support integrated location management system,
operate across multiple levels of disconnections, or allow (to
our knowledge) data privacy.

Our work relates broadly to rendezvous-based mobility
support in HMIP [21] or I3 [22], location-independent iden-
tifiers in HIP [13], and semantic-free names in DoA [1], but
these protocols are designed to work in connected Internet
like environments. We have suitably adapted the insights
from these schemes into our architecture.

Disconnection-tolerant networking [24] also forms a funda-
mental part of our architecture. However, DTN is a general
platform, and we have specialized and extended it to handle
our specific interest. We presented details of our extensions
to the DTNRG architecture in Section 12.

344

14. CONCLUSIONS AND FUTURE WORK
We have presented a detailed architecture that addresses

the problem of low-cost and reliable connectivity for rural
kiosks. Unlike past work, which has focused on point solu-
tions, we propose a pragmatic and comprehensive solution
that meets our stated goals, as detailed next.

We meet our goal of low-cost through sharing every com-
ponent of the system; in the base solution, there are no un-
shared components. We also reduce cost by leveraging exist-
ing transportation networks for data transfer. Our system
is inherently disconnection tolerant, because of its use of the
DTN architecture. Our extensions to the DTN architecture
allow user mobility and interoperability with legacy servers.
We use HIBC to guarantee data privacy, making our system
suitable for rural banking. Finally, our use of OCMP allows
an application to use all available networks, while still giving
applications the ability to choose the network that best fits
its needs. OCMP, implemented in Java, and communicat-
ing over TCP/IP with a bundle protocol agent, allows us to
support both kiosk users and laptop/PDA users seamlessly.

We outline future work next.

1. Reliable transfer: The DTN architecture allows a
sender to request notifications when custody is trans-
ferred or when a bundle is received at the destination.
However, it is not clear what to do when a source does
not get an end-to-end acknowledgment in time.

2. Intelligent routing: All three routing solutions that
we have studied are unsatisfactory. An ideal routing
scheme should take topology, update delays, as well as
load balancing into account. We believe that this is a
fruitful area for research.

3. Erasure coding We are presently using TCP for bun-
dle transfer between DTN routers. It appears likely
that using erasure coding for this transfer would allow
us to choose fractional packet replication.

4. Scaling: If our solution is widely adopted, we will
need to address scaling issues head on. The real issue,
we believe, is that a flat topology does not scale well
with respect to the number of update messages nec-
essary for location management and routing. We pro-
pose to scale our solution by breaking up the topology
into autonomous regions. However, choosing regions
optimally, and perhaps dynamically adjusting region
boundaries in response to workload, is an open prob-
lem.

15. REFERENCES
[1] H. Balakrishnan, K. Lakshminarayanan, S. Ratnasamy, S.

Shenker, I. Stoica, M. Walfish, ”A Layered Naming
Architecture for the Internet,” Proc. ACM SIGCOMM 2004.

[2] D. Boneh and M. Franklin, ”Identity Based Encryption from
the Weil Pairing,” Proc. Crypto 2001.

[3] J. Burgess, B. Gallagher, D. Jensen, B. Levine, ”MaxProp:
Routing for Vehicle-Based Disruption-Tolerant Networking,”
Proc. IEEE Infocom 2006.

[4] V. Cerf, S. Burleigh, A. Hooke, L. Torgerson, R. Durst, K.
Scott, K. Fall, H. Weiss, ”Delay Tolerant Network
Architecture,” Internet Draft
http://www.dtnrg.org/specs/draft-irtf-dtnrg-arch-02.txt, July
2004.

[5] S. Cheshire and M. Baker, ”A Wireless Network in
MosquitoNet,” In IEEE Micro, Feb 1996.

[6] M. Demmer, E. Brewer, K. Fall, S. Jain, M. Ho, and R. Patra,
”Implementing Delay Tolerant Networking,” Intel Research,
Berkeley, Technical Report, IRB-TR-04-020, Dec 2004.

[7] K. Fall, ”A Delay-Tolerant Network for Challenged Internets,”
Proc. ACM SIGCOMM 2003.

[8] C. Gentry and A. Silverberg, ”Hierarchical ID-Based
Cryptography,” Proc. International Conference on the Theory
and Application of Cryptography and Information Security,
2002.

[9] S. Guo, M. Ghaderi, A. Seth, and S. Keshav, ”Opportunistic
Scheduling in Ferry Based Networks,” Proc. WNEPT, 2006.

[10] S. Jain, K. Fall, and R. Patra, ”Routing in a Delay Tolerant
Network,” Proc. ACM SIGCOMM 2004.

[11] A. Jhunjhunwalla, ”Wireless Mesh Access in Rural India,”
Presentation at COMSWARE 2006, New Delhi, January 2006.

[12] E. Jones, L. Li, P. Ward, ”Practical Routing in Delay-Tolerant
Networks,” Proc. Workshop on DTN, 2005.

[13] R. Moskowitz, P. Nikander. P. Jokela, and T. Henderson,
”Host Identity Protocol,”
http://www.potaroo.net/ietf/ids/draft-ietf-hip-base-00.txt,
2004.

[14] J. Ott and D. Kutscher, ”A Disconnection-Tolerant Transport
for Drive-thru Internet Environments,” Proc. IEEE INFOCOM
2005.

[15] A. Pentland, R. Fletcher, and A. Hasson, ”Daknet: Rethinking
Connectivity in Developing Nations,” IEEE Computer,
37(1):78-83, 2004.

[16] C. Perkins, ”IP Mobility Suport for Ipv4,”
http://www.ietf.org/rfc/rfc3344.txt, Aug 2002.

[17] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy,
S. Shenker, I. Stoica, and H. Yu, ”OpenDHT: A Public DHT
Service and Its Uses,” Proc. ACM SIGCOMM 2005.

[18] A. Seth and S. Keshav, ”Practical Security for Disconnected
Nodes,” Proc. NPSEC 2005.

[19] A. Seth, S. Keshav, and S. Bhattachharaya, ”Opportunistic
Data Transfer Over Heterogeneous Wireless Access Networks,”
http://blizzard.cs.uwaterloo.ca/keshav/home/Papers/data/05/
ocmp.pdf, Work in progress.

[20] A. Snoeren and H. Balakrishnan, ”An End-to-End Approach
to Host Mobility,” Proc. ACM MOBICOM 2000.

[21] H. Soliman, C. Catelluccia, K. Malki, L. Bellier, ”Hierarchical
Mobile IPv6 mobility management (HMIPv6),”
http://www.ietf.org/internet-drafts/draft-ietf-mipshop-
hmipv6-04.txt,
2004.

[22] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana,
”Internet Indirection Infrastructure,” Proc. ACM SIGCOMM
2002.

[23] W. Zhao, M. Ammar, and E. Zegura, ”A Message Ferrying
Approach for Data Delivery in Sparse Mobile Ad Hoc
Networks,” Proc. ACM MOBIHOC 2004.

[24] DTN Research Group (DTNRG), http://www.dtnrg.org/,
2006.

[25] One Laptop Per Child (OLPC), http://laptop.media.mit.edu/,
2006.

[26] eGovServices, http://www.egovservices/, 2006.

[27] Anandpuram Deployment,
http://blizzard.cs.uwaterloo.ca/tetherless, May 2006.

345

