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ABSTRACT
RFID tags are being used in many diverse applications in
increasingly large numbers. These capabilities of these tags
span from very dumb passive tags to smart active tags, with
the cost of these tags correspondingly ranging from a few
pennies to many dollars. One of the common problems that
arise in any RFID deployment is the problem of quick esti-
mation of the number of tags in the field up to a desired level
of accuracy. Prior work in this area has focused on the iden-
tification of tags, which needs more time, and is unsuitable
for many situations, especially where the tag set is dense.
We take a different, more practical approach, and provide
very fast and reliable estimation mechanisms. In particular,
we analyze our estimation schemes and show that the time
needed to estimate the number of tags in the system for a
given accuracy is much better than schemes presented in
related work. We show that one can estimate the cardinal-
ity of tag-sets of any size in near-constant time, for a given
accuracy of estimation.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless
Communication; C.2.8 [Mobile Computing]: Algorithm
Design and Analysis

General Terms
Algorithms, Design, Theory, Measurement, Performance

Keywords
Algorithms, RFID, ALOHA, Estimation, Tags

1. INTRODUCTION
Radio-frequency identification (RFID) tags are increas-

ingly being used in everyday scenarios, ranging from inven-
tory control and tracking, to medical-patient management.
The key driver behind this widespread adoption is the sim-
plicity of the tags, which enables very low (nearly zero) cost
at high volumes. The tags themselves vary significantly in
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their capabilities, from dumb tags which merely transmit
a particular bit-string when probed by a reader, to smart
tags which have their own CPU, memory and power supply.
Most of these tags are designed to have a very long life, and
hence do not use any existing energy sources for transmitting
data. Rather, they derive the energy needed for transmis-
sion from a probe signal sent by a reader node. This probe
can performed via magnetic coupling (called near-field), or
electro-magnetic coupling (called far-field). The latter has a
much larger range, and is designed to read hundreds of tags
at a time, while the former has a range less than 1 meter
and hence is used to read less than 1 – 5 tags at a time.

RFID tags can be generally classified into passive tags,
semi-passive tags, and active tags. Active and semi-passive
tags have their own power source, typically in the form of a
battery. However, semi-passive tags do not use their power
source for transmission, but use it primarily to drive other
on-board circuitry. Nearly all current RFID deployments
around the world involve passive and semi-active tags. A
sensor mote can be classified as an active tag. More infor-
mation about RFID technology and its taxonomy can be
found in [1, 2, 5, 6, 7]. A collection of white papers describ-
ing RFID technology, latest news and vendors can also be
found in [8].

RFID tags are used to label items, and hence, identifying
this information is the main goal of any RFID system. The
general idea is as follows: the reader probes a set of tags,
and the tags reply back. There are many algorithms that
enable identification, and these can be classified into two
categories: (a) probabilistic, and (b) deterministic. Since
RFID devices are very simple, and operate in the wireless
medium, collisions will result whenever a reader probes a
set of tags. The identification algorithms use anti-collision
schemes to resolve collisions.

In probabilistic identification algorithms [25, 3, 18, 19, 20,
22, 23, 24, 28, 34], a framed ALOHA scheme [25] is used
where the reader communicates the frame length, and the
tags pick a particular slot in the frame to transmit. The
reader repeats this process until all tags have transmitted at
least once successfully in a slot without collisions. In semi-
active and active tag systems, the reader can acknowledge
tags that have succeeded at the end of each frame, and hence
those tags can stay silent in subsequent frames, reducing
the probability of collisions thereby shortening the overall
identification time. In passive tags, all tags will continue
to transmit in every frame, which lengthens the total time
needed to identify all tags.

Deterministic identification algorithms typically use a slot-
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ted ALOHA model, where the reader identifies the set of
tags that need to transmit in a given slot, and tries to re-
duce the contending tag set in the next slot based on the
result in the previous slot. These algorithms fall into the
class of tree-based identification algorithms [21, 26, 27, 37,
38, 39, 40, 43, 44, 29, 30] with the tags classified on a binary
tree based on their id, and the reader moving down the tree
at each step to identify all nodes. Deterministic algorithms
are typically faster than probabilistic schemes in terms of
actual tag response slots used, however, they suffer from
large reader overhead since the reader has to specify ad-
dress ranges to isolate contending tag subsets using a probe
at the beginning of each slot.

The common requirement for both classes of identification
algorithms is an estimate of the actual number of tags t
in the system. This estimate is used to set the optimal
frame size in framed ALOHA and to guide the tree-based
identification process for computing the expected number of
slots needed for identification. Hence, it is important to have
a quick estimate that is as accurate as possible. One could
potentially combine estimation and identification together
to save time, however, the drawback is that the initial steps
rely on inaccurate estimates of the number of tags. Hence,
the estimation process should be able to use non-identifiable
information, such as a string of bits used by all tags, to
compute the size of the tag set t.

Estimation of the cardinality of the tag set is also impor-
tant in other problems pertaining to RFID tags. Due to
privacy constraints, it may not be acceptable for readers to
query the tags for their identification in certain instances. In
such instances, tags could send out non-identifiable informa-
tion, which could still be used to compute estimates of the
cardinality. Another set of problems arise when the tag set
is changing so fast to make identification of all tags impos-
sible (e.g., an airplane flying over a field of sensors, trying
to get an estimate of the number of active sensors left in the
field). An efficient cardinality estimation scheme should be
able to work in such environments as well. We would like to
point out that in these instances, having an active tag does
not confer any special advantages to the estimation problem
over a passive tag from an energy management perspective.

Our goal is to develop an efficient and fast estimation
scheme that work extremely well in a wide variety of cir-
cumstances. In this paper, we describe a method that will
enable us to compute the cardinality of a tag set in a very
small amount of time when compared to the time needed for
identification. The proposed algorithms require very simple
modifications to current RFID tags and are easily imple-
mentable using available technology with very little incre-
mental cost. Our key contributions are:

• We propose two estimation algorithms for a static tag
set, and demonstrate their properties through analysis
and simulations. We show that the two algorithms are
complementary to each other.

• We describe a single unified estimation algorithm that
allows us to estimate the cardinality of a static tag set
with a desired level of accuracy, and show, via anal-
ysis and simulations, the performance of the unified
algorithm.

• Using a probabilistic framed-ALOHA model, we pro-
vide even better estimation algorithms that can achieve

the desired performance in substantially lesser time
than any known algorithm. We also show that the es-
timation range of this algorithm spans many orders of
magnitude (i.e., from tens of tags to tens of thousands
of tags).

The rest of this paper is organized as follows. In Section 2,
we present the RFID system model. Section 3 describes es-
timation algorithms based on framed-ALOHA, and Section
4 describes the estimation algorithm based on probabilistic-
framed ALOHA. We compare our work with related work in
this area in Section 5. We summarize our results and discuss
future work in Section 6.

2. SYSTEM MODEL
The RFID system considered in this paper consists of a

set of readers and many tags. We adopt a Listen-before-
Talk model for the RFID tags [2], where the tags listen to the
reader’s request before they talk back. We assume that there
exists a separate estimation phase for computing the cardi-
nality of the tag set that precedes any identification process,
and that this phase uses the framed-slotted ALOHA model
for tags to transmit back to the reader.1 Given a frame of
size f slots, tags randomly pick a slot based on a uniform
probability distribution, and transmit in that slot. Tags
cannot sense the channel, and hence, they merely transmit
in the chosen slot. Slot synchronization is provided by the
reader’s energizing probe/request.

When probed by the reader in the estimation phase, we as-
sume that tags respond with a bit-string that contains some
error-detection (such as CRC) embedded in the string. The
length of this common bit-string is defined as the minimum
length string such that the reader can detect collisions when
multiple tags transmit the same string in a given slot. This
string need not be unique across tags, and therefore is much
smaller than the length of the unique tag identifier. The
reader can thus detect collisions in the estimation phase,
and identify a successful transmission in any slot by only
one tag. If none of the tags choose a time slot, then the
reader will recognize that this time slot is idle. The entire
system uses a single wireless channel/band for operation.
The load factor of the system is defined as the ratio of the
number of tags to the number of time slots in a frame. We
denote the load factor by ρ = t/f .

When tags choose to transmit, have two degrees of free-
dom: (a) choosing a slot in a frame of size f , and (b) the
probability of transmission p in any given frame. Current
tag systems already allow variable frame sizes, albeit from
a limited set of choices, for both passive and active tags[9].
Accordingly, the reader’s transmission request can contain
one or both options: (a) a desired frame size to be used
by all tags, and (b) probability of transmission to be used
by tags for transmitting in a given frame. Given both pa-
rameters, the tag first decides whether to participate in the
frame with probability p, and then picks a slot at random
in a frame of size f . Each of these parameters can be var-
ied across frames, resulting in four possible combinations
(fixed/variable f , fixed/variable p), which will be analyzed
in this paper.

In this paper, we do not consider the identification prob-
lem, also referred to as collision resolution or conflict resolu-

1This phase can potentially be combined with the identifi-
cation phase for probabilistic identification algorithms.
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tion in related work. Our goal is simply to provide a reliable
estimate of the cardinality of the tag set in as little time as
possible.

Since the estimation scheme is probabilistic in nature, we
specify the accuracy requirement for the estimation process,
specified using two parameters, the error bound β > 0 and
failure probability 0 < α < 1.

The problem we solve is the following: Given a set of t tags
in the system, the reader has to estimate the number of tags
in the system with an confidence interval of width β, i.e., we

want to obtain an estimate t̂ such that t̂
t
∈ `1 − β

2
, 1 + β

2

´
with probability greater than α. In other words, we need
maximum error to be at most ±βt

2
with probability greater

than α. A sample problem would be to estimate the num-
ber of tags within ±1% of the actual number of tags with
probability greater than 99.99 %.

Measuring Performance: We measure the performance of
the estimator in terms of the number of slots needed to
perform the estimation to the desired accuracy level. Typ-
ically, in order to achieve the specified accuracy level, mul-
tiple measurements have to be made. The performance is
measured in terms of the total number of slots, summed over
all the measurements. The goal is to achieve the desired per-
formance in as little time as possible. In other words, if it
takes le slots to compute t̂, the estimate of t tags with a cer-
tain accuracy, and li slots to uniquely identify t̂ tags, then,
we need sele � lisi, where se and si are the sizes of the bit
strings transmitted during the estimation and identification
phases respectively.

Throughout this paper, we use Zα to denote the α per-
centile for the unit normal distribution. If α = 99.9% then
Zα = 3.2.

Before we proceed further, we briefly describe a current
implementation of random slot selection in a frame that can
be extended easily to accommodate the probability of trans-
mission in a given frame. In the Phillips I-Code system[9],
a frame size f (typically a power of 2) is sent by the readers
along with a seed value which is a 16-bit number. Each tag
uses this seed information along with its identifier to hash
into an integer in the range [1, f ], which specifies the slot in
which the frame will contend. The reader sends a different
seed in each frame to ensure tags do not necessarily select
the same slot in each frame. Note that tag/reader imple-
mentations by other RFID vendors follow similar principles
for slot selection. This scheme can be extended to support
variable contention probability p. The reader now sends
three parameters in each probe: (a) the seed, (b) the frame
size f , and (c) the integer � f

p
�. The tag hashes the combined

seed/identifier value into the range [1, � f
p
�]. If the hashed

value is greater than f , then the tag does not transmit in
this frame, else, it transmits in the computed slot, thereby
resulting in a frame transmission probability of f

f/p
= p. We

implement this model in our simulations, except that we use
the drand() function for the hashing scheme.

Based on the I-Code system, we set the estimator slot to
be 10 bits long2, to achieve a rate of 4000 estimation slots
per second. The unique tag id field is 56 bits long, including
the CRC, and the maximum tag identification rate in I-Code
is 200 tags per second, using a 56 kbps bit-rate. Thus the
estimation slot is much smaller than the identification slot.

2This is an over-estimate, since it is possible to detect colli-
sions using even smaller number of bits.

3. BASIC ESTIMATION ALGORITHMS
In this section, we develop two different estimators for t,

the cardinality of the tag set, assuming that all tags trans-
mit in all frames during the estimation process. The two
estimators complement each other well and combining them
gives an estimation algorithm that performs well for a wide
range of tag set cardinalities.

3.1 System Description
The reader probes the tags with the frame size f and the

tags pick a slot j in the frame uniformly at random and
transmit in that slot. We use the indicator random variable
Xj for the event that there is no transmission in slot j.
In other words, Xj = 1 if no tag transmits in slot j and
Xj = 0 otherwise. Similarly, we set Yj = 1 if and only if
there is exactly one tag that transmits in slot j and Vj = 1
if and only if there are multiple tags that transmit in slot
j. Note that Xj + Yj + Vj = 1 for all slots j. If slot j
has no transmissions in it, i.e, Xj = 1 then we refer to this
slot j as an empty slot or a zero slot. If exactly one tag
transmits in slot j, i.e, Yj = 1, then we refer to slot j as a
singleton slot. If multiple tags transmit in slot j creating a
collision, i.e., Vj = 1, then we refer to slot j as a collision

slot. Let N0 =
Pf

j=1 Xj denote the total number of empty

slots, N1 =
Pf

j=1 Yj denote the total number of singleton
slots and Nc = f − N0 − N1 denote the number of collision
slots. Note that N0, N1, and Nc are random variables. Let
n0, n1, and nc represent the values that are observed by the
reader in a particular instance. The reader has to estimate
t based on the (n0, n1, nc). Toward this end, we first give
the following result.

Lemma 1. Let (N0, N1, Nc) represent the number of time
slots with no transmissions, one transmission and collision
respectively in a system with t tags and frame size f . Let
ρ = t/f . Then

E[N0] ≈ f e−ρ

E[N1] ≈ f ρ e−ρ

E[Nc] ≈ f
`
1 − (1 + ρ)e−ρ

´
Proof. Slot j will be empty if none of the tags transmit

in that slot. Therefore,

Pr[Xj = 1] =

„
1 − 1

f

«t

≈ e−ρ.

This implies that E[N0] =
Pf

j=1 Pr[Xj = 1] ≈ f e−ρ. Simi-
larly,

Pr[Yj = 1] = t
1

f

„
1 − 1

f

«t−1

≈ ρ e−ρ

and E[N1] =
Pf

j=1 Pr[Yj = 1] ≈ f ρ e−ρ. Since Xj + Yj +
Vj = 1 for all j,

E[Nc] =

fX
j=1

Pr[Vj = 1] ≈ f − f ρ e−ρ − f e−ρ.

This completes the proof.

3.2 Obtaining the Estimators
The reader measures (n0, n1, nc). From Lemma 1, we

know that the expected number of empty slots is f e−ρ, or
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Estimator Problem to be Solved
ZE: Zero

Estimator t0 e−(t0/f) = n0/f
SE: Singleton

Estimator t1 (t1/f) e−(t1/f) = n1/f
CE: Collision

Estimator tc 1 − (1 + (tc/f)) e−(tc/f) = nc/f

Table 1: Estimators for t

the fraction of empty slots is e−ρ. From the current measure-
ment the reader observes that the fraction of empty slots is
n0/f . Equating the expected value and the observed value,
the reader now determines ρ0 that solves e−ρ0 = n0/f and
sets t0 = fρ0. Similarly, the reader can get estimates for t
from the singleton slots as well as the collisions. We show
the three estimates in Table I.

It is easy to solve for the estimator t0 in closed form but
the other two estimators involve solving a non-linear equa-
tion in one variable. A simple bisection search or Newton’s
method can be used to solve the equation, since the estima-
tion functions shown above are well behaved and therefore
both these methods converge very quickly. We can also use
the fact that the estimate has to be an integer to terminate
the search once we know the interval of uncertainty is less
than one. We use the bisection search method for the results
in this paper.

The three estimators have very different characteristics.
In Figure 1 we plot the normalized expected values, E[N0]/f ,
E[N1]/f and E[Nc]/f as functions of the load factor ρ. Note
that the curves for empty slots and collision slots are mono-
tonic in ρ but singleton slots is non-monotonic. Intuitively,
when the load factor is very low, there are many empty
slots but very few singleton or collision slots. As the load
factor increases, the number of empty slots decreases with a
corresponding increase in the number of singleton and colli-
sion slots. The expected number of singleton slots attains a
maximum when the load factor ρ = 1, a fact widely used in
identification algorithms to optimize the number of success-
ful identifications in a single frame. From this point on, as
the load factor increases, there are many more collision slots
and the number of singleton slots decreases. Thus, when the
reader solves for ρ1 in ρ1 e−ρ1 = n1/f , the solution is not
unique for ρ �= 1. This suggests that the singleton slots
cannot be used alone for estimating the number of tags.
Therefore, in the rest of the paper, we focus on the zero
estimator (ZE) with estimate denoted by t̂ = t0 and the
collision estimator (CE) with estimate denoted by t̂ = tc.

3.3 Operating Range for the Estimators
When the number of tags t � f , then all slots in the

frame will encounter collisions with high probability, result-
ing in n0 = n1 = 0 and nc = f . In such cases, both the
zero estimator and the collision estimator will not have fi-
nite estimates, i.e., t0 = tc = ∞. Since the number of tags
is assumed to be fixed, as the frame size increases (the load
factor decreases), the probability that estimators are finite
will increase. Rephrasing this, given a frame size f , there is
an upper bound on the number of tags that can be estimated
reliably using a given estimator.

Definition 1. Given a frame size f , and a probability

θ < 1, the operating range for an estimator is defined as the
maximum number of tags t for which the estimator has a
finite solution with probability greater than θ.

The definition of the operating range3 simply ensures that
we can get a finite estimate. For a fixed f , the objective for
the zero estimator is to determine the maximum number of
tags that will result in no empty slots with probability less
1 − θ and for CE is to determine the maximum number of
tags that will result in collisions in all slots with probability
less than 1−θ. We will use the following classical result due
to von Mises (see Feller [10]) on the distribution of N0 and
N1.

Lemma 2. Let t tags each pick a slot randomly among f
slots and transmit in that slot. Let t, f → ∞ while main-
taining t/f = ρ, then the number of empty slots, N0 ap-
proaches a Poisson random variable with parameter λ0 =
fe−ρ and the number of singleton slots, N1 is distributed
approximately as a Poisson random variable with parameter
λ1 = fρe−ρ where ρ = t/f is the load factor.

Using the above result, the probability that the reader
fails to get a finite t0 is the probability that N0 = 0. Since
N0 is distributed as a Poisson variable with parameter λ0,

Pr [N0 = 0] = e−λ0 .

Hence, requiring the failure probability to be less than (1−θ)
is equivalent to setting λ0 ≤ − log(1−θ). If we set θ = 0.99,
this corresponds to setting λ0 ≤ 5. (When λ0 = 5, the
failure probability is about 0.007.)

In the case of the CE estimator, the estimation process
fails only if Nc = f , i.e., there are no empty or singleton
slots. This probability is given by

Pr [N0 = 0, N1 = 0] ≈ e−λ0−λ1 .

Again using θ = 0.99, we see that as long as the load factor
ensures that λ0 + λ1 ≤ 5 then the collision based estimator
fails with probability less than 0.007. Figure 2 compares
the operating ranges for the two estimators ZE and CE for
θ = 0.99, i.e., a failure probability of less than 1%. The
x-axis gives the number of slots and the the y-axis gives the
maximum number of tags t0 and tc that can be estimated
using the ZE and CE estimators respectively. Note that
the range for CE estimator is greater than the range of ZE.
This difference increases with the frame size. For example,
the operating range for CE is about 180 higher than ZE for
f = 100 slots and is about 11600 higher when f = 5000
slots. Therefore, the collision-based estimator can operate
at higher load factors than the empty slots based estimator.

In Figure 3, we show the experimental performance of
collision-based and Zero Estimators when f = 100 and the
number of tags are increased from 0 to 1000. The x-axis
shows the actual number of tags and the y-axis shows the
estimated number of tags, t0 and tc. The ideal curve is the
45 degree line shown in the plot. Each point in the plot
represents the average of 100 experiments. Note that the
performance of t0 starts deteriorating when the number of
tags t is about 350 and the performance of tc starts deteri-
orating when t is about 550.

3The operating range does not say anything about the accu-
racy of the estimate when the estimate is finite. We discuss
the accuracy of the estimate in Section 3.4.
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The key observation is that with increasing frame size,
the operating range expands for both estimators, with a
bigger range for the Collision Estimator than for the Zero
Estimator. This also implies that the Collision Estimator
works well for a greater range of load factors than the Zero
Estimator.

3.4 Accuracy of the Estimators
In this section, we derive the variance of the two estima-

tors. Computing the variance serves two purposes. First,
it lets us compare the accuracy of the two estimators. Sec-
ond, it helps us decide how to use the estimators to get
the desired accuracy level for the estimates. Previously, we
used the fact that N0 and N1 can be approximated as Pois-
son random variables. The reason for preferring the Poisson
distribution in the last section is that it is a discrete dis-
tribution and it gives a probability mass function value at
zero for N0 and N1. It turns out that N0 and N1 can also
be asymptotically approximated as normal distributions, a
fact we use for analyzing the variance of the estimators. We
denote a normal distribution with mean a and variance b
with N [a, b].

Theorem 1. Let t tags each pick randomly among f slots
and transmit in this slot. N0 represents the number of empty
slots, and Nc represents the number of collision slots. If
f, t → ∞ while maintaining t/f = ρ, then

N0 ∼ N ˆ
μ0, σ

2
0

˜
where

μ0 = fe−ρ, σ2
0 = fe−ρ `1 − (1 + ρ) e−ρ´

and

Nc ∼ N ˆ
μc, σ

2
c

˜
where

μc = f
`
1 − e−ρ (1 + ρ)

´
and

σ2
c = fe−ρ `(1 + ρ) − `1 + 2ρ + ρ2 + ρ3´ e−ρ´ .

Proof. See Feller [10] for a proof of the normality. The
expressions for the mean of the random variables were de-
rived in the proof of Lemma 1. We focus on the computation
of the variance. Note that

V ar[N0] = E

2
4 fX

j=1

Xj

!2
3
5−

 
E

"
fX

j=1

Xj

#!2

Note that for i �= j

E[XiXj ] = Pr[Xi = 1, Xj = 1] =

„
1 − 2

f

«t

.

Plugging this result in the expression for the variance, and
using the fact that E[X2

j ] = E[Xj ], we get

V ar[N0] = f(f − 1)(1 − 2

f
)t + f(1 − 1

f
)t − f2(1 − 1

f
)2t

≈ −te−ρ + f
`
e−ρ − e−2ρ

´
, (Appendix:Lemma 3)

= fe−ρ
`
1 − (1 + ρ) e−ρ

´
The proof for the computation of V ar[Nc] for a more gen-

eral case is given in [13].

In Figure 4, we show the experimental distribution of the
number of collision slots, superimposed on the normal distri-
bution with the mean and variance computed as in Theorem
1.

Ultimately, we want to measure instances of N0 and Nc

and use these to estimate t. Note that we view μ0 and μc as
(non-linear) functions of the number of tags t, i.e, as μ0(t)
and μc(t). From Lemma 1 and Figure 1, we know that both
μ0(t) and μc(t) are monotonic continuous functions of t.
(μ0(t) is increasing in t and μc(t) is decreasing in t.) Since
they are monotonic and continuous, both these functions
have unique inverses, denoted by g0() and gc() respectively.
In other words, g0 (μ0(t)) = t and gc (μc(t)) = t.

Theorem 2. Let t, f → ∞ while maintaining t/f = ρ.
Then

[g0 (N0) − g0 (μ0(t))] ∼ N [0, δ0]

and

[gc (Nc) − gc (μc(t))] ∼ N [0, δc]

where

δ0 = t
(eρ − (1 + ρ))

ρ
(1)

and

δc = t
(1 + ρ) eρ − `1 + 2ρ + ρ2 + ρ3

´
ρ3

. (2)

Proof. See Appendix for the proof of this theorem.

In order to compare the variances of the two estimators,
we first define the notion of a normalized variance which is
the ratio of the estimator variance to the number of tags.
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The normalized variance of ZE is δ0/t and for CE is δc/t.
From the expressions for the estimator variance shown above,
the normalized variance is just a function of the load factor
ρ. Figure 5 plots the normalized variance as a function of
the load factor ρ. There are two factors that stand out in
this plot.

1. For ρ < 1, the variance of t0 decreases while the vari-
ance of tc increases. In other words, if we fix the num-
ber of tags t and increase the number of slots, the ZE
estimator gets more accurate while the collision based
CE estimator gets less accurate.

2. As the load factor increases, the variance of the colli-
sion based estimator is significantly less than the vari-
ance of the empty slots based estimator.

3. ZE can achieve arbitrarily low normalized variance,
while CE’s normalized variance is always at least 0.425.

These observations suggest that for estimating a given tag
set with cardinality t, one can use the ZE with a very large
frame size to obtain any desired accuracy in a single frame,
assuming such a frame size is allowed. On the other hand,
with CE, one has to investigate other methods of reducing
the variance. We also note that the two estimators are com-
plementary to each other. For load factors greater than a
threshold, CE performs better, while the ZE estimator per-
forms better at lower load factors.

3.5 Reducing the Variance of the Simple
Estimators

We have the expressions for the variance of the ZE and
CE, given in Equations 1 and 2. A straightforward way of
reducing the variance of an estimator is to repeat the exper-
iment multiple times and take the average of the estimates.
If the final estimate is the average of m independent ex-
periments each with an estimator variance of σ2, then the
variance of the average is σ2/m. We can also manipulate
the variance in our case by changing the frame size or per-
form a weighted average of the estimates. Before choosing
a method for reducing the variance, we first need to under-
stand the characteristics of the two estimators.

• The variance of ZE can be reduced by reducing ρ or
equivalently, increasing the frame size f . We can show
having a frame size of mf and performing the reading
once, gives a lower variance for t0, than having a frame
size f and averaging the results of m experiments. If
we want the variance to be less than σ2, for a given

estimate t̂, we first set

t̂
(eρ − (1 + ρ))

ρ
≤ σ2

and solve for ρ. We can then set f ≥ t̂ρ.

• From Figure 6 we see that tc attains minimum vari-
ance when ρ = 1.15. We obtain this by evaluating the
minima of Equation 2 with respect to ρ. Note that ρ =
1.15 is equivalent to setting f = (1/1.15) t = 0.87 t.
The minimum variance when ρ = 1.15 is 0.425 t. If
we fix f = 0.87 t and repeat the experiment m times,
then average the m estimates, then the variance of the
final estimate is reduced by a factor of about m, i.e.,
the variance will be 0.87 t/m. This suggests that if we
want the final variance to be less than σ2, then we have
to repeat the measurement at least �0.87 t/σ2� times.

There are two other practical issues that we have to ad-
dress:

• Maximum Frame Size
The frame size that arises from the computation for a
desired variance may be quite large especially in the
case of ZE. In practice, all systems have some max-
imum frame size restriction. Therefore, if the frame
size computation above leads to a size larger than the
maximum permitted, then we use the maximum per-
mitted frame size instead. This implies that we may
have to perform multiple experiments in order to re-
duce the variance, even for ZE. We use fmax to denote
the maximum frame size.

• Frame Overhead
There is typically some overhead associated with each
frame, primarily the time/energy that is needed to en-
ergize the tags. We assume that the frame overhead
is specified in terms of the number of slots that are
needed to initialize a frame and we denote this quan-
tity by τ . Therefore, a frame size f actually uses up
f + τ slots.

Based on our earlier observation that the two estimators
are complementary to each other, we can devise a unified
Simple Estimation Algorithm, which uses both estimators,
depending on the frame size and the estimated number of
tags. For a given frame size and tag set estimates from the
two estimators, we choose the value with the lowest vari-
ance, and use it to refine subsequent estimates. This unified
algorithm is described in Figure 7.
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The simple estimators presented in this section are ca-
pable of estimating the value of t within a 20% confidence
interval (β = 20) in a single frame, assuming that the frame
size is appropriately chosen, once, to accomodate the oper-
ating range of measurements. We demonstrate this by the
experimental results in Figure 8, in which we plot the var-
ious estimated values in different experimental runs over a
single frame, against the tag set cardinality, t. The frame
size is selected to be 1000 slots. For comparison, we also
plot the 20% confidence interval represented by the upper
and lower lines with slopes 1.1 and 0.9 respectively. We also
show the results of the tag set size estimator in [18] where
a lower bound is computed as t̂ ≥ n1 + 2 ∗ nc. Clearly, the
estimators presented in this paper are far superior and are
able to provide a high confidence estimate in as few as 1000
slots.

With our proposed estimation schemes4 in the I-Code sys-
tem[9], we can estimate the size of a 4500-tag set with 20%
accuracy in 0.25 seconds. To achieve the same accuracy
with the identification scheme in [9], we need 18 seconds.
Even if we had only 500 tags in the system, our scheme will
still estimate the size within ±100 in 0.25 seconds, while [9]
requires 2 seconds.

We earlier mentioned that with m multiple experimental
estimates, averaging the estimates will reduce the variance
by m. We can reduce the variance even further by weighted
averaging of the estimates. We use the following well-known
statistical result.

Theorem 3. Let e1, e2, . . . ek be k estimates for t with
variances v1, v2, . . . , vk. For any set {αi} with 0 ≤ αi ≤ 1

and
P

i αi = 1,
Pk

i=1 αiei is an estimator for t with variancePk
i=1 α2

i vi. The optimal choice of αi that minimizes the
variance of the linear combination is

αi =

1
viPk

i=1
1
vi

and the minimum variance is 1/
Pk

i=1
1
vi

.

Proof. Minimizing the weighted variance function sub-
ject to the

P
αi constraints is a standard convex optimiza-

tion problem. Solving the Kuhn-Tucker conditions gives the
above optimal solution.

We use weighted statistical averaging to compute the final
variance of the sampled estimates in our simulations.

Using the Combined Simple Estimators, we measure the
number of slots needed to estimate various tag sets with set
sizes ranging from 5 to 50, 000. In order to accomodate this
large operating range, we need to set the initial frame size as
described in Figure 7, which turns out to be 6984 slots. Note
that subsequent frames can be of different sizes. For various
levels of accuracy, we find the number of slots needed for
estimation using simulations, and the results are shown in
Table II. The results show that for a tag sizes well within the
operating range, the algorithm easily estimates the number
of tags to within a couple of frames with an accuracy of
greater than 0.05%. However, there is very little tunability
of the algorithm for various levels of accuracy. In addition,
as the desired accuracy increases or as the number of tags

4See slot size assumptions in Section 2.

INPUT
1. Upper bound t̄ on the number of tags t
2. Confidence Interval Width β
3. Error probability α

ESTIMATION PROCEDURE

1. Compute the desired variance, σ2 =
Z2

α
β2 .

2. Compute the initial frame size f by solving
fe−(t̄/f) = 5.

3. Energize the tags and get n0 and nc.

4. Compute t0 as in Table 1 and the variance of this
estimate δ0 using Equation 1.

5. Compute tc as in Table 1 and the variance of this
estimate δc using Equation 2.

6. If δ0 < δc then set t̂ ← t0 else t̂ ← tc.

7. Compute the frame size fZE needed for ZE by solving
for ρ in

t̂
(eρ − (1 + ρ))

ρ
= σ2

and setting fZE = t̂/ρ and set the number of repeti-
tions m = 1.

8. If fZE > fmax then set fZE = fmax. Now set ρ =

t̂/fmax in Equation 1 and obtain the variance σ̂2.

The number of repetitions needed is m = σ̂2/σ2.

9. Therefore the total number of slots for ZE denoted
by TZE including the frame overhead is m(τ +fZE).

10. Let fCE = 1.15 ∗ t̂. If fCE > fmax then set fCE =
fmax.

11. Set ρ = t̂/fmax in Equation 2 and obtain the variance

σ̂2. The number of repetitions needed is m = σ̂2/σ2.

12. Therefore the total number of slots for CE denoted
by TCE including the frame overhead is m(τ +fZE).

13. If TZE < TCE , then we use ZE else we use CE and
use the appropriate number of repetitions and aver-
age the estimate over all the repetitions.

Figure 7: Computing the Estimate using Combined
Simple Estimators

reaches the upper end of the operating range, the algorithm
takes a large number of slots to obtain the desired estimate,
mainly due to the large frame sizes involved. But, it is worth
pointing out that the algorithm can obtain an estimate of
50, 000 tags within an confidence interval of ±500 tags in
4.5 seconds and within ±50 tags in 16 seconds, while the
identification time can be more than 100 seconds.

In Table III, we show the impact of the operating range
on the number of slots needed to estimate 500 tags with a
confidence interval of ±5 tags. This shows that there is a
tradeoff between operating range and estimation time, when
the number of tags is well within the operating range.

4. A SCALABLE ESTIMATION ALGORITHM
As described in the combined algorithm in Section 3, es-

timation schemes that allow all tags to contend in every
frame have a specific operating range that is dependent on
the frame size chosen. Hence, in order to estimate any tag
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Number Slots needed for confidence interval (in %) of
of tags 0.2 0.1 0.05 0.02
5 6984 6984 6984 6984
50 7028 7256 7826 14837
500 7498 7498 8666 15674
5000 12736 12736 12736 18558
50000 65378 65378 182306 883874

Table 2: Unified Simple Estimation Algorithm:
Large Operating Range

Slots needed when operating range is set to
500 1000 5000 10000 50,000
714 870 1554 2302 7498

Table 3: Impact of Operating Range on Estimation
Time

set size, an upper bound on the size t has to be assumed, and
the frame size fixed such that the operating range stretches
up to the upper bound. In addition, the optimal frame sizes
for computing a low variance estimate are lower bounded
by the tag size t for both the Zero and Collision Estimators.
This requirement can be impractical in actual systems for
large values of t.

In this section, we address the case when the number of
tags can be orders of magnitude larger than the maximum
frame size fmax, where fmax can be very small. We show
that extending the framed ALOHA to include probabilistic
contention increases the range and improves the accuracy of
both the estimates when the load factor is large. To this end,
we define the probabilistic framed ALOHA (PFA) protocol.

Definition 2. The probabilistic framed ALOHA (PFA)
protocol is defined as the framed ALOHA protocol model with
a frame size f and an additional contention probability p. A
node in the PFA protocol decides to contend in a frame with
probability p, and if it decides to contend, it picks one of the
f slots to transmit.

Note that the PFA protocol is just a simple extension of
probabilistic ALOHA to the framed model. When p = 1,
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Figure 8: Estimation over a Single Frame

Estimator Problem to be Solved
PZE: Empty Slot

Estimator t0 e−(pt0/f) = n0/f
PCE: Collision

Estimator tc 1 − (1 + (ptc/f)) e−(ptc/f) = nc/f

Table 4: Estimators for t

PFA protocol becomes the Framed Aloha protocol. Our goal
is analyze the behavior of a probabilistic estimator in such
a model. The next theorem is analogous to Theorem 1 and
it gives the mean and the variance for the number of empty
slots and collision slots for the PFA scheme.

Theorem 4. Let t tags each pick randomly among f slots
and transmit in that slot if they choose to contend with prob-
ability p. Then

N0 ∼ N ˆ
μ0, σ

2
0

˜
Nc ∼ N ˆ

μc, σ
2
c

˜
where
μ0 = fe−pρ, σ2

0 = fe−pρ
`
1 − `1 + p2ρ

´
e−pρ

´
,

μc = f
`
1 − e−pρ (1 + pρ)

´
, and

σ2
c = fe−pρ

`
(1 + pρ) − `1 + 2pρ + p2ρ2 + p4ρ3

´
e−pρ

´
.

Proof. The proof is similar to the proof of Theorem
1.

The estimators t0 and tc for the probabilistic case are com-
puted as shown in Table 4. We use the abbreviations PZE
and PCE to denote the estimators in the case of probabilistic
framed aloha.

We now give the variance of the estimators, and the deriva-
tion is similar to the framed ALOHA derivation in Theorem
2. Let g0(x) and gc(x) be the estimator functions for the
PFA model, with g0(μ0) = gc(μc) = t, where μ0 and μt are
defined as in Theorem 4.

Theorem 5. N0 and Nc are the number of empty slots
and number of collision slots, respectively. We have,

[g0 (N0) − g0 (μ0)] ∼ N [0, δ0]

and

[gc (Nc) − gc (μc)] ∼ N [0, δc]

where

δ0 = t

`
epρ − `1 + p2ρ

´´
ρp2

and

δc = t
(1 + pρ) epρ − `1 + 2pρ + p2ρ2 + p4ρ3

´
ρ3p4

.

Proof. The proof of this theorem can be found in [13].

The main use of the probabilistic scheme is for handling
cases where the number of tags is large and it is not feasible
to increase the frame size to accommodate the tags. There-
fore, we temporarily assume that the values of t and f are
fixed and the load factor ρ = t/f is large.
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Figure 9: Experimental plot of variance of PZE
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Figure 10: Experimental plot of variance of PCE

4.1 Choosing the Optimal Contention
Probability

We now address the problem of choosing the optimal con-
tention probability given the load factor ρ. We do this for
both PZE and PCE estimators. In the case of PZE, we com-
pute the partial derivative of δ0 with respect to p and set it
to zero to get the minimum variance.

∂δ0

∂p
=

t(pρepρ − 2epρ + 2)

p4ρ2
= 0

In order to obtain the minimum variance, we have to solve
for p in

pρepρ − 2epρ + 2 = 0.

Since pρ occurs together in the expression, it is easy to
show numerically that the minimum is attained when p is
chosen such that pρ = 1.59. Therefore, the optimal p =
1.59/ρ. If ρ < 1.59 then the optimal value for p = 1. In
Figure 9, we show how the variance changes with p for two
different values of ρ. In the case of PCE, we seek the minima
of the function δc(p, ρ) with respect to p to obtain the value
of p that gives minimum variance. The optimal p has to
satisfy

epρ
`
p2ρ2 − 2pρ − 4

´
+ 2

`
p2ρ2 + 3pρ + 2

´
= 0

Once again, note that p and ρ occur together, therefore it
is easy to solve this numerically to show that the minimum
is attained when pρ = 2.59. Therefore p = 2.59/ρ and p = 1
if ρ < 2.59.

INPUT
Frame Size f , confidence Interval Width β and
error probability α
OUTPUT
An estimator t̂ for t that satisfies the
accuracy requirement.
INITIALIZATION

Set p = 1, nc = 0.
While nc = 0 do

Read Tags (f, p)
If p = 1 and n0 > 0 get t0

If t0 < f then
e1 = t0, v1 = δ0, t̂ = e1 and v̂ = v1

PROCEDURE ZERO ESTIMATE
Else

e1 = tc, v1 = δc, t̂ = e1 and v̂ = v1

PROCEDURE COLLISION ESTIMATE
Else If nc = 0, Then Set p ← 0.1 p

Else set e1 = tc, v1 = δc, t̂ = t1 and v̂ = v1

PROCEDURE COLLISION ESTIMATE
End While

PROCEDURE COLLISION ESTIMATE

While
“
v̂ > β2t̂2

Z2
α

”
do

Set k ← k + 1

Let p = min{1, 2.6f
t

}
Read Tags (f, p) and get estimate tc
Compute estimator variance δc

Set ek = tc, vk = δc

Compute new estimate t̂ =
“Pk

i=1
ei
vi

”
/(

Pk
i=1

1
vi

)

Compute new variance v̂ = (
Pk

i=1
1
vi

)−1

End While

PROCEDURE ZERO ESTIMATE

While
“
v̂ > β2t̂2

Z2
α

”
do

Set k ← k + 1

Let p = min{1, 1.5f
t

}
Read Tags (f, p) and get estimate t0
Compute estimator variance δ0
Set ek = t0, vk = δ0

Compute new estimate t̂ =
“Pk

i=1
ei
vi

”
/(

Pk
i=1

1
vi

)

Compute new variance v̂ = (
Pk

i=1
1
vi

)−1

End While

Figure 11: Unified Probabilistic Estimation Algo-
rithm

We also see that the collision based estimator is robust
over a larger range than the empty slots based estimator.
Figure 10 shows how the variance changes with respect to
p for two different values of ρ. What the probabilistic con-
tention mechanism lets us do is to dramatically reduce the
frame size needed, even when t is large. If the variance for
a single estimate is too large, then averaging multiple esti-
mates reduces variance.

We combine the PZE and PCE estimators, using the same
approach as in Section 3, to obtain a unified Probabilistic
Estimation Algorithm, described in Figure 11.

One of the advantages of the PFA protocol is that the
total estimation time for given accuracy level is indepen-
dent of the cardinality t of the tag set. We illustrate this
using some simulation results next. As in Section 3, we mea-
sure the number of slots needed to estimate various tag sets
with set sizes ranging from 5 to 50, 000. We do not need to
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Number Slots needed for confidence interval (in %) of
of tags 0.2 0.1 0.05 0.02
5 90 390 1440 8970
50 60 210 840 5190
500 180 540 2220 12420
5000 210 600 2220 13590
50000 240 660 2280 13560

Table 5: Results from Unified Probabilistic Estima-
tion Algorithm

worry about the operating range here, since the probability
of contention will be adapted dynamically depending on the
number of tags present. We set the frame size to be a con-
stant, f = 30 slots, and vary the probability of contention
in a frame.

For various levels of accuracy, we find the number of slots
needed for estimation using simulations, and the results are
shown in Table 4.1. The main observation that stands out is
that for a given confidence level, the number of slots needed
is nearly independent of the tag size. The second observa-
tion is that the estimation slots needed is easily orders of
magnitude smaller than those needed for the unified simple
estimation algorithms (Table 3.5). As the accuracy require-
ment increases by a factor of x, the estimation time increases
by a factor of x2. This is expected, since the variance is re-
lated to the square of the confidence levels. It can be seen
that the estimation time for tag set size of 50 is much bet-
ter than the time for tag set of size 5. This is because of
the frame size of 30, which results in near-optimal variance
estimate for the size of 50, when compared to 5. In terms
of actual time, assuming a rate of 4000 estimation slots per
second, we can claim that one can estimate any tag size (not
necessarily restricted to 50,000), with confidence interval of
0.05 within 1 second. This is an entirely unique result.

5. RELATED WORK
The basic RFID standards are covered in [4] and in [3].

where [3] proposes a Q-algorithm which attempts to set the
frame-size to be equal to the number of unidentified tags.
Every slot is ACK-ed in this model, and the frame size is
multiplied (divided) by β, (1.07 ≤ β ≤ 1.41), for each de-
tected collision (zero) in a slot. Vogt [18] presents a simple
estimation algorithm for estimating the number of tags us-
ing the number of ones and collisions in a given frame. The
algorithm estimates the number of tags using the following
equation Nest = c1 + 2cM , where c1 and cM are the num-
ber of ones and collisions in a given frame respectively. It
then provides an expression to compute the number of slots
needed to detect α.N tags, where α = 0.99 in the simula-
tions.

Hernandez [19] and Zhen [20] use a continuous-time model
to evaluate the probability that a particular tag is not iden-
tified. The time between tag attempts to transmit is expo-
nentially distributed in [19], and in [20], the time taken for
reading N tags such that the probability of not reading a
particular tag is minimized is computed as 18.76N . All tags
are assumed to transmit for every probe, and N is assumed
to be known. In this paper, we compute the probability that
all tags are identified with high certainty, while estimating
N too.

When tags can be silenced based on feedback/input from
the reader, then [22], [25], [23] and [24] provide estimation
and identification algorithms. In [22] and [25], the number
of unidentified tags is 2.39 times the number of collisions
in the current frame, and sets the frame size to be equal
to the number of unidentified tags. This number is derived
by attempting to maximize the number of successful tag
transmissions in a given frame, assuming frame size can be
dynamically varied. Floerkemeier [23, 24] uses a Bayesian
probability estimation scheme, based on the number of 1s
and 0s in current frame, to maximize throughput (i.e., num-
ber of 1s per frame).

Zhen [28] uses Schoute’s [25] estimation algorithm, and
analyzes the minimum number of slots needed to identify
all tags such that the expected number of identified tags is
N . It claims that 1.4N is the optimal frame size (through
simulations), and it takes 6.6 frames for total read time if
the tags repeat transmission for every probe (passive tags).
For active tags, they identify 0.65N as the ideal frame size,
and claim that it takes 3 frames for identifying all tags. In
addition, they also analyze the capture effect in tags for both
Rician and Rayleigh fading channels. Lee et. al. [34] show
that the optimal frame size is equal to number of uniden-
tified tags, and hence, for a given frame size, they use a
modulo operation to restrict the number of responding tags
to around the frame size. In [42], an analysis of TDMA, ran-
dom access and pseudo-random protocols is done regarding
the trade off in the average energy consumed per slot ver-
sus the average delay per packet sent from the tag, in the
context of active tags with a Poisson arrival process.

In an early work, Wieselthier et. al. [33] provide an anal-
ysis for framed ALOHA with and without the capture effect.
They consider the various states in which a frame can evolve,
and provide results that characterize the probability of each
such state with a static frame size as well as dynamic frame
sizes. In the dynamic case, the frame size is optimized to
achieve maximum throughput. They also consider the case
where an unsuccessful node transmits with different proba-
bilities in each frame, until it succeeds. They show through
simulations that per-frame throughput with constant packet
transmission probability performs just as well as variable
probabilities. In addition, they also show that if successful
nodes stay quiet, then the optimal frame size is equal to
N . In this paper, our goal is not just to maximize ALOHA
throughput, but to estimate the number of nodes, optimize
the frame sizes, and adjust the contention probabilities as
well to minimize the number of slots needed such that all
tags are detected with high probability.

Deterministic RFID-tag identifications algorithms follow
a tree-based mechanism wherein the range of addresses of
the RFID tags are selectively narrowed down along a tree.
These schemes assume that each tag can understand and
respond to complex commands from the reader, such as re-
sponding only if the ID is within an address range specified
by the reader. Examples of such algorithms can be found
in [21, 26, 27, 37, 38, 39, 40, 43, 44, 29, 30]. While these
algorithms deterministically resolve conflicts, they often dis-
count the amount of time that readers spend in probing and
isolating different segments of the tag population in comput-
ing the total time taken to resolve all conflicts. They also
assume a slotted model, and not a framed model, wherein
the reader responds before and after every slot, adding to
the resolution overhead.
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The HIPERLAN standard [31] and the Sift protocol [32,
36] attempt to minimize collisions in a CSMA protocol wherein
all the nodes can hear each other, using a truncated geomet-
ric distribution for contention probabilities. The goal there
is to have only one winner per slot, and assumes that the
winner will not contend immediately again. Moreover, the
nodes have to contend in every slot, and must have the abil-
ity to listen to the result of each slot.

Estimation using the number of zeroes in a frame is sim-
ilar to hash-based estimators[11, 45]. The key difference is
that hash estimators use a single-bit per slot to identify if
there is a zero or a hit in that slot, where a hit includes a
1 or a collision. In the wireless model, one can additionally
differentiate between a 1 and collision without additional ef-
fort, and hence one can design better estimators using this
extra information.

Estimating the intersection of multiple hashed sets is a
well-known problem in database literature[11]. Our approach
that is outlined in this paper is a variant of that approach
that incorporates averaging to improve accuracy. Further,
as in the case of estimating cardinality, we are exploring
extending collision based approaches to develop better in-
tersection cardinality algorithms. Also, the use of temporal
intersection to track dynamics appears to be a new applica-
tion in the wireless context.

The problem of synchronizing multiple RFID readers is
addressed in [14]. Engels and Sarma [16] propose using well-
known graph coloring based algorithms on a bipartite graph
to eliminate reader collisions. Waldrop et. al. [17] present
a randomized channel assignment algorithms for readers to
minimize collisions between them. Kim et.al. consider the
fairness aspects when multiple readers are present [41] by
trying to balance the coverage of the readers so that the
number of transmitting tags covered by each reader is ap-
proximately equal.

6. CONCLUSION
In this paper, we present several estimation algorithms

that enable us to identify a set of RFID tags in a very short
period of time. We believe that our collision-based estimator
and the probabilistic estimators are entirely novel, and we
perform a detailed performance evaluation of all the estima-
tors described in this paper via thorough analysis and sim-
ulation. We present two unified estimation algorithms that
have complementary properties: the Unified Simple Estima-
tor provides a high level of accuracy within a single frame,
while the Unified Probabilistic Estimator has a running-time
that is independent of the size of the estimated tag set, for a
given level of accuracy. We believe that the techniques pro-
posed in this paper will be of great use in other areas such as
neighborhood estimation problems in wireless networks, the
multiple RFID reader problem, and privacy related issues
in RFID networks. Our ongoing research is focused on im-
proved probabilistic identification algorithms which can be
guarantee much faster resolution of tag identities in a dense
tag environment.
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8. APPENDIX
We use the following asymptotic results in deriving the

mean and the variance of the estimators. These are a general
form of the expressions in [11].

Lemma 3. If A, B, w and m are constants, then, for
large m,

A

„
1 − B

m

«w

≈ A e−Bw/m

A
`
1 − 2

m

´w−B
`
1 − 1

m

´2w ≈ ˆ(A − B) + (B − 2A) w
m2

˜
e−

2w
m

�
Whenever there is an ≈ sign in the derivation of the ex-

pressions, we have used one of the two results to get the
asymptotics.

We use the following standard inversion result from statis-
tics to get error bounds on the estimators..

Theorem 6. Let Xn be a sequence of statistics such that

√
n

»
Xn

n
− θ

–
→ X ∼ N [0, σ2(θ)].

Let f be a differentiable function of one variable. Then

√
n

»
f

„
Xn

n

«
− f(θ)

–
→ f(X) ∼ N [0, σ2(θ)(f ′(θ))2].

Proof. See Rao [12] for the details of the proof.

We now give a proof of Theorem 2.

Proof. Note that N0 and Nc are normally distributed
[10]. Moreover, from the definition of g0(), note that

g0(μ0(t)) = t.

Differentiating this equation with respect to t we get,

g′
0(μ0(t))μ′

0(t) = 1.

Therefore,

g′
0(μ0(t)) =

1

μ′
0(t)

.

From Theorem 6, the variance of the zero estimator of t,

δ0 = σ2
0(t)

ˆ
g′(μ0(t))

˜2
=

σ2
0(t)

[μ′
0(t)]

2
(3)

From Theorem 1, we know that μ0 = fe−ρ and
σ2

0 = fe−ρ
`
1 − (1 + ρ) e−ρ

´
. Differentiating μ0() with re-

spect to t

∂μ0

∂t
= e−ρ.

Substituting the above expression and that of σ2
0 in Equation

3 gives us the result. The argument for the variance of the
collision estimator follows the same steps.
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