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Routing in Sensor NetworksRouting in Sensor Networks

• Large scale sensor networks will be deployed, 
and require richer inter-node communication
– In-network storage (DCS, GHT, DIM, DIFS)

– In-network processing

– “Fireworks routing”

• Need point-to-point routing to scale
– Many nodes

– Many flows

– Different densities



Design GoalsDesign Goals

1. Simple – minimum required state, assumptions

2. Scalable – low control overhead, small 
routing tables

3. Robust – node failure, wireless vagaries

4. Efficient – low routing stretch
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GPSR: MotivationGPSR: Motivation

• Ad-hoc routing algorithms (DSR, AODV)
– Suffer from out of date state

– Hard to scale

• Use geographic information for routing
– Assume every node knows position (x,y)

– Keep a lot less state in the network

– Require fewer update messages



GPSR Algorithm : Greedy ForwardingGPSR Algorithm : Greedy Forwarding

• Each node knows the geographic location of its 
neighbors and destination

• Select the neighbor that is geographically 
closest to the destination as the next hop



GPSR Algorithm : Greedy Forwarding GPSR Algorithm : Greedy Forwarding 
(Cont.)(Cont.)

• Each node only needs to keep state for its 
neighbors

• Beaconing mechanism
– Provides all nodes with neighbors’ positions.

– Beacon contains broadcast MAC and position.

– To minimize costs: piggybacking



GPSR Algorithm : Greedy Forwarding GPSR Algorithm : Greedy Forwarding 
(Cont.)(Cont.)

• Greedy forwarding does not always work!



Getting Around Void

• The right hand rule
– When arriving at node x from node y, the next edge 

traversed is the next one sequentially 
counterclockwise about x from edge (x,y)

– Traverse the exterior region in counter-clockwise 
edge order



Planarized Graphs

• A graph in which no two edges cross is 
known as planar.
– Relative Neighborhood Graph (RNG)

– Gabriel Graph (GG)



Relative Neighborhood Graph



Gabriel Graph



Final Algorithm

• Combine greedy forwarding + perimeter routing
– Use greedy forwarding whenever possible

– Resort to perimeter routing when greedy forwarding 
fails and record current location Lc

– Resume greedy forwarding when we are closer to 
destination than Lc



Protocol ImplementationProtocol Implementation

• Support for MAC-layer feedback

• Interface queue traversal

• Promiscuous use of the network interface

• Planarization of the graph



Simulation and EvaluationSimulation and Evaluation

• 50, 112, and 200 nodes with 802.11 
WaveLAN radios.

• Maximum velocity of 20 m/s

• 30 CBR traffic flows, originated by 22 
sending nodes

• Each CBR flows at 2Kbps, and uses 64-
byte packets



• Packet Delivery Success Rate

Simulation and EvaluationSimulation and Evaluation



• Routing Protocol Overhead

Simulation and EvaluationSimulation and Evaluation



• Path Length

Simulation and EvaluationSimulation and Evaluation



• Effect of Network Diameter

Simulation and EvaluationSimulation and Evaluation



• State per Router for 200-node 
– GPSR node stores state for 26 nodes on 

average in pause time-0

– DSR nodes store state for 266 nodes on 
average in pause time-0

Simulation and EvaluationSimulation and Evaluation



Pros and Cons

• Pros:
– Low routing state and control traffic � scalable

– Handles mobility 

• Cons:
– GPS location system might not be available 

everywhere.

– Geographic distance does not correlate well with 
network proximity.

– Overhead in location registration and lookup

– Planarized graph is hard to guarantee under mobility
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Beacon Vector RoutingBeacon Vector Routing

• Solution: fake geography
– Create a routing gradient from connectivity

information rather than geography
• Nodes assigned positions based based on 

connectivity
• Greedy forwarding on this space



BeaconBeacon--Vector: AlgorithmVector: Algorithm

• 3 pieces
– Deriving positions

– Forwarding rules

– Lookup: mapping node IDs � positions



1. r beacon nodes (B0,B1,…,Br) flood the network; a node q’s

position, P(q),  is its distance in hops to each beacon 

P(q) = 〈 B1(q), B2(q),…,Br(q) 〉

2. Node  p advertises its coordinates using the k closest beacons  

(we call this set of beacons C(k,p))

3. Nodes know their own and neighbors’ positions

4. Nodes also know how to get to each beacon

BeaconBeacon--Vector: deriving Vector: deriving 
positionspositions



1. Define the distance between two nodes P and Q as

2. To reach destination Q, choose neighbor to reduce distk(*,Q)

3. If no neighbor improves, enter Fallback mode: route towards the 

beacon which is closer to the destination

4. If Fallback fails, and you reach the beacon, do a scoped flood

BeaconBeacon--Vector: Vector: forwardingforwarding

∑
∈

−=
),(

)()(),(dist
qkCi

iiik qBpBqp ω



Simple exampleSimple example
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Evaluation Evaluation -- SimulationSimulation

• Packet level simulator in C++

• Simple radio model
– Circular radius, “boolean connectivity”

– No loss, no contention

• Larger scale, isolate algorithmic issues



Evaluation Evaluation -- ImplementationImplementation

• Real implementation and testing in TinyOS
on mica2dot Berkeley motes

• 4KB of RAM!
– Judicious use of memory for neighbor tables, 

network buffers, etc

• Low power radios
– Changing and imperfect connectivity
– Asymmetric links
– Low correlation with distance

• Two testbeds
– Intel Research Berkeley, 23 motes
– Soda Hall, UCB, 42 motes



Simulation ResultsSimulation Results



Effect of the number of beaconsEffect of the number of beacons

Can achieve performance comparable to that using true positions

BVR, 3200 nodes



Scaling the number of nodesScaling the number of nodes
Number of beacons needed to sustain 95% performanceNumber of beacons needed to sustain 95% performance

Beaconing overhead grows slowly with network size (less 
than 2% of nodes for larger networks)



Effect of DensityEffect of Density

Great benefit for deriving coordinates from connectivity, 
rather than positions



Scope of floodsScope of floods



Other results from simulationOther results from simulation

• Average stretch was consistently low
– Less than 1.1 in all tests

• Performance with obstacles
– Modeled as walls in the network ‘arena’

– Robust to obstacles, differently from 
geographic forwarding



Simulation ResultsSimulation Results

• Performance similar to that of Geographic 
Routing (small fraction of floods)

• Small number of beacons needed (<2% of nodes 
for over 95% of success rate w/o flooding)

• Scope of floods is costly

• Resilient to low density and obstacles

• Low stretch



Implementation ResultsImplementation Results



Routing performanceRouting performance

• Soda Testbed, 3100+ random pairs

•88.4% success w/o flood
•4.57% flood (avg. dist 2.6)
•0.5% stuck (no good neighbor to forward)
•6.5% drops (contention and radio drops)

•88.4% success w/o flood
•4.57% flood (avg. dist 2.6)
•0.5% stuck (no good neighbor to forward)
•6.5% drops (contention and radio drops)



Coordinate stabilityCoordinate stability

• Coordinates were found to be very 
stable
– E.g., almost 80% of the nodes had 2 or 

fewer changes, and over 90% of the 
changes were smaller than 3 hops



Implementation ResultsImplementation Results

• Success rates and flood scopes agree with 
simulation

• Sustained high throughput (in comparison 
to the network capacity)

• Coordinates were found to be stable
– Few changes observed, small changes



Conclusions and Future WorkConclusions and Future Work

• BVR is simple, robust to node failures, scalable, 
and presents efficient routes

• Using connectivity for deriving routes is good 
for low density/obstacles 

• The implementation results indicate that it can 
work in real settings

• We still need to 
– Better study how performance is linked to radio 

stability, and to high churn rates
– Implement applications on top of BVR


