Routing in Sensor Networks



Routing in Sensor Networks

* Large scale sensor networks will be deployed,
and require richer inter-node communication
- In-network storage (DCS, GHT, DIM, DIFS)
- In-network processing
- "Fireworks routing”

* Need point-to-point routing to scale
- Many nodes

- Many flows

- Different densities
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Design Goals

Simple - minimum required state, assumptions

Scalable - low control overhead, small
routing tables

Robust - node failure, wireless vagaries
Efficient - low routing stretch



GPSR: Greedy Perimeter Stateless Routing
for Wireless Networks

Brad Karp, H.T.Kung
Harvard University



GPSR: Motivation

» Ad-hoc routing algorithms (DSR, AODV)
- Suffer from out of date state
- Hard to scale

+ Use geographic information for routing
- Assume every node knows position (x.,y)

- Keep a lot less state in the network

- Require fewer update messages



GPSR Algorithm : Greedy Forwarding

» Each node knows the geographic location of its
neighbors and destination

» Select the neighbor that is geographically
closest to the destination as the next hop



GPSR Algorithm : Greedy Forwarding
(Cont.)

» Each node only needs to keep state for its
neighbors

* Beaconing mechanism

- Provides all nodes with neighbors’ positions.
- Beacon contains broadcast MAC and position.
- To minimize costs: piggybacking



GPSR Algorithm : Greedy Forwarding
(Cont.)

* Greedy forwarding does not always workl




Getting Around Void
* The right hand rule

- When arriving at node x from node y, the next edge
traversed is the next one sequentially
counterclockwise about x from edge (x.,y)

- Traverse the exterior region in counter-clockwise
edge order




Planarized Graphs

* A graph in which no two edges cross is
known as p/anar.

- Relative Neighborhood Graph (RNG)

- Gabriel Graph (6G6G)



Relative Neighborhood Graph

An edge (u,v) exists between vertices u and v 1f the
distance between them, d(u,v), 1s less than or equal to
the distance between every other vertex w, and whichever
of u and v 1s farther from . In equational form:

Vw £ v d(u,v) < max|d(u,w),d(v,w)

N



Gabriel Graph

An edge (u,v) exists between vertices » and v 1f no
other vertex w 1s present within the circle whose diam-

eter 1s 77v. In equational form:

Vw £ u, v d’ (u,v) < [n’z{ﬂ,w] " dz(r,wj]

/O
L)



Final Algorithm

+ Combine greedy forwarding + perimeter routing
- Use greedy forwarding whenever possible

- Resort to perimeter routing when greedy forwarding
fails and record current location Lc

- Resume greedy forwarding when we are closer to
destination than Lc




Protocol Implementation

» Support for MAC-layer feedback

» Interface queue traversal

* Promiscuous use of the network interface
* Planarization of the graph



Simulation and Evaluation

- 50, 112, and 200 nodes with 802.11
Wavel AN radios.

* Maximum velocity of 20 m/s

+ 30 CBR traffic flows, originated by 22
sending nodes

» Each CBR flows at 2Kbps, and uses 64-
byte packets




Simulation and Evaluation

Packet Delivery Success Rate
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Simulation and Evaluation

* Routing Protocol Overhead
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Simulation and Evaluation

* Path Length
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Simulation and Evaluation

- Effect of Network Diameter
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Simulation and Evaluation

- State per Router for 200-node

- GPSR node stores state for 26 nodes on
average in pause time-0

- DSR nodes store state for 266 nodes on
average in pause time-0



Pros and Cons

* Pros:
- Low routing state and control traffic = scalable
- Handles mobility

- Cons:
- GPS location system might not be available
everywhere.

- Geographic distance does not correlate well with
network proximity.

- Overhead in location registration and lookup
- Planarized graph is hard to guarantee under mobility



Beacon Vector Routing

Scalable Point-to-point Routing in
Wireless Sensor Networks

R. Fonseca, S. Rathasamy, D.
Culler, S. Shenker, I. Stoica

UC Berkeley



Beacon Vector Routing

» Solution: fake geography
- Create a routing gradient from connectivity

information rather than geography

* Nodes assigned positions based based on
connectivity

+ Greedy forwarding on this space



Beacon-Vector: Algorithm

- 3 pleces
- Deriving positions
- Forwarding rules
- Lookup: mapping node IDs - positions



Beacon-Vector: deriving
positions

r beacon nodes (B,,B;,...,B,.) flood the network; a node g's
position, P(q), is its distance in hops to each beacon

Pq) = ( Biq), BAq).....B(q))

Node p advertises its coordinates using the k closest beacons
(we call this set of beacons C(k,p))

Nodes know their own and neighbors’ positions

Nodes also know how to get to each beacon



Beacon-Vector: forwarding

Define the distance between two nodes P and Q as

dist (p,q) = > @|B(p)-B(q)

i0C (k,q)

To reach destination Q, choose neighbor to reduce dist, (*,Q)

If no neighbor improves, enter Fallback mode: route towards the

beacon which is closer to the destination

If Fallback fails, and you reach the beacon, do a scoped flood



Simple example




Simple example

Route from 3,2,1t01,2,3




Evaluation - Simulation

- Packet level simulator in C++

» Simple radio model
- Circular radius, "boolean connectivity”
- No loss, no contention

* Larger scale, isolate algorithmic issues



Evaluation - Implementation

* Real implementation and testing in TinyOS
on mica2dot Berkeley motes

- 4KB of RAM!

- Judicious use of memory for neighbor tables,
network buffers, etfc

* Low power radios

- Changing and imperfect connectivity
- Asymmetric links

- Low correlation with distance

+ Two testbeds

- Intel Research Berkeley, 23 motes
- Soda Hall, UCB, 42 motes



Simulation Results



Effect of the number of beacons
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Scaling the number of nodes

Number of beacons needed to sustain 95% performance
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Effect of Densit
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Average scope of Flood
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Other results from simulation

+ Average stretch was consistently low
- Less than 1.1 in all tests

- Performance with obstacles

- Modeled as walls in the network 'arena’

- Robust to obstacles, differently from
geographic forwarding



Simulation Results

* Performance similar to that of Geographic
Routing (small fraction of floods)

»+ Small number of beacons needed (<2% of nodes
for over 95% of success rate w/o flooding)

+ Scope of floods is costly
* Resilient to low density and obstacles

- Low stretch



Implementation Results



Routing performance
» Soda Testbed, 3100+ random pairs
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Implementation Results

» Success rates and flood scopes agree with
simulation

» Sustained high throughput (in comparison
to the network capacity)

» Coordinates were found to be stable
- Few changes observed, small changes



Conclusions and Future Work

+ BVR is simple, robust to node failures, scalable,
and presents efficient routes

» Using connectivity for deriving routes is good
for low density/obstacles

* The implementation results indicate that it can
work in real settings

- We still need to

- Better study how performance is linked to radio
stability, and to high churn rates

- Implement applications on top of BVR



