
Practical Data-Centric Storage

Cheng Tien Ee
UC Berkeley

Sylvia Ratnasamy
Intel Research, Berkeley

Scott Shenker
ICSI & UC Berkeley

Abstract
Most data retrieval mechanisms in wireless sensor net-
works adopt a data-centric approach, in which data is
identified directly by name rather than through the loca-
tion of the node on which it is stored. Initial data-centric
methods, such as directed diffusion and TinyDB/TAG,
focused on the conveyance of data. One of the advan-
tages of these algorithms is that they do not require point-
to-point routing, which has proved to be difficult and
costly to implement in wireless sensor networks, and
instead require only the simpler and more robust tree-
construction primitives.

Some recent data retrieval proposals have extended the
data-centric paradigm to storage. Data-centric storage
uses in-network placement of data to increase the effi-
ciency of data retrieval in certain circumstances. Unfor-
tunately, all such proposals have been based on point-
to-point routing, and therefore have faced a significant
deployment barrier.

In this paper we hope to make data-centric storage
more practical by removing the need for point-to-point
routing. To that end, we propose pathDCS, an approach
to data-centric storage that requires only standard tree
construction algorithms, a primitive already available in
many real-world deployments. We describe the design
and implementation of pathDCS and evaluate its perfor-
mance through both high-level and packet-level simula-
tions, as well as through experiments on a sensor testbed.

1 Introduction
Deployments of wireless sensor networks (WSNs) in re-
cent years have grown steadily in their functionality and
scale [1, 3, 13, 18, 25, 31, 34], but they still operate un-
der extreme energy constraints. Hence, the ability to ef-
ficiently extract relevant data from within the WSN re-
mains paramount. In their seminal paper [6], Estrin et
al. argue that efficient data-retrieval in WSNs requires a
paradigmatic shift from the Internet’s node-centric style,

in which the basic communication abstraction is point-
to-point (or multipoint) delivery, to a data-centric ap-
proach in which query and communication primitives re-
fer to the names of sensed data rather than the identity
(e.g., network address) of the sensing node. This ap-
proach has been widely adopted in the Internet today in
the form of Distributed Hash Tables, which have been ex-
tensively researched on and multiple such systems have
been deployed. However, there has yet been any deploy-
ment in sensornets, though there are multiple scenarios
in which they will be useful. For instance, we can imag-
ine a sensor network deployed in a safari, monitoring the
location of the various animals. Rather than querying
each node to determine if it has seen an elephant, we can
instead query a single node that is responsible for all ele-
phant sightings.

The first generation of data-centric methods addressed
the conveyance of data through the network. Directed
diffusion [14], the first such proposal, determined data
routes (and rates) based on reinforcement feedback from
upstream nodes, resulting in tree-like data paths from
the various sensing nodes to the base station (by which
we mean the source of queries). A later method,
TinyDB/TAG [23, 24], explicitly constructs a delivery
tree and then performs various forms of data manipula-
tion as the data is conveyed to the base station.

A later generation of data-centric methods has fo-
cused on the storage, rather than the conveyance, of
data. These solutions use intelligent in-network storage
to make data retrieval more efficient. Data-centric stor-
age (DCS) has been used to support a variety of sophis-
ticated query primitives such as multidimensional range
queries [11, 22], multi-resolution queries [10], and ap-
proximate queries [12].

These two classes of methods, data-centric con-
veyance and data-centric storage, have very different per-
formance characteristics in terms of the energy expended
to get the desired data. As discussed in [30] for the sim-
plest cases of data-centric conveyance and storage, their



relative performance depends on the nature of the data
generation, the query rate, the network size, and many
other factors.

More to the point of this paper, these two classes
of methods require very different communication prim-
itives from the network. The various data-centric con-
veyance methods rely (either implicitly or explicitly) on
tree-construction techniques. Note that even the simplest
method of data conveyance, whereby all data are proac-
tively sent to the base station immediately upon gen-
eration, also relies on a spanning delivery tree. Tree-
based routing is both algorithmically simple and prac-
tically robust, leading to its adoption in a number of
real-world deployments. For example, simple proac-
tive data delivery was used in the deployments on Great
Duck Island [25,31] and Intel’s fabrication unit [3], while
TinyDB is used in the deployments at the UCB botanical
gardens [18].

In contrast, all known data-centric storage methods
rely on a point-to-point routing primitive: they deter-
ministically map the name (say x) of a data item to the
routable address (say i) associated with a particular node.
Node i is then responsible for storing all data named x
and all queries for x are routed directly to node i, thereby
requiring point-to-point routing.

However, as we review in the following section,
achieving scalable and practical point-to-point routing
is a difficult challenge. While a number of recent re-
search efforts [8,11,17,20,27,28] have made significant
progress towards this end, point-to-point routing still re-
quires significantly more overhead and complexity than
tree construction as we will explain in the following sec-
tion, and has yet to be used in real-life deployments.
It thus seems unwise to couple data-centric storage to
such a burdensome underlying primitive, particularly one
that is not widely deployed. If data-centric storage is to
become more widely used, it should rely only on cur-
rently available, and easily implementable, communica-
tion primitives.

Our goal is not merely to find a better algorithm for
data-centric storage. More fundamentally, we hope to
make data-centric storage a basic primitive available to
WSN applications, and we recognize that this can only
happen if data-centric storage is implemented with min-
imal assumptions about the underlying infrastructure.

To that end, this paper proposes a data-centric storage
method called pathDCS that uses only tree-based com-
munication primitives. The design relies on associating
data names with paths, not nodes, and these paths are
derived from a collection of trees. We investigate some
basic performance issues, such as load balance, through
high level simulation but for a more real-world evalua-
tion we implemented pathDCS in TinyOS and report
on its performance in packet-level TOSSIM [21] simu-

lations as well as in experiments on a mote testbed. To
the best of our knowledge, this is the first evaluation of
a working prototype of data-centric storage. Our results
show that pathDCS achieves high query success rates
(on our 100-node testbed, we see roughly a 97% success
rate) and is robust to node and network dynamics.

Finally, we note that in this paper we only consider
the basic exact-match storage primitives as explored by
schemes such as GHT [29] and GEM [27]. We leave for
future work its possible extension to supporting the more
complex query primitives from the literature [9, 10, 12,
22].

2 Background
The value of pathDCS relies on four basic points:

1. Data-centric storage is a valuable paradigm in
WSNs.

2. Current data-centric storage techniques rely on
point-to-point routing.

3. Point-to-point routing is difficult, and imposes sig-
nificant overhead on WSNs.

4. pathDCS provides a scalable and robust imple-
mentation of data-centric storage that does not re-
quire point-to-point routing.

The bulk of this paper is devoted to demonstrating the
fourth point. In this section, we briefly review the litera-
ture supporting the first three.

Point # 1 Data-centric storage (DCS) was first explic-
itly proposed in [30]. Analysis of a simple model identi-
fied scenarios in which DCS outperforms the other data
retrieval approaches, namely external storage (in which
all sensed data is proactively sent to the base station)
and data-centric routing (in which queries are flooded
and only relevant data are transmitted to the base sta-
tion). This same analysis also identified scenarios where
the other two methods outperformed DCS. Thus, DCS
and other techniques should be seen as complementary,
not competitive; our assumption is that DCS is a valu-
able method of data retrieval in some and not all circum-
stances.

Reference [30] presented only the simplest form of
data-centric storage: an exact-match query-by-name
service where the named data can be directly re-
trieved. A number of subsequent proposals extend the
idea of data-centric storage to support more complex
queries such as multi-dimensional range queries [11,22],
multi-resolution indexing [10] and spatially distributed
quadtree-like indices [12].



Point # 2 Data-centric storage requires a hash-like in-
terface where data (or data structures) can be stored
and retrieved by name. In all the above proposals, this
is achieved by deterministically mapping (typically by
hashing) a data name to a geographic location within the
network. The node geographically closest to the hashed
location is deemed responsible for storing information
associated with the hashed name; geographic point-to-
point routing is then used to reach this storage node.

While elegant in structure, this approach requires that
nodes know the network’s external geographic boundary
so that names are mapped to geographic locations within
the network. If they donn’t, most data will end up being
stored by edge nodes after an extensive perimeter walk,
resulting in uneven load and inefficient operation. The
various proposals acknowledge, but do not address, this
challenge.

Point # 3 The original geographic routing algorithms
such as GPSR (see [2, 16, 19]) were designed for unit-
disc connectivity graphs under which a node hears trans-
missions from another node if and only if they are
within a fixed radio range. (This assumption is cru-
cial for the perimeter walk phase, but is not needed for
the greedy phase of geographic routing.) Measurements
have shown that this assumption is grossly violated by
real radios [8, 33, 35] and that geographic routing breaks
down in such cases [17].

In recent work, Kim et al. [17] and Leong et al. [20]
proposed extensions to GPSR that removes the need for
the unit-disc assumption. CLDP [17] represents a fun-
damental breakthrough in that it guarantees correct op-
eration over topologies with even arbitrary connectiv-
ity. GDSTR [20] on the other hand routes on span-
ning trees when greedy forwarding is unable to make
progress. In both cases additional complexity and over-
head is required.

An even more basic assumption underlying geo-
graphic routing is that each node knows its geographic
coordinates. While some sensor nodes are equipped with
GPS, the widely-used Berkeley mote is not: although
other localization techniques do exist, none of them have
been evaluated for their potential to serve as routing co-
ordinates. Motivated by this challenge, GEM [27] and
NoGeo [28] explore the construction of virtual coordi-
nate systems; these are synthetic coordinates to which
geographic routing can be applied. Like CLDP, GEM
and NoGeo represent significant conceptual advances but
come at the cost of increased complexity. NoGeo re-
quires O(N) per-node state during initialization while
GEM can incur significant overhead under node and net-
work dynamics.

Finally, there are a number of proposals for point-to-
point routing in the literature on ad-hoc wireless net-
works. Many of these solutions face scalability problems

when applied to wireless sensor networks and are thus
unlikely to serve as a substrate for DCS. We refer the
reader to [8] for a more detailed discussion of the space
of point-to-point routing algorithms and their applicabil-
ity to WSNs.

As the above discussion reveals, there has been signif-
icant progress on point-to-point routing for WSNs and
both BVR and CLDP have resulted in working imple-
mentations for the mote platform. At the same time, the
various solutions remain fairly complex (at least rela-
tive to tree construction) and face further challenges in
supporting in-network storage. For these reasons, we
deemed it worthwhile to explore an alternate approach
that releases DCS from the challenges and complexities
of point-to-point routing.

3 Design
We begin this section with the description of the core
pathDCS algorithm, followed by those of supporting
ones.

3.1 Core Algorithm

For pathDCS to be effective, it must be consistent: that
is, all queries and stores for the same object (no matter
from where they are issued) must reach the same destina-
tion. The traditional way to ensure consistency is to give
all nodes a shared frame of reference that allows pack-
ets to describe their destination and enables forwarding
nodes to route packets to that destination. We use a few
shared points of reference called landmarks (places with
well-known names that all nodes can reach), and name
locations by their path from one of these shared points
of reference [32]. For example, when giving driving di-
rections (in real life) we often use a well-known land-
mark and then provide path-based instructions: “Go to
the gas station, and then take your first right, and then af-
ter two blocks take a left. . . .” The driver need only know
(a) how to find the landmarks and (b) how to follow a
set of procedural directions. This is the approach used
in pathDCS. We map each name to a path, not a node,
and that path is defined by an initial landmark and a set
of procedural directions that are defined in terms of other
landmarks. To query or store that name, a packet goes to
the designated landmark and then follows a set of pro-
cedural directions; the store or query is then executed at
the node on which the path ends. Notice that the end-
point of the path is independent of where the query or
store is issued from; since the path starts off by going to
a particular landmark, its origin doesn’t matter.

In pathDCS the landmarks are a set of beacon nodes,
which can be elected randomly or manually configured
(see Section 3.2). To make sure that all nodes know how
to reach the beacons, we use standard tree-construction



techniques to build trees rooted at each one of these bea-
cons. The overhead to establish the necessary state is
proportional to the number of beacons; as we will see,
that number is small so that pathDCS imposes little
overhead.

The paths are specified in terms of an initial beacon
and a set of segments, with each segment consisting of
a direction (defined in terms of a beacon) and a length
(defined by how many hops). Thus, each path consists
of a sequence of p beacons bi

1 and lengths li, where i =
1, . . . , p. The packet is first sent to beacon b1. From
there, it is sent l2 hops towards beacon b2 using the tree
rooted at b2. The process then repeats; from wherever
the packet ended up at the previous i − 1 segment, it is
then sent li hops towards the next beacon bi. The path
ends after the pth segment.

To make this more precise, we first define some terms.
There is a linear space of identifiers, say 16-bit addresses,
that is large enough so that there are no clashes in iden-
tifier assignments. Each node in the network is assigned
a logical identifier id. Data is associated with a key k
(assume this is derived from a hash of its name) and,
for node n, the hop distance to beacon b is given by
hops(n, b). Let ni denote the identifier of the node on
which the ith segments starts (also the place where the
previous segment ends). Lastly, there is some hash func-
tion h(k, i) which maps an identifier k and an integer i
into an identifier.

When accessing a data item with identifier k, the set
of beacons used for the path are determined by consis-
tent hashing [15]: beacon bi is the beacon whose identi-
fier is closest to (in the sense of consistent hashing) the
identifier h(k, i). In addition, the first segment length
l1 is always equal to the distance to the first beacon b1,
whereas segment lengths for i > 1 are given by:

li = h(k, i) mod hops(ni, bi) (1)

We use Figure 1 as an example to illustrate how
pathDCS routes packets with the same key from dif-
ferent source nodes to the same destination node. For
clarity we show the routing trees rooted at b1, b2 and b3

in Figures 1a, 1b and 1c respectively. We fix the total
number of path segments at 3, and both source nodes s1

and s2 generate packets with the same key k. Both the
current number of remaining hops and the current path
segment i (also called segment counter) are carried in
the packet header and modified as needed. In the figure,
beacons b1, b2 and b3 are chosen because their ids are
closest to h(k, 1), h(k, 2) and h(k, 3) respectively. The
order of beacons towards which packets are forwarded is

1Note that the labeling of the beacons bi is idiosyncratic to a path;
that is, the indices i merely refer to the ordering of beacons in this
particular path. We don’t introduce a notation for an absolute labeling
of the beacons.
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Figure 1: (a), (b) and (c) show the routing trees rooted at
beacons b1, b2 and b3 respectively. (d) Source nodes s1 and s2

both send packets with the same key. These packets first reach
a common first beacon (b1), before taking the same subsequent
path segments to reach destination node d.

therefore b1, b2 and b3, following the order of segments
traversed. Initially, both packets are routed to b1, upon
which it is determined, using Equation 1, that in the sec-
ond segment they should be forwarded towards b2 for,
say, 1 hop. At node t, which is the terminating node of
the second segment, the segment counter in the packet
header is incremented, the number of hops is again com-
puted using Equation 1 (assume the result is two), and the
packets are subsequently forwarded two hops towards
the third and final beacon, to terminate at node d. Node
d is then the destination node for all data associated with
key k.

The number of hops required for each query or store
is proportional to the diameter of the network, which is
the same for all DCS approaches, multiplied by the num-
ber of segments. Thus, the key to keeping the overhead
of pathDCS manageable is keeping the number of seg-
ments, p, small. As we argue below, p = 2 is sufficient
for reasonably-sized networks, so that we expect the per-
query expenditure to be a few multiples bigger than in
other DCS schemes.

The pathDCS algorithm has two parameters: B, the
total number of beacons and p, the number of path seg-
ments. Varying B trades off the control traffic overhead
due to tree construction versus load on the beacons. We
explore this tradeoff in Section 5. With regards to p, in-
creasing the number of segments results in longer paths
but potentially spreads the storage load more evenly. To
see this how large p should be to achieve reasonable load
distribution, consider the following naive back-of-the-
envelope calculation. The total number of paths a mes-
sage can traverse using pathDCS is approximately Bp.
Letting d be the network density and r the radio range,



the expected length of each path is given by

1
2r

√
N

d
(2)

Thus the number of nodes pathDCS routing can poten-
tially use to store data is approximately

Bp

2r

√
N

d
(3)

Equating 3 to total number of nodes N , the number of
beacons required is given by(

2r
√

dN
) 1

p

(4)

As an example, we plug in the following values: r = 8
units, d = 0.07 nodes per unit area,2 N = 20000, and for
p = 2, we obtain B ≈ 24, which is a reasonable num-
ber. We did simulations for p = 2, 3, 4, 5 to verify that
indeed the distribution of load changes very little with
increasing p and then picked p = 2 since it, as expected,
resulted in the shortest paths. Note that knowledge of N
by every node is not required, only p and B need be set at
deployment. Unless the network size changes drastically
we do not expect performance to degrade significantly.

3.2 Supporting Algorithms
While the basic idea of pathDCS is contained in the
core algorithm defined above, actual implementation of
pathDCS requires a set of supporting algorithms to, for
example, select beacons and build trees. There is noth-
ing novel in these algorithms, we describe them for com-
pleteness.

Tree Construction To construct a tree rooted at a par-
ticular beacon, we recursively have nodes pick a parent
that is closest to that beacon amongst all their neighbors.
Our implementation uses the ETX [5], also the MT [33]
metric as an indication of path quality.

Beacon Election The total number of beacons in the
system is a fixed constant B, and is dependent on the
size of the network. We divide the identifier space into B
equal partitions, and have each node compete to become
the beacon for the partition in which they reside. Borrow-
ing the basic concept from SRM [7], each node’s self-
election announcement is delayed by time proportional
to the difference between their ids and the largest iden-
tifier for that partition (i.e. the identifier that describes
the upper boundary of that partition). For instance, if we
assume that B = 4, and node X , Y and Z’s identifiers
fall within the partitions 2, 2 and 4 respectively, only X
and Y compete to be the beacon in partition 2. X and

2resulting in an average of 14 neighbors

Y independently set a timer with delay α(I2 − idX) and
α(I2 − idY ) respectively, where I2 is the largest possi-
ble identifier for that partition, and α is some constant.
This scheme ensures that node Y , with the higher id,
announces itself before X , thereby suppressing X’s an-
nouncement.

It is possible that the election process results in two
or more beacons clustering. An additional rule can be
imposed to reduce the occurrence of this scenario: when
timeout occurs and just before a node announces itself
as a beacon, it checks to see if any beacons lie within k
hops. If so, it suppresses its announcement.

Beacon Handoff and Failure From time to time, the
role of beacons should be handed over to other nodes, ei-
ther due to failures, or to reduce the forwarding load on
the beacons. In the case of the former, one hop neigh-
bors begin a self-election process once the link quality to
that beacon drops below a threshold. Similar to the initial
election process, the delay for the timer set is a function
of the difference between the current node’s identifier,
and of the highest identifier for that partition. Note that in
this case all one-hop neighbors participate in the election.
The winning node then takes over the identifier of the de-
ceased beacon, and assumes that role henceforth. For the
case of deliberate handoff, the beacon randomly picks a
neighbor, and switches identifiers with it. Possible dif-
ferent criteria exist, the meeting of any one can trigger
deliberate handoff. An example of a criterion would be a
minimum amount of remaining energy. In this case, the
time at which handoff is triggered is very much depen-
dent on the rate at which the application generates data
packets. One can also imagine the beacons handing off
in order to spread themselves out if they are clustered to-
gether. The proximity of the current and previous beacon
ensures that drastic route updates in the network are min-
imized. Specifically, the destination nodes for a particu-
lar key before and after the handoff takes place should lie
close to each other, in terms of number of hops. Together
with data replication mentioned below, this increases the
chances of finding the data before the next data refresh
(see below) or before new data is stored at the updated
location.

Responding to Queries In the typical case, where the
querying node is the base station (or any other well-
defined node), we construct a tree rooted at that node.
Answers to queries are sent back along this tree to the
base station. If queries are being issued from multiple
nodes, then each such node includes its closest beacon in
the query. Backward path establishment from that bea-
con is performed by storing pointers to the previous node
at each intermediate hop. Responses to queries are sent
back to the closest beacon (as noted in the query) and that
beacon forwards the response along the path that was es-



tablished from the querying node by the path establish-
ment message.

Data Refreshing Every node where data is stored will
periodically issue refresh probes for those data. These
probes are routed in the same manner as the data packets,
allowing the node to detect if the topology has changed
since the initial storing. If the node initiating the refresh
does not receive the probe in return, it then stores the data
at the new location. If the data item is small, we can send
it directly.

Data Replication Finally, local replication of data is
performed at the storage node. Data packets are dissem-
inated using a localized flood within k-hops of the des-
tination. A query reaching a destination not storing the
required data is similarly flooded locally, with replication
nodes responding to the query.

4 Performance Metrics
Before proceeding to the sections on simulation and im-
plementation details and results, we elaborate on the met-
rics of interest, namely path consistency, storage and for-
warding load balance.

The design of pathDCS raises three performance
questions. The first has to do with the consistency with
which pathDCS maps names to storage locations. In
the absence of node and network dynamics, pathDCS
achieves perfect consistency in that stores and lookups
for a particular data item always terminate at the same
storage node, and hence pathDCS would see a 100%
success rate for lookups. However, node and network dy-
namics can lead to changes in the paths to beacons and
hence to changes in the mapping between a name and
storage node. The extent to which such changes impact
lookups depends on both the frequency and the extent
of changes. If changes in storage nodes are highly local-
ized, then simple local replication of data should trivially
mask such changes. If changes are infrequent, then a pe-
riodic refresh of stored data should suffice to maintain
high success rates. In any case, pathDCS provides only
weak consistency: it does not guarantee that the data re-
trieved is the latest stored.

These path changes are primarily dependent on the be-
havior of the wireless medium and hence we explore this
issue in detail in Section 6. However, such changes are
also dependent on network size because longer paths are
more likely to experience changes. Since we can’t ana-
lyze scaling effects on our testbed, we use an idealized,
but highly pessimistic, model of path dynamics in our
simulator to see how consistency varies with system size.
To quantify consistency, we measure the lookup success
rate, which is the probability that a lookup for a data item
x reaches a storage node currently storing x. To under-
stand the magnitude of lookup variations, we also mea-

sure the maximum separation in hops between any two
nodes storing a particular data item, which we call the
spread. This measures the extent to which local replica-
tion can mask the effect of path dynamics.

The second performance issue has to do with how ef-
fectively pathDCS balances the storage and forward-
ing load across nodes. This is a potential issue because
unlike other DCS schemes that explicitly distribute data
items over the set of all nodes, pathDCS distributes data
over a more limited number of paths. While we do not
expect pathDCS to achieve load distribution compara-
ble to the address-based DCS schemes, we would like to
verify that the load distribution in pathDCS is not un-
reasonable.

5 High-Level Simulation Results
5.1 Overview

The performance of pathDCS derives from the inherent
behavior of its algorithms as well as the impact of the
wireless medium on both the algorithms and our partic-
ular implementation choices. To separate the effects of
each, we evaluate pathDCS through a combination of
high-level simulations (to evaluate the scaling behavior
of the algorithms themselves), low-level simulations that
take into account a lossy medium and packet collision
effects, and implementation (to evaluate pathDCS un-
der realistic wireless conditions). This section presents
our high-level simulation results; our prototype and its
evaluation in TOSSIM [21] and on actual testbeds are
described in Section 6.

Our simulator makes a number of simplifying assump-
tions that abstract away the vagaries of the wireless
medium. Nodes are placed uniformly at random in a
square plane and every node is assigned a fixed circu-
lar radio range. A node can communicate with all and
only those nodes that fall within its radio range. In addi-
tion, the simulator does not model network congestion or
packet loss. While clearly unrealistic, these simplifica-
tions allow simulations that scale to thousands of nodes;
our packet-level simulation and testbed results in the fol-
lowing section capture performance under more realistic
conditions.

Our default simulation scenario uses 5000 nodes
placed in an area of 6.7 × 104 units2 with a radio range
of 8 units, leading to an average node degree of 14.5. We
maintain the same density for all simulations.

5.2 Lookup Success Rates

The path to a beacon can change for two reasons: (1) tree
reconfiguration following node failure(s) and (2) varia-
tions in link quality that trigger a change in a node’s
choice of parent. The first we can accurately model in
simulation, the second we can only roughly approximate.
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Figure 7: CDF of transmission load using pathDCS for in-
creasing network sizes.

rates: for a network with N nodes, every node inserts
10 distinct data items into the network yielding a total of
10 × N distinct data items. Stores are replicated within
the one-hop neighborhood of the destination. We then
perform 20 lookups for each data item. A lookup suc-
ceeds if it arrives at a node storing the requested data
item (either at the original destination, or at one of the
one-hop replicas); otherwise, the lookup fails. To mea-
sure spread, we repeat the same tests as above but now
we turn off one-hop replication and have each node store
(rather than lookup) every data item 20 times. For each
data item, we then consider the set of nodes storing that
item and measure spread as the maximum separation in
hops between any two nodes in the set.

To capture the effect of node failure, after each of
the 20 iterations for a given item, we fail a fixed frac-
tion of nodes uniformly at random and then recompute
the trees for each beacon. Capturing varying link quali-
ties is more problematic because our simulator does not
model congestion and packet loss; instead, we directly
address the effect on parent selection. We conservatively
model changes in parent selection arising from varying
link qualities as follows: rather than pick a single par-
ent for each beacon, a node considers all of its neighbors
that are closer to the destination beacon than itself as po-
tential parents. For every message, a node then chooses
its next hop uniformly at random from this entire set of
potential parents. This represents a highly pessimistic
scenario in which, at every hop, the route to a beacon



can flap between all possible next-hops.3

Recall that fixed parent selection with no failure has a
success rate of 100% and a spread of zero since we turn
off one-hop replication when measuring spread. Fig-
ures 2 and 3 plot the average success rate and spread un-
der increasing network size using random parent selec-
tion or fixed parent selection under various failure rates.
As expected, we see that the success rate drops, and
spread rises with network size but this deterioration is
slow. For example, a 10,000 node network with random
parent selection (which, again, is a pessimistic model)
still sees a success rate of 92%. Moreover, the abso-
lute value of spread is often low and hence could fre-
quently be masked by simple k-hop local replication. We
implement just 1-hop replication but for very large net-
works (>10,000 nodes) with high failure rates (∼30%)
one might need a larger scope of replication.

Section 6 continues this evaluation in real wireless en-
vironments.

5.3 Load Distribution
There are only two knobs to the basic pathDCS algo-
rithm: (1) the total number of beacons and (2) the num-
ber of path segments used. Ideally, we want to pick a
number of beacons and path segments that allow for-
warding and storage load to be well spread out while
maintaining reasonable path stretch. The analysis in Sec-
tion 3 leads us to the choice of 2 segments and hence we
now look at the number of beacons required to achieve
good load distribution.

We first hold N , the network size, fixed at 5000 nodes
and scale B, the number of beacon nodes. As before, ev-
ery node uses pathDCS to insert 10 distinct data items
into the network yielding a total of 50,000 distinct stored
items. We then measure the per-node forwarding and
storage load. Figures 4 and 5 plot the cumulative dis-
tribution function (CDF) of the storage and transmission
load respectively. To determine if any load imbalances
are due to pathDCS, or are inherent in the DCS ap-
proach, we also plot the distributions for an “optimal”
form of DCS in which names are mapped uniformly at
random over the entire set of nodes and stores follow the
shortest path from the inserting node to the destination
storage node.4 In terms of storage, we see that usage of
just 20 beacons results in a fairly even distribution and
that increasing B beyond 20 offers rapidly diminishing
returns. In terms of transmission load, we see that the
pathDCS distribution approaches that of the optimal al-

3Note that we restrict parent changes to those that are localized in
that they do not trigger a re-computation of the tree downstream from
the changing node. The effects of non-localized changes are captured
by the tests for node failure.

4In practice, implementing this form of optimal DCS would require
every node to have global knowledge of all the nodes in the system as
well as shortest path point-to-point routing.

though both are fairly skewed. This is due to the natural
concentration of traffic in the center of the grid and is in
no way specific to pathDCS or even DCS schemes in
general; rather this is an issue for communication in all
ad hoc networks and one that has received some attention
in the literature [26].

At less than 1% of the total number of nodes, B = 20
represents very low control overhead in terms of tree con-
struction. Moreover, we see that the pathDCS distri-
butions are reasonably close to the optimal node-based
DCS. Given the relative simplicity of pathDCS, this
seems like a very worthwhile tradeoff.

We now investigate the variation of performance with
increasing network size. We fix B = 20 and scale N .
Figures 6 and 7 plot the CDF of transmission and storage
load respectively. We see that, as expected, the distribu-
tion deteriorates with increasing N but this deterioration
is very gradual.

Finally, the stretch in all our tests was approximately
2.4 which is in keeping with our use of 2 path segments.
We also verified that stretch increases as we increase the
number of path segments.

In summary, this section explored the basic scaling
behavior of the pathDCS algorithms. We show that
pathDCS is robust in that it achieves high success rates
under highly pessimistic models of node and network dy-
namism. Moreover, pathDCS is scalable in that it re-
quires a small number of beacons to achieve good load
distribution.

6 Implementation Details and Results
We implemented pathDCS in TinyOS, and evaluated
its performance on the 100-node Intel Mirage [4] micaZ
testbed as well as on 500 nodes in TOSSIM’s packet-level
emulator. We begin this section by briefly describing
the pathDCS system architecture, followed by low-level
details of the implementation in TinyOS, and finally end-
ing with evaluation of its performance.

6.1 PathDCS System Architecture
Figure 8 shows the pathDCS system architecture, which
can be divided into control and data planes. The control
plane provides primarily beacon election and tree-based
routing capability, whereas the data plane implements
the core pathDCS forwarding logic (using the control
plane’s tree-based routing tables), storage of name-value
pairs, and one-hop replication. Note that the only com-
ponent specific to pathDCS is the forwarding engine;
the remaining components are common to a number of
other systems such as TinyDB [24] and BVR [8].

6.2 Control Plane
We next elaborate on the implementation of the control
plane. This component primarily constructs trees rooted
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Figure 8: The pathDCS architecture is made up of (1) the
data plane, consisting of the forwarding engine and data stor-
age and replication component, and (2) the control plane, con-
sisting of the tree construction and related components.

at the beacons, disseminating and maintaining informa-
tion used to determine the next hop at every node for
each beacon in the network. We begin by describing the
network-wide naming mechanism.

Node Identifier Each node in the network is assigned
a hardware address 5 that is unique in the sensornet.
This address is subsequently hashed to obtain the corre-
sponding network identifiers. Since the hash function is
known, collisions can be avoided by setting the hardware
addresses appropriately.

Beacon Election Periodically, each node broadcasts
distance vector packets containing the identifiers and dis-
tances to each beacon in the network. If the relevant el-
ement in the vector indicates a beacon in the same par-
tition with a smaller identifier, a node elects itself by re-
placing the identifier with its own before broadcasting.
In this manner, the entire network eventually learns the
beacons and their corresponding identifiers.

Link Quality Estimation Nodes periodically broad-
cast estimates of their neighbors’ reception qualities
within their immediate neighborhood, allowing these
neighbors to compute the link quality in both directions,
thus accounting for asymmetric links. Messages are jit-
tered slightly at each node to minimize interference. The
link estimator module maintains, for each neighbor, a pe-
riodically updated estimate of link quality, which is the
expected number of transmissions to that neighbor. This
is computed as an exponentially weighted moving aver-
age:

Lav,i = (1− α)Lav,i−1 + αLi

5The LOCAL TOS ADDRESS in TinyOS.

where Lav,i and Li are the average and sample respec-
tively for iteration i and α is a constant. Only route up-
date packets are used as samples for the computation.

Tree Construction Beacons periodically generate
routing updates which are propagated through the net-
work in a distance vector manner. A node uses the
beacon election rules described in Section 3 to decide
whether it should elect itself as a beacon. Nodes use
these route updates to compute their minimum “dis-
tance” to each beacon. To reduce transmission loss, we
use the MT [5], or ETX [33] metric, where the number
of expected transmissions to each beacon is minimized.

Control packets and fields Control messages broad-
casted by a node include information such as its current
hop distance and estimate of the expected number of
transmissions to each beacon, the latest sequence num-
bers associated with the corresponding beacon, and the
node’s estimate of its neighbors’ reception qualities. To
remove the occurrence of one-hop count-to-infinity prob-
lems, control packets also include the next hops for each
beacon, so that a node does not attempt to forward pack-
ets to its neighbor which will subsequently forward the
packet back.

6.3 Data Plane
In this paper, the data plane operations of interest include
the forwarding of pathDCS data packets and their repli-
cation. The description of these operations is followed
by an brief coverage of the packet header overhead.

Forwarding Packet headers include fields that contain
the key and the current path segment the packet is on.
Based on routing information provided by the control
plane, these are used to determine the next beacon to
route towards and the number of hops to take, as elabo-
rated in Section 3.1. The remaining hops before reaching
the end of a segment is also carried in the header.

Replication Replication of data to improve availabil-
ity is achieved by scoped flooding once the data packet
reaches its destination node. The field previously used to
indicate the number of remaining hops is used to spec-
ify the scope of the flood, and is decremented with each
subsequent broadcast. To prevent repeated broadcasting
of the same packet in the local neighborhood of a node,
a cache of the most recently sent ones is kept.

Data packets and fields The overhead incurred in
each data packet is small. In our implementation,
pathDCS uses 6 bits to represent the key associated with
each data type, thus allowing for a total of 64 keys.6 In
general we expect the number of unique data types to be
small and independent of the size of the network. Also,

6To accomodate more keys we can simply use more bits.



in the case where the number of path segments is 2, we
require an additional bit to keep track of the current seg-
ment the packet is on. Finally, the remaining hops to the
terminating node of the current segment is also stored in
the header, and is on the order of O(logD), where D is
the maximum diameter of the network. In our implemen-
tation, the total number of control bits used to route data
is just (data+ segment+hops) = 6+2+8 = 16 bits.

6.4 Methodology

The primary concern when implementing pathDCS is
the impact of its dependence on path stability. Whilst
the construction of routing trees had been studied exten-
sively, the main focus in previous studies was the suc-
cessful forwarding of packets to the destination. Of little
or no significance were the paths along which data pack-
ets traverse as long as they can get there. In pathDCS,
the destination node is effectively defined as a function
of the network’s current routing state. As a result, if
the network state changes frequently, we may store and
query data items at destinations that shift rapidly with
time. Such a situation will result in poor lookup success
rate, rendering pathDCS less useful. This is therefore
the most important point to address in our implementa-
tion.

Thus, as in Section 5, we are primarily interested in
the probability of lookup success. A lookup can fail ei-
ther because the message was dropped along the way, or
because the destination node it arrived at did not have the
requested data. Two metrics are used to distinguish be-
tween these two causes. The first is the route completion
probability, measured as the probability that a packet
successfully arrives at a destination node (as opposed to
being dropped along the path). Note that the route com-
pletion probability has little to do with the pathDCS
algorithms per se. Instead, such failures are dependent
primarily on the characteristics of the wireless medium
and our implementation choices for the link estimation,
tree construction and retransmission modules. In general
the quality of links in the network fluctuates over time,
resulting in route updates as the network attempts to pick
routes that result in lower loss.

The second performance metric is our usual lookup
success rate as defined in Section 4. In computing this
rate, we consider only those lookups that complete (that
is, they reached some destination node), and we say that a
lookup is successful if it locates the requested data item.
To measure the effect of variable node and network con-
ditions, we obtained the lookup success rate for different
values of data refresh intervals. This is achieved as fol-
lows: in each experiment, we have all nodes periodically
route some number of messages for each distinct data
item. For the routes that do complete, we then observe
where those messages terminate. Next, we divide time

into windows, where the first data packet in that window
is treated as a store or refresh packet, and the node at
which it terminates is the storage node for that window.
Subsequent packets then act as queries and lookup suc-
cess is measured as the probability that a lookup arrives
within the one-hop neighborhood7 of the storage node for
that window. We do this for each distinct data item, com-
pute the average lookup success and repeat for different
window sizes. We note that varying this window size is
equivalent to altering the data refresh interval, and we
can thus use a single experiment to observe the effect of
increasing refresh intervals rather than running repeated
experiments that may suffer from different time-of-day
effects.

Data refreshing plays a crucial role in improving
lookup success, especially in large networks (of size in
the hundreds to thousands), where the path may vary
widely over time. When we consider short time-scales,
say within a period of a minute or two, the set of des-
tination nodes for a particular key is probably small in
number, and not likely to be spread out over a large re-
gion. However, when looking at all possible destinations
over a period of a day, the set of nodes will be the union
of all sets at shorter time-scales: it is more likely to be
large, as well as covering a wider area. Thus, a refresh
rate that is high translates into observation at small time-
scales, which means that destinations are close together,
and therefore lookup success increases. We validate this
in the following sections, via simulation and experiments
on the testbed.

6.5 TOSSIM Simulations
In this section we describe packet-level simulations that
model a lossy medium. A total of 500 nodes were simu-
lated using actual TinyOS code. We begin by elaborating
on the parameters used in the simulations as well as in the
testbed’s motes.

Table 1: Control plane parameters

Parameter Description Value
Number of beacons 5

Distance vector (DV) broadcast interval 10 seconds
Maximum DV broadcast jitter 1 second

Frequency of route updates 1 per 10 DV pkts
Maximum entries in neighbor table 16

Moving average for link estimation, α 0.05

Control plane parameters The appropriate choice of
parameters is dependent on the size of the network, as
well as the desired properties of the applications that
run on it. For instance, as we shall demonstrate in the

7This reflects the local one-hop replication.



subsequent sections, stable paths are a prerequisite for
high lookup success in pathDCS. Stability can be im-
proved by damping route updates at the expense of in-
creased network reaction time to topology changes. Our
choice of system parameters is shown in Table 1, and has
been experimentally verified to yield satisfactory perfor-
mance.

Table 2: Data plane parameters
Parameter Description Value

Number of path sections 2
Scope of flooding for local replication 1

Maximum retransmissions to the next hop 5
Maximum cached replication entries 4

Data plane parameters The heart of pathDCS lies
in the data plane. Parameters associated with pathDCS
can be tuned here, and are largely independent of the con-
trol plane. As in Section 5, we use only 2 segments in
our implementation. This leads to lower stretch, an im-
portant consideration in real networks since longer routes
result in an increase in loss probability. A shorter route is
important also because it results in fewer transmissions,
which consume energy in resource constrained sensor
motes. Table 2 shows the parameters used in the data
plane.

In each experiment, every node in the network gener-
ates different data items, thus data destined for a particu-
lar destination node originate from multiple sources. On
average, data packets are injected into the network at the
rate of two per second to minimize congestion. A total
of 20 experiments are run, with each experiment query-
ing or storing a particular, distinct key, and each node
sending 72 packets. The network is allowed to run for
a simulation hour for routing to converge before queries
and storage began.

With the above parameters, we measure the route com-
pletion probability, the destination node spread distribu-
tion, and the lookup success rate under two test scenar-
ios:

Normal We measure performance using the above de-
fault parameter selection,

Fast Route Adaptation We look at the impact of our
choice of parameter selection on path stability and con-
sequently on pathDCS performance. Specifically, the
parameters for this test are the same as those for “Nor-
mal” except that the DV broadcast interval in Table 2 is
reduced to 5 seconds, and the corresponding maximum
jitter to 0.5 seconds. In general faster route adaptation
can be desirable for reduced recovery time from failures.

Since paths are likely to change over time, we need
to investigate the destination spread distribution. Even

node with the most packets (mode)
node 1 hop away from mode node

Key
node 2 hops away from mode node
node 3 hops away from mode node

other node

Figure 9: The measure of destination spread distribution is
based on the hop distance from the node that received the most
packets (i.e. the mode). The fraction of packets ending up x
hops away from the mode node is the sum of fractions at nodes
x hops away.
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Figure 10: 500-node simulation: distribution of destinations
for the normal and fast route adaptation scenarios.

though we expect the spread of destination nodes to be
significant, the situation is not hopeless if we find that
most of the packets still fall within a small region. Us-
ing Figure 9 as an illustration, we proceed as follows:
we first determine the node that received the most num-
ber of packets for a particular key, we call this the mode
node. Then, for each hop from the mode node, we com-
pute the total fraction of packets that end on nodes at that
distance. If the destination nodes are evenly spread out
over a wide area, then the distribution will show a rela-
tively flat graph over multiple hops. On the other hand,
if the nodes are highly clustered together, we should see
a graph that peaks at the 0th hop, with small fractions at
the other hops.

Observations In both scenarios, the mean network di-
ameter is 18, the average probability of route comple-
tion is about 86%,8 and the mean number of neighbors is
around 10.4. Figure 10 shows the distribution of destina-
tion nodes, from which we can observe the following:

1. The majority of packets (∼80%) land within one
hop of the mode node. This implies that, with-
out data refreshing and with one hop replication,

8Since the network diameter is large, we expect the end-to-end loss
probability to become significant, even with the use of link-level re-
transmissions. Thus, this does not reflect on pathDCS, only the un-
derlying packet loss behavior.
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Figure 11: 500-node simulation: variation of lookup success
with data refresh interval.

the mean probability of lookup success will also be
about 80%. As we shall see subsequently, data re-
freshing increases this probability. Another alterna-
tive will be to increase the scope of local replication,
which will however be at the expense of more trans-
missions and storage space.

2. Having more dynamic routing does not affect the
resulting destination spread. This is due to the fact
that, over time, all possible combinations of routing
state, and correspondingly all possible destinations,
have been encountered. Increasing the rate at which
changes occur does not affect this destination set.

We next consider the effect of data refreshing. As de-
scribed in Section 6.4, lookup success now refers to av-
erage fraction of queries that end within the replication
region for all window periods. These periods, or refresh
intervals, are varied from 5 to 250 seconds, and the re-
sults are shown in Figure 11. We can observe that

1. Refreshing data more frequently can increase the
probability of a successful query to >95%.

2. Faster route adaptation results in lower lookup suc-
cess for a particular refresh interval.

3. Variation in lookup success is higher for routing that
updates more frequently.

4. As the refresh interval increases, lookup success
probability approaches that of packet fraction re-
ceived within one hop of the mode node, which
agrees with Figure 10.

Overhead Scaling Finally, we consider the overhead
incurred by pathDCS, focusing on the total number of
each type of packet transmitted. We identify five types of
packets: (1) distance vector (DV), (2) link estimation, (3)
data packet transmission for replication, (4) data packet
transmission for forwarding, and (5) data packet trans-
mission for refreshing. Figure 12 shows the breakdown
for various application data generation rates. We assume
that the refresh per data type occurs once every 100 sec-
onds, and that there are 100 data types in the network.
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Figure 12: 500-node simulation: breakdown of transmis-
sions for each packet type.

The rest of the network parameters are as given in Ta-
bles 1 and 2. From the figure, we see that the fraction of
overhead packets reduces with an increase in application
rate, which is what we expect in general. Furthermore,
the cost of refreshing data is low, compared to the initial
data replication and forwarding.

To summarize, the 500-node packet-level simulation
shows that local replication by itself is sufficient to re-
sult in high (80%) lookup success. Refreshing data pe-
riodically counters the effects of routing changes, and is
able to increase lookup success to (>95%). However, the
tradeoff is that more packets are transmitted, increasing
the overhead incurred.

We now proceed to evaluate the performance of
pathDCS on the Intel Mirage testbed.

6.6 Testbed Details and Results
The Mirage testbed is located indoors, covering an en-
tire floor of the building. The 100 micaZ motes are
spread out over an area of approximately 160’ by 40’,
at the locations indicated in Figure 13. Each mote in the
testbed has a serial interface that is connected to an in-
ternal ethernetwork, which in turn is accessible via the
Mirage server. Binaries are uploaded and data down-
loaded via this ethernetwork, with the server providing
timestamping service for downloaded data packets. We
reduce the transmission power of the motes to reduce the
effective density of the network. For all our experimen-
tal results in this section, the diameter of the network is
6. Packet generation, test scenarios and network param-
eters are the same as that of the packet-level simulations
in Section 6.5.

Results For the testbed, the mean number of per node
neighbors is about 11.8, with the probability of route
completion being 97.9% and 96.1% for the normal and
fast route adaptation tests respectively. Figure 14 shows
the spread of the destination nodes for both test scenar-
ios. We see that in both cases the majority of packets
terminate at a particular destination node, 87% for nor-
mal and 93% for fast route adaptation. If we consider
all packets that terminate within one hop of the mode



Figure 13: Location of sensor motes of the Intel Mirage testbed is indicated by the stars.
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Figure 14: Distribution, or spread, of the destination node.
The fraction of packets landing x-hops away from the node with
the highest fraction is shown.
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Figure 15: Probability of lookup success for particular data
refresh intervals.

node, this figure rises to about 97% in both cases. Note
that this takes into account all possible route changes and
thus destinations for the duration of an experiment, and
does not include the benefits gained from data refreshing.
Thus, it is clear that for the testbed of size 100, we can
obtain high lookup success even without refreshing.

On the other hand, when we consider data refresh,
a routing system that is more dampened increases the
chances of lookup success. Figure 15 shows the corre-
sponding lookup success probabilities for these two sys-
tems. Four observations can be made from the figure:

1. The lookup success is very high in both cases even

with low refresh rates, which agrees with the obser-
vation in Figure 14 that the set of possible destina-
tion nodes is small.

2. With increased damping, the system, in particular
the paths, are more stable, resulting in less variation
in lookup success.

3. For a given refresh rate, lookup is generally worse
for a more adaptive control plane.

4. pathDCS constructed over a more dynamic rout-
ing control plane has to refresh its stored data more
frequently in order to meet more stringent lookup
success requirements.

In conclusion, the performance of pathDCS ulti-
mately relies on the choice of parameters at the under-
lying control plane. Although the instability of paths
causes the set of destination nodes to increase, we find
that in general they tend to be highly clustered, with the
majority of packets terminating on a small subset. Thus
path fluctuations can be countered via two mechanisms:
an increase in the scope of local replication, or an in-
crease in the frequency of data refreshes. The former
trades off storage space and additional transmissions for
an increase in lookup success, whereas the latter trades
off additional transmissions. From our results we believe
that pathDCS is a feasible and simple way to implement
data-centric storage in WSNs.

7 Summary
This paper describes a new approach to implementing
data-centric storage (DCS). Our goal was not merely to
find a new DCS algorithm, but to develop a more practi-
cal approach to DCS, one that does not rely on point-to-
point routing. While point-to-point routing may one day
be ubiquitously available in WSNs, it is not widely avail-
able now and current implementations are either based
on idealized radio behavior or incur significant overhead



and complexity. In contrast, tree construction primitives
are widely available, and are becoming a rather standard
component in most WSN deployments. Thus, DCS has a
far better chance to become a basic and widely deployed
WSN primitive if it only depends on tree-based routing.

From simulations and actual deployment, we see that
the primary obstacle, namely fluctuating paths, can be
overcome via the usage of local replication and data re-
freshing. Although these two mechanisms are not perfect
in that they incur additional overhead, nonetheless they
perform well enough for pathDCS to be of use in large
WSNs.
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