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Abstract— In this paper, we investigate the minimum
total power (termed as critical total power) required to
ensure asymptotic k-connectivity in heterogeneous wireless
networks where nodes may transmit using different levels
of power. We show that under the assumption that wireless
nodes form a homogeneous Poisson point process with
density λ on a unit square region [0, 1]2 and the Toroidal
model [17], the critical total power required for maintain-
ing k-connectivity is Θ(Γ(c/2+k)

(k−1)! λ1−c/2) with probability
approaching one as λ goes to infinity, where c is the path
loss exponent. Compared with the result that all nodes use
a common critical transmission power for maintaining k-
connectivity [18], [25], we show that the critical total power
can be reduced by an order of (log λ)c/2 by allowing node
to optimally choose different levels of transmission power.
These results are not subject to any specific power/topology
control algorithm, but rather a fundamental property in
wireless networks.

keywords– Stochastic processes/queuing theory, Graph
theory, Combinatorics

I. INTRODUCTION

A wireless ad hoc network is a collection of wire-
less mobile hosts which communicate with each other
without the support of fixed infrastructure or centralized
administration. It has gained tremendous attentions in
recent years because of its wide applications in civil-
ian and military fields, and its capability of building
mobile wireless networks without the need for pre-
existing infrastructures. One important issue in such a
network is how to minimize power consumption while
maintaining network connectivity. Minimizing power not
only saves energy, but also reduces MAC-level collision
and hence increases the network capacity. However, this
has to be performed subject to maintaining network
connectivity. As a matter of fact, in order to enable
robust communications in the presence of mobility and
node failures, it is important that the networks are k-
connected.

The research on reducing power consumption while
maintaining (k-)connectivity has been approached inde-
pendently along two thrusts. In one thrust, researchers
aim to determine critical conditions on network param-
eters (such as the transmission range [19], [15], [17],
[18], [22], [25], the number of neighbors [25], [26],
the minimum total power required [1], [4], [8], [20], or
the node failure probability [23]) to ensure network (k-
)connectivity with high probability. Of particular interest
is how these critical conditions scale as the number of
wireless devices increases. Take the transmission radius
as an example. Consider a wireless network on a unit
disk on which n nodes are uniformly and randomly
placed. Let rn denote as the critical (minimum) common
transmission radius required by all nodes to ensure k-
connectivity in such a network. Penrose showed in [18]
that under the Torus convention assumption,

P (nπr2
n − log n − (k − 1) log log n + log(k − 1)! ≤ τ)

= exp(−e−τ ). (1)

Wan and Yi further extended the results by considering
boundary effects in [25]. Take the minimum total power
of all the nodes required to maintain asymptotic (k-
)connectivity (termed as critical total power) as another
example. Both Blough et al. [1] and Gomez et al. [8]
studied the critical total power for 1-connectivity, based
on results on the asymptotic total weight for weighted
minimal spanning trees [24], [27]. Rengarajan et al. [20]
gave the expectation of the (lower and upper) bounds on
the critical total power for 1-connectivity. Clementi et al.
[4] studied the problem of assigning transmission ranges
for wireless nodes so as to minimize the total power
consumption in the special case of path loss exponent
c = 2 such that any pair of nodes are within h hops.

In the other thrust, researchers aim to devise dis-
tributed algorithms in which each node chooses its own
transmission power in order to minimize the total trans-
mission power of all wireless nodes, while maintaining
(k-)connectivity. This problem is, in general, NP hard
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in the Euclidean plane [5], and many researchers have
developed localized heuristics [21], [12], [14], [13], or
efficient algorithms with bounded approximation ratios
[11], [3], [9], [2].

In this paper, we address the power consumption
issue along the first thrust, and investigate the criti-
cal total power required for maintaining asymptotic k-
connectivity in a random wireless network on a unit
square S = [0, 1]2. Instead of imposing the uniform
assumption that all the nodes are subject to the same
common minimum power, we consider the heteroge-
neous case and allow each node to choose its own
transmission power. Specifically, let Wt,i be the critical
transmission power node i uses, and Rt,i the corre-
sponding transmission range of node i under the power
model Wt,i = Rc

t,i, where 2 ≤ c ≤ 4 is the path loss
exponent. Then the critical total power of all the nodes is
Wc =

∑
Wt,i =

∑
Rc

t,i, where the summation is taken
over all the nodes in the network. Under the assumption
that wireless nodes are distributed on a unit square
S = [0, 1]2 according to a homogeneous Poisson point
process with density λ and with the use of the Toroidal
model (Torus convention) [17], we show that the critical
total power Wc =

∑
Rc

t,i for maintaining k-connectivity

is Θ(Γ(c/2+k)
(k−1)! λ1−c/2) with probability approaching 1 as

λ → ∞.
The result is obtained by deriving a lower bound and

an upper bound on the critical total power. The lower
bound is derived based on the necessary condition that
every node must be able to reach its kth nearest neighbor
in order to maintain strong k-connectivity. The upper
bound is derived based on an assertion (which is also
proved in the paper) that the resulting network is strongly
k-connected, if every node can reach at least k nodes in
each of its four quadrants as long as there are at least k
nodes in that quadrant. (By “each of its four quadrants”,
we assume that every node has its own coordinate system
which is obtained by shifting the origin of the [0, 1]2

plane to its own location.) In the case that there are less
than k nodes in a quadrant, the transmission power of
the node should be sufficiently large to reach all of them.

Our work differs from (and is perhaps superior to) ex-
isting works in several aspects. Although several existing
works [1], [8], [20], [4] studied the similar problem, none
of them studied the critical total power for k-connectivity
(k > 1). In particular, Blough et al. [1] and Gomez
et al. [8] derived the critical total power only for 1-
connectivity. As the proof is based on the results on the
asymptotic total weight for weighted minimal spanning
trees, the result cannot be easily generalized to the case
of k-connectivity for k > 1. The work reported in [20]

gives the expectation of (lower bound and upper bound
of) the total power consumption (for 1-connectivity),
while the results in this paper are obtained in the asymp-
totic sense. Obtaining asymptotic results is significantly
more challenging than obtaining expectations. Clementi
et al. [4] showed that given the upper bound on the
number of hops h, the total power incurred by the n
nodes that are independently, uniformly distributed in
a unit square region is Θ(n1/h) with high probability.
Their result only applies to the path loss exponent c = 2
and cannot be readily generalized to the case of c �= 2.

Our results are derived under the heterogeneity as-
sumption that different nodes may use different levels
of transmission power, and hence are more general than
those derived under the uniform metric assumptions [7],
[15], [18], [22], [25], [26]. Our results suggest that the
power saved using optimal, non-uniform transmission
ranges is in an order of (log λ)c/2 as compared to that
using optimal uniform transmission ranges. In a rescaled
network where the node density is kept fixed and the size
of the square region goes to infinity, our results indicate
that the average power of each node is bounded if we
allow each node chooses its own transmission power to
maintain (k-)connectivity, while the average power of
each node is unbounded if all nodes have to choose
a common power to maintain (k-)connectivity. These
results are not determined by a specific algorithm, but
rather a fundamental property in wireless networks.

The rest of the paper is organized as follows. In Sec-
tion II, we state the system model, formulate the prob-
lem, and present preliminary material that will be used in
subsequent sections. We then derive in Sections III–IV
respectively, the lower and upper bounds on the critical
total power. Following that, we compare our result with
that derived under the uniform metric assumption and
discuss the issue on the transmission power model in
Section V. Finally, we conclude the paper in Section VI
with a list of future research directions.

II. PRELIMINARIES

In this section we present the system model, and in-
troduce notations that will be used throughout the paper.
We also define two frequently-used random variables:
Rλ,k(α) and Rλ,k(d, α) (to be defined in Subsection II-
C), derive their probability distributions and prove two
lemmas that will be used in subsequent sections. Finally
we present, for the completeness of the paper, Palm
theory on Poisson point process.
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A. System model

We assume nodes are distributed on a unit square
S = [0, 1]2 according to a (homogeneous) Poisson point
process Pλ with density λ. It is well accepted that n
nodes whose locations are independent random variables,
each with a uniform distribution on S, are essentially
a Poisson point process with density n if the network
size is large ([10], page 39). In addition, we assume the
Toroidal model (Torus convention) [17] to eliminate the
boundary effects. In the Toroidal model, the Euclidean
metric d(i, j) = |Xi − Xj | is replaced with d(i, j) =
minz∈{0,1}2 |Xi−Xj −z|, where Xi is the coordinate of
node i. Under the Toroidal model assumption, each node
can view the original plane [0, 1]2 as the plane [− 1

2 , 1
2 ]2

in a coordinate system centered at itself. Toroidal model
is also widely used when analyzing properties of large
scale networks ([17], [10] (page 22)).

Let Ri denote the (fixed) transmission range of node
i. Different nodes may use different transmission power
and hence have different transmission ranges. Node i can
directly transmit to node j if and only if d(i, j) ≤ Ri.
We further assume that the transmission power of node
i is Wi = Rc

i , where 2 ≤ c ≤ 4 is the path loss exponent
(although our analysis applies to any c > 0). Hence the
total power of all nodes is

W =
∑
i∈Pλ

Wi =
∑
i∈Pλ

Rc
i . (2)

The network can be viewed as a directed graph where
each wireless node is a vertex and a directed edge exists
from vertex i to j if and only if node i can directly
transmit to node j. The network is said to be k-connected
if and only if the corresponding directed graph is strongly
k-connected, i.e., there exists a directed path from any
vertex i to any other vertex j even if we remove any k−1
nodes from the network. The critical total power Wc for
k-connectivity is defined as the minimum total power of
all nodes required to ensure strong k-connectivity in the
formed directed graph. As we are mostly interested in
k-connectivity in this paper, the critical total power Wc

is henceforth by default for k-connectivity.
let Wt,i be the critical transmission power node i uses,

and Rt,i the corresponding transmission range of node
i, then Wc =

∑
Wt,i =

∑
Rc

t,i. We are interested in
deriving the asymptotic bound on the critical total power
Wc as λ → +∞.

B. Notations

Table I gives the notations used throughout this paper.
Several comments are in order:

• We envision a (homogeneous) Poisson point process
Pλ on a unit square area S = [0, 1]2. This is
often related to a binomial point process Xn, i.e.,
n independent, uniformly distributed random 2-
dimensional vectors on S. We use Xi to denote node
i’s location (coordinate).

• We use Cj to represent a (constant) function in-
dependent of λ. Unless specified, Cj only depends
on the path loss exponent c and sometimes k, both
of which are assumed to be constant in this paper.
We may explicitly express c as the parameter of
Ci when we need to use the function of Ci with a
different parameter (such as 2c).

• Let f(X) be a function on a random variable
X (which can be a vector). By probability the-
ory, the expectation of f(X) is simply the inte-
gral of f(X) over the probability space of X,
i.e., E[f(X)] =

∫
f(X)dP . The expectation,

EG[f(X)], of a function f(X) under restriction G
is the integral of f(X) over the subset G of the
probability space, i.e., EG[f(X)] =

∫
G f(X)dP =∫

1Gf(X)dP , where 1G is the indicator function
of G. With this definition, by the law of total
probability, E[f(X)] = EG[f(X)] + EḠ[f(X)],
where Ḡ denotes the complement set of G; and
by the law of conditional probability, EG[f(X)] =
E[f(X)|G]P (G), where P (G) is the probability
that G occurs.

• We define BX(r) as the ball (disk in a 2-
dimensional space) centered at X with radius r,
and CX(θ, θ + α) as the cone centered at X, with
starting angle θ, ending angle θ + α, where 0 ≤
θ, α ≤ 2π. The degree of cone CX(θ, θ + α) is
α. We use C∗

X(r, θ, θ + α) to denote the region
CX(θ, θ + α) ∩ BX(r).

• We write g(λ) ≈λ h(λ) if g(λ)/h(λ) → 1 as λ →
∞, g(λ) = o(h(λ)) if g(λ)/h(λ) → 0 as λ → ∞,
and g(λ) = O(h(λ)) if g(λ) ≤ C · h(λ) as λ → ∞
for some constant C (which may depend on the path
loss exponent c).

C. Rλ,k(α) and Rλ,k(d, α) and their probability distri-
butions

In an infinite region R
2 with the Poisson point pro-

cess Pλ, we define Rλ,k(α) as a random variable that
represents the distance from a node at X to its kth
nearest neighbor in a cone centered at X and with degree
α, i.e., CX(θ, θ + α). (For notational convenience, we
may also use Rλ(α) to represent Rλ,k(α) when the
neighbor referred to is clear from the context.) Clearly
the distribution of Rλ,k(α) is independent of the choices
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TABLE I

NOTATIONS USED

R Real line, (−∞,+∞)
S [0, 1]2

Xn A binomial process (n independent, uniformly distributed random 2-vectors)
Pλ A homogeneous Poisson point process with density λ; {X1, X2, · · ·XNλ}
Xi Node i’s coordinate/location
Cj (Constant) function that does not depend on λ
Ḡ The complement set of G
1G The indicator function of G

E[f(X)] Expectation of f(X), i.e., E[f(X)] =
∫

f(X)dP
EG[f(X)] Expectation of f(X) with the restriction G, i.e., EG[f(X)] =

∫
G

f(X)dP
BX(r) Ball of radius r centered at location X

CX(α, β) Cone that is centered at X and with the starting angle α and the ending angle β
C∗

X(r, α, β) BX(r) ∩ CX(α, β)
Rλ,k(α)(= Rλ(α)) Random variable for the distance from a point X to the kth nearest node in CX(θ, θ + α)

Rλ,k(d,α)(= Rλ(d, α)) Random variable for the distance from a point X to the kth nearest node in C∗X(d, θ, θ + α)
Γ(s) Gamma function, i.e., Γ(s) =

∫ ∞
0

ts−1e−tdt
FΓ(s)(x) c.d.f. of the Gamma distribution function, i.e., FΓ(s)(x) = (Γ(s))−1

∫ x

0
ts−1e−tdt

≈λ g(λ) ≈λ h(λ) is interpreted as g(λ)/h(λ) → 1 as λ → ∞

of X and θ. P (Rλ,k(α) > r) is the probability that
at most k − 1 points in the Poisson point process
Pλ fall in C∗X(r, θ, θ + α), and can be expressed as
exp(−λαr2/2)

∑k−1
i=0

(λαr2/2)i

i! . The cumulative distribu-
tion function (c.d.f.) FRλ,k(α) and the probability den-
sity function (p.d.f.) fRλ,k(α) of Rλ,k(α) can then be
expressed as

FRλ,k(α)(r) = P (Rλ,k(α) ≤ r)

=
{

1 − e−λαr2/2
∑k−1

i=0
(λαr2/2)i

i! , if r ≥ 0,
0, otherwise;

(3)

fRλ,k(α)(r)

=
{

(λαr2/2)k−1λαr
(k−1)! e−λαr2/2, if r ≥ 0,

0, otherwise.
(4)

Also, the expectation of Rc
λ,k(α) (for c > 0) can be

calculated as

E[Rc
λ,k(α)] =

∫ ∞

0
fRλ,k(α)(r)r

cdr

=
∫ ∞

0

(λαr2/2)k−1λαr

(k − 1)!
e−λαr2/2rcdr

(changing variable t = λαr2/2)

=
∫ ∞

0
e−t

(
2t
λα

) c

2 tk−1

(k − 1)!
dt

=
Γ(c/2 + k)
(k − 1)!

(
2

λα

)c/2

, (5)

where the Γ function is defined as Γ(k) =∫ ∞
0 tk−1e−tdt.
Another closely related random variable Rλ,k(d, α)

(for d > 0) is defined as

Rλ,k(d, α) =
{

Rλ,k(α), if Rλ,k(α) ≤ d,
0, otherwise.

(6)

Rλ,k(d, α) can be interpreted as the distance from a node
at X to the kth nearest neighbor in a cone centered at X,
with degree α, and within radius d, i.e., C∗

X(d, θ, θ +α),
where θ is a fixed value. In the case that there are less
than k nodes in the cone within radius d, Rλ,k(d, α)
is defined to be 0. Thus, Rc

λ,k(d, α) is a restriction of
Rc

λ,k(α), under the sub probability space that there are
at least k nodes in C∗

X(d, θ, θ + α). The expectation of
Rc

λ,k(d, α) can be similarly calculated as

E[Rc
λ,k(d, α)] =

∫ d

0
fRλ,k(α)(r)r

cdr

=
Γ( c

2 + k)
(k − 1)!

(
2

λα

)c/2

FΓ(c/2+k)(λαd2/2), (7)

where FΓ(c/2+k) is the c.d.f. of the Gamma distribution
with parameter c/2+k. With fixed values of α, d, c, k >
0, FΓ(c/2+k)(λαd2/2) → 1 as λ → ∞. Hence, we obtain
the following lemma (that will be used in subsequent
sections).

Lemma 1 For fixed values of d > 0, c > 0, α > 0 and
k positive integer,

E[Rc
λ,k(d, α)] ≈λ E[Rc

λ,k(α)] =
Γ( c

2 + k)
(k − 1)!

(
2

λα

)c/2

. (8)

Let A,B be two given nodes in the Poisson
point process Pλ in the square region S, and
RA,λ,k(α)(RB,λ,k(β)) be the distance from A (B) to its
kth nearest neighbor in a cone of degree α > 0. Specific
choices of the cones and the locations of nodes A and
B are not important in the following lemma.
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Lemma 2

E[Rc
A,λ,k(α)Rc

B,λ,k(α)] ≤ C0λ
c(−1+δ1) (9)

for some C0 > 0 and any given δ1 > 0, if λ is sufficiently
large, where C0 only depends on c and α but not on λ.

Proof. For notational convenience, we denote RA,λ,k(α)
and RB,λ,k(α) respectively as RA and RB in the fol-
lowing derivation. For any given δ1 > 0, We can choose
ε > 0 such that αε2/2 = λ−1+δ1 . We first note that

P (RARB ≤ ε2)
≥ P (RA ≤ ε and RB ≤ ε)
= 1 − P (RA > ε or RB > ε)
≥ 1 − (P (RA > ε) + P (RB > ε))

≥ 1 − 2 exp(−λαε2/2)
k−1∑
i=0

(λαε2/2)i

i!

= 1 − 2 exp(−λδ1)
k−1∑
i=0

(λδ1)i

i!
. (10)

Thus,

P (RARB > ε2) ≤ 2 exp(−λδ1)
k−1∑
i=0

(λδ1)i

i!
. (11)

Now E[Rc
ARc

B ] can be expressed as

E[Rc
ARc

B ]
= E[Rc

ARc
B|RARB ≤ ε2]P (RARB ≤ ε2)

+E[Rc
ARc

B |RARB > ε2]P (RARB > ε2)
≤ E[ε2c|RARB ≤ ε2]P (RARB ≤ ε2)

+E[1|RARB > ε2]P (RARB > ε2)

≤ ε2c + 2exp(−λδ1)
k−1∑
i=0

(λδ1)i

i!

≤
(
2λ−1+δ1/α

)c
+ C1λ

c(−1+δ1)

= C0λ
c(−1+δ1), (12)

where the second inequality from the fact that
P (RARB ≤ ε2) ≤ 1 and Eq. (11). The third inequality
results from the choice of ε (αε2/2 = λ−1+δ1) and the
fact that eλδ1 grows much faster than any polynomial
function of λ. The choice of C1, C0 is independent of λ
and δ1 if δ1 is fixed and λ is sufficiently large. �

D. Palm theory on Poisson point process

As Palm theory on the Poisson point process is used in
multiple places in the paper, for the completeness of the
paper, we state the theorem ([16], Theorem 1.6) below.

Theorem 1 (Palm theory for Poisson processes) Let
λ > 0. Suppose j ∈ N , and h(Y,X ) is a bounded

measurable function defined on all pairs of the form
(Y,X ) with X being a finite subset of R

d and Y a
subset of X , satisfying h(Y,X ) = 0 except when Y has
j elements. Then

E[
∑
Y⊆Pλ

h(Y,Pλ)] =
λj

j!
Eh(Xj ,Xj ∪ Pλ), (13)

where the sum on the left-hand side is over all subsets
Y of the random Poisson point set Pλ, and on the right-
hand side the set Xj is a binomial process with j nodes,
independent of Pλ.

III. LOWER BOUND ON THE CRITICAL TOTAL POWER

In this section, we derive the lower bound on the crit-
ical total power Wc to maintain network k-connectivity.

Theorem 2 For any given δ > 0, P (Wc ≥ (1 −
δ)C2λ

1− c

2 ) → 1 as λ → ∞, where C2 = Γ( c

2
+k)

(k−1)! π− c

2 .

The proof of Theorem 2 will be given through two
propositions. Clearly, in order to maintain strong k-
connectivity, every node must be able to reach at least
k other nodes. Thus a lower bound on the critical total
power is the summation of power incurred by each node
such that each node can exactly reach its kth nearest
neighbor. Specifically, let Xi be the location of node i,
ri the distance from Xi to node i’s kth nearest neighbor,
Wi = rc

i , and Nλ the number of nodes in the Poisson
point process Pλ in [0, 1]2. Then the total power WL =∑Nλ

i=1 Wi =
∑Nλ

i=1 rc
i serves as a lower bound on the

critical total power required to maintain k-connectivity.
In what follows, we estimate WL. First, we derive the
expectation of WL.

Proposition 1

E[WL] ≈λ
Γ( c

2 + k)
(k − 1)!

π− c

2 λ1− c

2 . (14)

Proof. By Palm theory for the Poisson point process,

E[WL] = E[
Nλ∑
i=1

rc
i ] = λE[rc

0], (15)

where the last expectation is taken over the probability
space where node 0 is randomly placed with a uniform
distribution on S, together with a set of nodes distributed
according to a Poisson point process Pλ and independent
of X0. Under the Toroidal model assumption, node 0
views all the nodes in Pλ as if they reside in [− 1

2 , 1
2 ]2

of a coordinate system with the origin at X0. Thus the
distribution of r0 is independent of the choice of X0.
Let s be the distance from X0 to node 0’s kth nearest
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neighbor in Pλ in BX0(1/2) if there are at least k nodes
in BX0(1/2); and 0 otherwise. Then s has the same
distribution as Rλ,k(1

2 , 2π). In addition, if s > 0 (which
means there are at least k nodes in BX0(1/2)), then
r0 = s. Thus s ≤ r0 and E[sc] ≤ E[rc

0]. Also, since
r0 < 1,

E[rc
0] = E[rc

0|s > 0]P (s > 0) + E[rc
0|s = 0]P (s = 0)

= E[sc|s > 0]P (s > 0) + E[rc
0|s = 0]P (s = 0)

≤ E[sc] + P (s = 0). (16)

Since P (s = 0) = e−λπ/4
∑k−1

i=0
(λπ/4)i

i! = o(λ−c/2) as

λ → ∞ and E[sc] ≈λ
Γ( c

2
+k)

(k−1)! (λπ)−
c

2 (by Lemma 1), we
obtain

E[rc
0] ≈λ

Γ( c
2 + k)

(k − 1)!
(λπ)−

c

2 ,

E[WL] = λE[rc
0] ≈λ

Γ( c
2 + k)

(k − 1)!π
c

2
λ1− c

2 . (17)

�
As has been shown in Lemma 1, the restriction on

the distance to the kth nearest neighbor in a fixed cone
(such as in one quadrant) can be ignored when the node
density λ approaches infinity. In all the subsequent dis-
cussion, we ignore this restriction and assume, whenever
desirable, the distance to the kth nearest neighbor can go
to infinity (although with a small probability).

In order to bound |WL−E[WL]|, we need to derive the
second moment of WL (so that Chebyshov’s inequality
can be applied).

Proposition 2

E[W 2
L] ≤ E[WL]2 + C3λ

1−c+δ0 as λ → ∞, (18)

where δ0 > 0 is arbitrary but fixed and C3 is a constant
independent of λ.

Proof.

E[W 2
L] = E[(

Nλ∑
i=1

Wi)2]

= E[
Nλ∑
i=1

W 2
i ] + 2E[

∑
1≤i<j≤Nλ

WiWj](19)

Since W 2
i = r2c

i , by Proposition 1 we obtain

E[
Nλ∑
i=1

W 2
i ] = E[

Nλ∑
i=1

r2c
i ] ≈λ

Γ(c + k)
(k − 1)!

π−cλ1−c. (20)

For the second term of Eq. (19), we apply Palm theory
for the Poisson point process again and obtain

2E[
∑

1≤i<j≤Nλ

WiWj ] = λ2E[WAWB ], (21)

where the last expectation is taken over the probability
space where A and B are uniformly and randomly
distributed on S, together with a set of nodes distributed
according to a Poisson point process Pλ.

We first evaluate E[WAWB] conditioning on the lo-
cations, XA and XB , of nodes A and B.

E[WAWB ] = E[E[WAWB |XA,XB ]]. (22)

Given the location XA and XB , let |XA − XB | ≡ d.
Let GA be the event that there are at least k nodes in
BXA

(d/2), GB the event that there are at least k nodes
in BXB

(d/2), and G = GA ∩ GB . Then,

E[WAWB |XA, XB]
= EG[WAWB|XA, XB] + EḠ[WAWB |XA, XB]. (23)

The first term of Eq. (23) can be expressed as

EG[WAWB |XA,XB ] = EG[rc
Arc

B |XA,XB ]
= E[rc

Arc
B1G|XA,XB ]

= E[rc
Arc

B1GA
1GB

|XA,XB ]
= E[r̃c

Ar̃c
B |XA,XB ], (24)

where

r̃A = rA1GA
=

{
rA, if rA ≤ d/2,
0, otherwise;

r̃B = rB1GB
=

{
rB, if rB ≤ d/2,
0, otherwise.

Given the locations XA and XB , r̃A and r̃B are com-
pletely determined by the node distribution in BXA

(d/2)
and that in BXB

(d/2) respectively. Since the two regions
BXA

(d/2) and BXB
(d/2) are disjoint, r̃A and r̃B are

independent. Hence we can evaluate their expectations
separately:

EG[WAWB|XA,XB ]
= E[r̃c

A|XA,XB ]E[r̃c
B |XA,XB ]. (25)

Note that the expectation of r̃c
A conditioned on XA and

XB , EG[WAWB |XA,XB ], is taken over the probability
space of a Poisson point process Pλ on S. For each
instance (realization) of Pλ on S, we can define r̂A to
be the kth nearest neighbor distance of node A with
node B removed from S. Then r̃A ≤ r̂A. Clearly, r̂A is
independent of node B’s location. r̂A is also independent
of node A’s location because of the homogeneous Pois-
son point process assumption and the Toroidal model
assumption. Thus E[r̃c

A|XA,XB ] ≤ E[r̂c
A|XA,XB ] =

E[r̂c
A]. Finally, r̂A is just the distance between node A

(which is uniformly and randomly placed on S) and
its kth nearest neighbor from Pλ on S. Thus E[r̂c

A] =
E[rc

0], where E[rc
0] is given in Eq. (15). Therefore,

E[r̃c
A|XA,XB ] ≤ E[rc

0]. Similarly, E[r̃c
B |XA,XB ] ≤



7

E[rc
0]. Since E[WL] = λE[rc

0] by Eq. (15), we obtain
that

E[EG[WAWB|XA,XB ]]
≤ E[E[rc

0]
2] = E[rc

0]
2 = (E[WL]/λ)2 (26)

It remains to evaluate the second term
EḠ[WAWB |XA,XB ] in Eq. (23). Since Ḡ = ḠA ∪ ḠB ,
we have

EḠ[WAWB|XA,XB ]
≤EḠA

[WAWB|XA,XB ] + EḠB
[WAWB |XA,XB ]

=EḠA
[rc

Arc
B |XA,XB ] + EḠB

[rc
Arc

B|XA,XB ]
=2EḠA

[rc
Arc

B |XA,XB ], (27)

where the last equality is by symmetry.
The basic idea to bound EḠA

[rc
Arc

B |XA,XB ] is that
if the distance, d, between nodes A and B is large, ḠA

occurs with low probability, and that the probability that
the distance d is small is low. Specifically, consider the
restriction of |XA − XB | = d > ε where ε is chosen
such that πε2 = λ−1+δ1 for any fixed δ1 > 0.

E{d>ε}[EḠA
[rc

Arc
B |XA,XB ]]

≤ E{d>ε}[EḠA
[1|XA,XB ]]

≤ P (ḠA ∩ {d > ε})
≤ P (There are less than k nodes in BA(ε/2))

= exp(−λπ(ε/2)2)
k−1∑
i=0

(λπ(ε/2)2)i

i!

= exp(−λδ1/4)
k−1∑
i=0

(λδ1/4)i

i!

≤ C4λ
−(1+c), (28)

for some C4 > 0 when λ is sufficiently large. Note that
the last inequality results from exp(λδ1/4) grows much
faster than any polynomial function of λ as λ → ∞.

Next by Lemma 2 (with α = 2π), for any given δ1 >
0, if λ is sufficiently large, there exists some constant
C5 > 0 such that

EḠA
[rc

Arc
B|XA,XB ]

≤ E[rc
Arc

B |XA,XB ] ≤ C5λ
c(−1+δ1) (29)

Therefore,

E{d≤ε}[EḠA
[rc

Arc
B |XA,XB ]]

≤ E{d≤ε}[C5λ
c(−1+δ1)]

= P (d ≤ ε) · C5λ
c(−1+δ1)

= πε2 · C5λ
c(−1+δ1)

= λ−1+δ1 · C5λ
c(−1+δ1)

= C5λ
−1−c+δ1(1+c) (30)

By setting δ1 = δ0/(c + 1), we obtain

E{d≤ε}[EḠA
[rc

Arc
B|XA,XB ]] ≤ C5λ

−1−c+δ0 . (31)

Combining Eqs. (28) and (31), we obtain

E[EḠA
[rc

Arc
B|XA,XB ]] ≤ C6λ

−1−c+δ0 . (32)

Combining Eqs. (22), (23), (26) and (32), we obtain

E[WAWB ] ≤ (E[WL]/λ)2 + C6λ
−(c+1)+δ0 . (33)

Finally combining Eqs. (19)-(21) and (33), we obtain
Eq. (18). �

We are now in a position to prove Theorem 2.
Proof of Theorem 2. By Chebyshov’s inequality, for any
given δ′ > 0, when λ → ∞,

P (|WL − E[WL]| ≥ δ′E[WL])

≤ V ar(WL)
δ′2E[WL]2

=
E[W 2

L] − E[WL]2

δ′2E[WL]2

≤ C3λ
1−c+δ0

δ′2E[WL]2

≈λ
C3λ

1−c+δ0

δ′2 Γ2(c/2+k)
((k−1)!)2πc λ2−c

, (34)

where the last equation tends to 0 as λ goes to infinity if
we choose δ0 < 1. Hence P (WL ≥ (1−δ′)E[WL]) → 1
as λ → ∞. Since Wc ≥ WL, we have P (Wc ≥ (1 −
δ′)E[WL]) → 1 as λ → ∞. By Proposition 1, E[WL] ≥
(1 − δ′) Γ( c

2
+k)

(k−1)!π
c
2
λ1− c

2 for sufficiently large values of λ.
Consequently we have

P

(
Wc ≥ (1 − δ′)2

Γ( c
2 + k)

(k − 1)!π
c

2
λ1− c

2

)
→ 1, (35)

as λ → ∞. Given any δ > 0, we can find δ ′ > 0 such
that (1 − δ′)2 > (1 − δ), and hence as λ → ∞,

P

(
Wc ≥ (1 − δ)

Γ( c
2 + k)

(k − 1)!π
c

2
λ1− c

2

)
→ 1, (36)

for any given δ > 0, which completes the proof. �

IV. UPPER BOUND ON THE CRITICAL TOTAL POWER

In this section, we derive an upper bound on the
critical total power required to maintain k-connectivity.
As will be shown later in this section, the upper bound
turns out to be of the same order as the lower bound,
not only in terms of λ but also in terms of k.

Given the coordinates of all nodes in the plane [0, 1]2,
each node can define its own coordinate system by only
shifting the origin of the [0, 1]2 plane to its own location.
We use (xi, yi) to represent the coordinate of a node i
in the original coordinate system (i.e., the plane [0, 1]2),
and define the p-norm distance dp between two nodes A
and B as

dp(A,B) = (|xA − xB|p + |yA − yB |p)1/p. (37)
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(a) Case (i) yB − yA < xB − xA
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x
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(b) Case (ii) yB − yA ≥ xB − xA

Fig. 1. Illustration for Lemma 3

If p = ∞, d∞(A,B) = max(|xA − xB |, |yA − yB |).
Clearly p-norm distance does not change under the
conversion from the original plane to a new coordinate
system with a new origin. Throughout this paper, we
use 2-norm distance as the “distance” unless otherwise
specified, and |AB| to represent d2(A,B). We first prove
a geometric result on strong 1-connectivity.

Lemma 3 Given the locations of all nodes on the plane
[0, 1]2, if each node chooses its power level to reach
at least one neighbor in each of the four quadrants in
its own coordinate system as long as there exist one or
more nodes in that quadrant, the resulting network is
strongly (1-)connected. (To eliminate the ambiguity in
which quadrant the axis lines belong to, we assign the
positive x-axis to the first quadrant, the positive y-axis
to the second quadrant, and so on.)

Proof. We prove the lemma by contradiction. If the
resulting network is not strongly connected, there exists
at least a pair of nodes (i, j) such that there exists no
(directed) path from node i to node j. Among all the
pairs, we choose the one with the smallest ∞-norm
distance. In case of a tie, we choose the pair with the
smallest 2-norm distance. Let the chosen pair be nodes
(A,B). It suffices to find a pair of disconnected nodes
(Y,Z) such that d∞(Y,Z) < d∞(A,B), or d∞(Y,Z) =
d∞(A,B) and d2(Y,Z) < d2(A,B).

Without loss of generality, we assume that there is
no directed path from A to B, and node B is in the
first quadrant in node A’s coordinate system, i.e., xA <
xB , yA ≤ yB (note that the first quadrant includes the
positive x-axis but not the positive y-axis). Since there
exists at least one node B in the first quadrant of node

A’s coordinate system, node A’s power must be able to
reach at least one other node C in the first quadrant of its
coordinate system. Clearly d2(A,C) < d2(A,B) since
node A’s power is not sufficient to reach node B. In
addition, there exists no path from node C to node B;
otherwise there would be a path from node A to node
B. Now we consider two possible cases.

a) Case (i) yB − yA < xB − xA (Fig. 1 (a)): In
this case d∞(A,B) = xB − xA ≡ a and |yA − yB | < a.
Let D be the intersection point of the cycle centered at
A with radius d2(A,B) and the positive y-axis in node
A’s coordinate system. Let E be the intersection point
of the y-axis in A’s coordinate system and a horizontal
line through node B. Then |BE| = a. As yC − yA ≤
|AC| < |AB| and yB −yA = |AE|, we have yC −yB <
|AB| − |AE| ≤ |BE| = a. On the other hand, yC ≥
yA and hence yC − yB ≥ yA − yB > −a. Therefore
|yC − yB| < a,

Similarly, xC > xA, and hence xC − xB > xA −
xB = −a. In addition, as xC − xA ≤ |AC| < |AB|
and xB − xA = |BE|, we have xC − xB < |AB| −
|BE| ≤ |AE| ≤ a. Therefore |xC − xB | < a. As such,
we conclude d∞(B,C) = max(|xC −xB |, |yC −yB|) <
d∞(A,B), which violates the assumption on the pair of
nodes (A,B).

b) Case (ii) yB − yA ≥ xB − xA(Fig. 1 (b)):
In this case d∞(A,B) = yB − yA ≡ a ≥ |xB − xA|.
Let D be the intersection point of the cycle centered at
A with radius d2(A,B) and the positive x-axis in node
A’s coordinate system. Let E be the intersection point
of the x-axis in A’s coordinate system and a vertical
line through node B. Then |BE| = a. As xC > xA, we
have xC −xB > xA−xB ≥ −a. Also, since xC −xA ≤
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|AC| < |AB| and xB−xA = |AE|, we have xC −xB <
|AB| − |AE| ≤ |BE| = a. Therefore |xC − xB | < a.

Since yC − yA < |AB| and yB − yA = |BE|, we
have yC − yB < |AB| − |BE| ≤ |AE| ≤ |BE| = a.
Also, since yC ≥ yA, we have yC − yB ≥ yA − yB =
−a. Therefore, |yC − yB| ≤ a. As such, we conclude
d∞(B,C) ≤ a = d∞(A,B) with equality held if and
only if yC = yA. If yC �= yA, we reach the contradiction.

Now assume yC = yA. By the way nodes A and
B are selected, we have xC > xB because otherwise
d∞(B,C) = d∞(A,B) and d2(B,C) < d2(A,B),
which violates the assumption on the pair of nodes
(A,B). Now we obtain a disconnected pair of nodes
(C,B) that also has the smallest ∞-distance among all
the disconnected node pairs, node B is in the second
quadrant in node C’s coordinate system, and

|xC − xB | < |yC − yB| (38)

(as ∠ACB > π/4). Now we carry out the above analysis
on the node pair (C,B). As the positive y-axis belongs
to the second quadrant and by Eq. (38), we can only go
to case (i). That is, we can find a pair of nodes (G,B)
such that there exists no directed path from G to B and
d∞(G,B) < d∞(C,B) = d∞(A,B). This violates the
assumption on the pair of nodes (A,B), and completes
the proof. �

The above proof is primarily based on the distance
metrics without use of the Toroidal model. However,
it can be easily extended to the distance metrics under
the Toroidal model. Please refer to [28] for a detailed
account of the discussion.

Lemma 3 can be easily extended to accommodate the
case of strong k-connectivity as follows.

Lemma 4 Given the locations of all nodes on the plane
[0, 1]2, if each node chooses its power level to reach at
least k neighbors in each of the four quadrants in its own
coordinate system, as long as there exist k or more nodes
in that quadrant (in the case that there are less than k
nodes in a quadrant, the transmission power of the node
is chosen to reach all of the nodes in that quadrant), the
resulting network is strongly k-connected.

Proof. After removing any k−1 nodes from the network,
each node can still reach at least one neighbor in each of
its four quadrants, as long as that quadrant still contains
some nodes. By Lemma 3, the remaining network is
strongly connected. Therefore, the original network is
at least strongly k-connected. �

Since the above simple topology control mechanism
ensures strong k-connectivity in the underlying graph,

the total power incurred based on this mechanism pro-
vides an upper bound on the critical total power required
for k-connectivity. In what follows, we derive an upper
bound on the critical total power based on the above
topology control algorithm.

Let WU =
∑Nλ

i=1 W ′
i , where W ′

i is the power con-
sumed by node i under the topology control mechanism
introduced in Lemma 4, and the summation is taken over
all the points generated by a Poisson point process with
density λ on [0, 1]2. Clearly Wc ≤ WU . We have the
following major result.

Theorem 3 P (Wc ≤ (1 + δ)C7(c)λ1−c/2) → 1 as λ →
∞, for any δ > 0, where

C7(c) =
4Γ( c

2 + k)
(k − 1)!

(
4
π

) c
2

. (39)

The proof of Theorem 3 will be given through two
propositions and one lemma. First we evaluate the ex-
pectation of WU .

Proposition 3 E[WU ] ≤ C7(c)λ1− c

2 as λ → ∞, where
C7(c) is given in Eq. (39).

Proof. By Palm theory for the Poisson point process, we
have

E[WU ] = E[
Nλ∑
i=1

W ′
i ] = λE[W ′

1], (40)

where the last expectation is taken over the probability
space where node 1 is randomly placed with a uniform
distribution on the region S, together with a set of nodes
that are distributed according to a Poisson point process
Pλ and independent of X1.

Let R1i
, 1 ≤ i ≤ 4, be the distance from node 1 to

its kth nearest neighbor in the ith quadrant of node 1’s
coordinate system, and R1 = max{R1i

, 1 ≤ i ≤ 4}.
The power required for node 1 is then W ′

1 = Rc
1. Since

R1i
’s are independent and have the same distribution as

Rλ,k(π/2)1 under the Poisson point process assumption,
the expectation of W ′

1 can be expressed as

E[W ′
1] = E[Rc

1]
≤ E[Rc

11
+ Rc

12
+ Rc

13
+ Rc

14
]

≈λ 4E[Rc
λ,k(π/2)]

=
4Γ(c/2 + k)

(k − 1)!

(
4

λπ

)c/2

, (41)

1More precisely, R1i is slightly different from Rλ,k(π/2). By
carrying out a proof similar to that in Proposition 1, we can show
that the ratio of the expectations derived using Rλ,k(π/2) to that
using the precise version of R1i tends to 1 as λ → ∞.
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where the last equality results from Eq. (5). Thus, by
Eq. (40), we have

E[WU ] = λE[W ′
1] ≤ C7(c)λ1− c

2 . (42)

�
In order to bound |WU −E[WU ]|, we need to estimate

the second moment of WU .

Proposition 4

E[W 2
U ] ≤ E[WU ]2 + C8λ

1−c+δ0 as λ → ∞ (43)

for any given δ0 > 0 and some constant C8 > 0 that is
independent of λ.

Proof.

E[W 2
U ] = E[

Nλ∑
i=1

W ′
i ]

2

= E[
Nλ∑
i=1

W ′2
i ] + 2E[

∑
1≤i<j≤Nλ

W ′
iW

′
j].(44)

Since W ′2
i = R2c

i , by Proposition 3 we have

E[
Nλ∑
i=1

W ′2
i ] = E[

Nλ∑
i=

R′2c
i ] = C7(2c)λ1−c. (45)

It remains to determine the second term of Eq. (44).
Applying Palm theory for the Poisson point process, we
have

2E[
∑

1≤i<j≤Nλ

W ′
iW

′
j ] = λ2E[W ′

AW ′
B ], (46)

where the last expectation is taken over the probability
space where nodes A and B are uniformly randomly
distributed in the region S, together with a set of nodes
that are distributed as a Poisson point process with
density λ and is independent of the locations of nodes
A and B.

First we evaluate E[W ′
AW ′

B] conditioning on the
locations, XA and XB , of nodes A and B, i.e.,

E[W ′
AW ′

B] = E[E[W ′
AW ′

B|XA,XB ]]. (47)

Given the locations XA,XB , let d = |XA − XB |. For
each i ∈ {1, 2, 3, 4}, let TAi

be the event that at least
k nodes from Pλ fall in node A’s ith quadrant within
radius d/2, and TBi

the event that at least k nodes from
Pλ fall in node B’s ith quadrant within radius d/2. Let
TA = ∩4

i=1TAi
, TB = ∩4

i=1TBi
, and T = TA ∩ TB . That

is, T denotes the event that at least k nodes in the Poisson
point process Pλ fall in each of the four quadrants within
radius d/2 in node A’s coordinate system and in each

of the four quadrants within radius d/2 in node B’s
coordinate system. By the law of total probability,

E[W ′
AW ′

B |XA, XB]
= ET [W ′

AW ′
B|XA, XB] + ET̄ [W ′

AW ′
B|XA, XB]. (48)

The first term in the above Eq. (48) can be written as

ET [W ′
AW ′

B|XA,XB ]
= ET [Rc

ARc
B|XA,XB ]

= E[1T Rc
ARc

B |XA,XB ]
= E[1TA

1TB
Rc

ARc
B |XA,XB ]

= E[R̃c
AR̃c

B |XA,XB ], (49)

where R̃A = RA1TA
= RA1{RA≤d/2}, and R̃B =

RB1TB
= RB1{RB≤d/2}. Now, clearly R̃A and R̃B are

independent because they depend on the node distribu-
tions in two disjoint regions, BXA

(d/2) and BXB
(d/2),

respectively. Therefore, we can evaluate their expecta-
tions separately, i.e.,

ET [W ′
AW ′

B|XA, XB] = E[R̃c
A|XA, XB]E[R̃c

B|XA, XB]. (50)

By a similar argument to that in Proposition 2, we obtain

E[R̃c
A|XA,XB ] ≤ E[Rc

1] = E[WU ]/λ,
E[R̃c

B |XA,XB ] ≤ E[Rc
1] = E[WU ]/λ. (51)

Thus

ET [W ′
AW ′

B|XA,XB ] ≤ (E[WU ]/λ)2. (52)

Combining Eqs. (47), (48) and (52), we obtain

E[W ′
AW ′

B] ≤ (E[WU ]/λ)2 + E[ET̄ [W ′
AW ′

B|XA, XB]] (53)

Now it remains to determine the second term of Eq. (53),
which we denote as I2, i.e.,

I2 ≡ E[ET̄ [W ′
AW ′

B |XA,XB ]]
= E[ET̄ [Rc

ARc
B|XA,XB ]]. (54)

Since
T̄ = (∪4

l=1T̄Al
) ∪ (∪4

l=1T̄Bl
), (55)

it follows that

I2 ≤ E

4∑
l=1

ET̄Al
[Rc

ARc
B|XA,XB ]

+E

4∑
l=1

ET̄Bl
[Rc

ARc
B |XA,XB ]

= 2E
4∑

l=1

ET̄Al
[Rc

ARc
B |XA,XB ], (56)

where the last equality is by symmetry.
Since RA = max1≤i≤4 RAi

, RB = max1≤j≤4 RBj
,

where RAi
(RBj

) is the distance from node A (B) to
node A’s (B’s) kth nearest neighbor in the ith (jth)
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quadrant of A’s (B’s) coordinate system, we have Rc
A ≤∑4

i=1 Rc
Ai

and Rc
B ≤ ∑4

j=1 Rc
Bj

. Hence,

I2 ≤ 2E

⎡
⎣ 4∑

l=1

4∑
i=1

4∑
j=1

ET̄Al
[Rc

Ai
Rc

Bj
|XA,XB ]

⎤
⎦ . (57)

There are a total of 64 possible combinations of (l, i, j)
in Eq. (57). We show in the following lemma that each
of the 64 terms is at most of the order λ−(1+c)+δ0 .

Lemma 5 For any (l, i, j) ∈ {1, 2, 3, 4}3 ,

E[ET̄Al
[Rc

Ai
Rc

Bj
|XA,XB ]] ≤ C9λ

−(1+c)+δ0 , (58)

for any δ0 > 0 and some constant C9 if λ is sufficiently
large, where C9 only depends on c, k and not on λ.

The proof of Lemma 5 pretty much follows that in
Proposition 2. On one hand, if the distance d between
nodes A and B is large, the probability that TAl

occurs is
low. On the other hand, the probability that the distance
d is small is low. The proof also uses the result in
Lemma 2. Due to the page limit, the proof is omitted.
The interested reader is referred to [28] for a detailed
account of the proof.

Combining Lemma 5 with Eqs. (53), (54) and (57),
we obtain

E[W ′
AW ′

B] ≤ (E[WU ]/λ)2 + 128C9λ
−(1+c)+δ0 . (59)

With Eqs. (44)–(46) and (59), we obtain Eq. (43). �
With Propositions 3 and 4, We can prove Theorem

3 in a similar manner to Theorem 2. Due to the space
limit, the proof is omitted.

V. DISCUSSIONS

Interpretation of derived results: By Theorem 2 and
3, we reach the following corollary.

Corollary 1 As λ → ∞,

Wc = Θ
(

Γ(c/2 + k)
(k − 1)!

λ1− c

2

)
(60)

with probability approaching 1, where Wc is the critical
total power required for maintaining k-connectivity.

In general, the path loss exponent is 2 ≤ c ≤ 4, although
our proof applies to any c > 0. In the case of c > 2,
Corollary 1 indicates that if the density is sufficiently
large, the increase in the density reduces the critical total
power, and in addition, the critical total power decreases
as the path loss exponent increases.

Comparing with the critical total power derived under
the uniform metric assumption (given in Eq. (1) and a

TABLE II

ONE-TO-ONE CORRESPONDENCE BETWEEN THE VALUES IN THE

UNIT-AREA SQUARE AND THOSE IN THE L × L SQUARE.

in the unit-area square in the L × L square
1 L
r Lr

λ = λ0L
2 λ0

similar equation in [25]), we conclude that the critical
total power can be reduced by a factor of Θ((log λ)c/2)
by allowing nodes to optimally choose different levels of
transmission power. This is not subject to any specific
algorithm, but rather a fundamental property in wireless
networks.

Legitimacy of the system model: We claim that the
assumption of a unit area region is an abstraction of the
real world. The unit area is not necessarily 1 meter2,
but instead can be used to model a L2meter2 area. That
is, we can rescale the unit area to a square area with
side length L and network density λ0. In this rescaled
network, every pair of nodes have a small chance to be
very close to each other. A one-to-one correspondence
between the values in the unit-area network and those in
the rescaled network can be made and is given in Table
II.

Consider the average power consumed by each node.
In the unit-area network, the average power consumed by
each node is of order λ−c/2 (the constant that contains k
is ignored). In the rescaled network, since each edge is
rescaled by a factor of L, the power consumption should
be multiplied by a factor of Lc. However, if we consider
the side length L to be one unit, the node density in
the corresponding unit-area square becomes λ = λ0L

2.
Hence the average power consumption (in the rescaled
network) is now λ−c/2Lc = (λ0L

2)−c/2Lc = λ
−c/2
0 ,

which only depends on the density λ0 in the rescaled
network and not on the side length L of the area. On the
other hand, if we assume a common critical transmission
power among nodes for k-connectivity in the rescaled
network, each node has to consume power in the order
of λ

−c/2
0 (log λ0L

2)c/2,2 which tends to infinity if λ0 is
fixed and L → ∞.

2By Eq. (1), each node needs power rc
λ = Θ(( log λ

λ
)c/2) (ignoring

the less significant terms) in the unit-area network. Rescaling to the
large network with side length L, each node needs power rc

λLc =
Θ(λ

−c/2
0 (log(λ0L

2))c/2). Although the Eq. (1) (comes from [18])
assumes n independently randomly placed nodes while our results
are based on Poisson point processes, they are comparable through
Poissonization and De-Poissonization techniques (see [16]).
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VI. CONCLUSION

We have shown in this paper that in a heterogeneous
wireless network in which wireless nodes are distributed
in a unit square region [0, 1]2 according to a Poisson
point process with density λ and nodes may transmit
with different levels of power, the critical total power re-
quired to maintain k-connectivity is Θ(Γ(c/2+k)

(k−1)! λ1−c/2)
with probability approaching 1, where c is the path loss
exponent. This result is obtained by deriving a lower
bound and an upper bound on the critical total power.
By comparing the result against those obtained when all
nodes use the uniform critical transmission power for k-
connectivity [18], [25], we conclude that with the use
of (optimal) power control, the critical total power can
be reduced by an factor of Θ((log λ)c/2), irregardless of
the power/topology control algorithm used.

In this paper we assume Torus convention to eliminate
the need to consider boundary effects. As has been
pointed out in [6], boundary effects may affect the
(uniform) critical transmission range for k-connectivity.
We will investigate whether boundary phenomena will
affect the critical total power required for maintaining k-
connectivity in heterogeneous networks. This is a subject
of future research.
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