
Received March 27, 2020, accepted May 14, 2020, date of publication June 5, 2020, date of current version June 22, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3000236

A Graph Neural Network Assisted Monte
Carlo Tree Search Approach to Traveling
Salesman Problem
ZHIHAO XING AND SHIKUI TU , (Member, IEEE)
Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Centre for Cognitive Machines and Computational Health (CMaCH), School of SEIEE, Shanghai Jiao Tong University, Shanghai 200240, China

Corresponding author: Shikui Tu (tushikui@sjtu.edu.cn)

This work was supported by the National Science and Technology Innovation 2030 Major Project of the Ministry of Science
and Technology of China under Grant 2018AAA0100700, in part by the Zhi-Yuan Chair Professorship Start-up Grant from
Shanghai Jiao Tong University under Grant WF220103010.

ABSTRACT We tackle the classical traveling salesman problem (TSP) by combining a graph neural network
and Monte Carlo Tree Search. We adopt a greedy algorithm framework to derive a promising tour by adding
the vertices successively. A graph neural network is trained to capture graph motifs and interactions between
vertices, and then to give the prior probability of selecting a vertex at every step. Instead of making decisions
directly based on the output of graph neural networks, we combine the graph neural network with Monte
Carlo Tree Search to provide a more reliable policy as the output of the latter is the feedback information by
fusing the prior probability with the scouting exploration. Without much heuristic designing, our approach
outperforms recent state-of-the-art learning-based methods on the TSP. Experimental results demonstrate
that the proposed method can be generalized to instances with more vertices than those used during the
training.

INDEX TERMS Combinatorial optimization problem, deep neural network, graph neural network, Monte
Carlo tree search, reinforcement learning, traveling salesman problem.

I. INTRODUCTION
The Traveling Salesman Problem (TSP) is a classical com-
binatorial optimization problem, which has many practical
applications in real life, such as planning, manufacturing, and
genetics [1]. The goal of the TSP is to find the shortest route
that visits each city exactly once and ends in the origin city,
which is well-known as an NP-hard problem [2]. To solve
the TSP, many approximation algorithms have been pro-
posed [3], [4], among which the heuristic search algorithms
get prevalence by finding a satisfactory solution within a rea-
sonable time cost. However, the performance of the heuristic
algorithms depends on heuristics handcrafted to guide the
search to find competitive tours efficiently [5], [6]. Moreover,
the design of heuristics usually requires substantial expertise
on the problem.

Recent advances in deep learning provide a powerful way
of learning effective representations from data, leading to
breakthroughs inmany fields, such as image segmentation [7]
and speech recognition [8]. Efforts have been made to tackle

The associate editor coordinating the review of this manuscript and
approving it for publication was Huiyu Zhou.

the TSP by the deep learning approach by avoiding hand-
crafted feature extraction and design of heuristics [9]–[11].
In another work, Dai et al. [12] stated above neural architec-
tures cannot yet effectively reflect the graph structure of the
TSP and proposed a graph embedding architecture to capture
graph properties. Recently, some researchers have observed
that the graph neural network (GNN) can be used to discover
useful patterns of graph-based combinatorial problems and
showed that GNN can find universal motifs that are present
in graphs of different scales [13]–[16].

While solving the TSP, most current learning-based meth-
ods derive a tour by directly selecting vertices with a pre-
defined large probability to the output of deep neural net-
works [9]–[12], [17]. Hence, the decision may not be reliable
as such a learning based method has only one chance to
compute the optimal tour and it never goes back to reverse
the decision. Recently, some works [15], [18] show that the
combination of deep neural networks and tree search could
make a more reliable decision than that made using the output
of neural networks only. Li et al. [15] proposed an approach
for solving four different types of NP-hard problems by
converting them into the equivalent maximal independent set

108418 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0003-1353-8507
https://orcid.org/0000-0001-6270-0449

Z. Xing, S. Tu: GNN Assisted MCTS Approach to TSP

(MIS) problem. The proposed method first predicts multiple
probability maps and then exploits a breadth-first tree search
to rapidly generate a large number of candidate solutions for
the MIS problem. Silver et al. [18] proposed a Go program,
called the AlphaGo, and made remarkable achievements in
the Go game. An important factor for the success of the
AlphaGo is the combination of deep convolutional neural
networks (CNN) and Monte Carlo Tree Search (MCTS)
[19], [20], which exploits neural networks in the evaluation of
board positions and effectively reduces the search space of the
tree. However, such AlphaGo-like systems cannot be applied
directly to the TSP due to three major differences between
the TSP and the Go game. Firstly, a 2D image representing
an explicit board of states for the TSP is difficult to formulate
in the Go game. Secondly, there is no efficient and accurate
heuristic for evaluating the TSP. Finally, the AlphaGo tracks
the averagewinning rate of each branch to guidemoves, while
the TSP requires to find the extreme without keeping any
sense to the average value which may also include several
suboptimal routes surrounding the extreme route.

In recent years [21]–[23], it is recommended and also
further addressed to combine AlphaGoZero type techniques
and the classic heuristic search mechanisms (CHSMs) for
the combinatorial optimization problems such as TSP and
graph matching. On one hand, one uses deep neural net-
works to estimate heuristics in use of CHSMs via learning
from samples. On the other hand, one borrows concepts and
mechanisms used in CHSMs into AlphaGoZero for further
improvements. To the purpose, a family of deep IA-search
methods was proposed in [21] based mainly on combining
AlphaGoZero, A∗ search, and CNneim-A [24]. This deep
IA-search is developed under the framework of deep bidi-
rectional intelligence via YIng YAng (IA) system, which
is featured by circling A-mapping by deep neural network
learning and I-mapping by solving searching, as illustrated
in Fig. 15 of [22]. Moreover, constrains encountered in TSP
and graph matching are tackled by an IA-DSM scheme [22],
[23], together with a feature enrichment technique [21].

A preliminary effort was recently made on TSP in [25] to
perform an improvement of one algorithm in the above deep
IA-search family. Specifically, V-AlphaGoZero in Table 1 of
[21] is improved with deep neural networks implemented by
a graph embedding network (GEN) [12], which is shortly
named as GEN-MCTS with AlphaGoZero replaced by its
core MCTS because we also need to modify some detailed
implementations suitable for merely GO. Interestingly,
promising results come in solving TSP problems of small-
to-medium sizes [25]. Here, we further propose to replace
the GEN part by GNN because several efforts [13]–[16]
demonstrated promising uses of GNN even without MCTS.

In other words, GEN-MCTS is extended into GNN-
MCTS, featured by three improvements. First, it improves
implementing the A-mapping in estimating the prior prob-
ability for each vertex as its output. Second, while prior
probabilities are used for tree search in a way similar to ones
in AlphaGoZero or V-AlphaGoZero in [21], it improves the

I-mapping with the lookahead scouting mechanism behind
CNneim-A [24] adopted here for re-estimating heuristics in
updating Q-values, somewhat like a variant of DCA-E in
Table 1 of [21]. Third, instead of memorizing the average
action value, we track the best action value found under the
subtree of each node for determining its exploitation value as
suggested in [26] in the context of the stock trading problem.

In 2D Euclidean graphs having up to 100 vertices, our
method could outperform other learning-based approaches
in the greedy framework, and it could also reach close to
the optimal solutions. Furthermore, experimental results on
large-scale the TSP instances demonstrate that the proposed
method could perform better than other learning-based meth-
ods even if trained on the small-scale instances. The results
suggest that our method is promising to solve combinatorial
optimization problems like the TSP.

The remainder of the paper is organized as follows: After
reviewing related works in Section II, our approach is for-
mulated in Section III. Experimental results are presented
in Section IV, followed by the conclusion of the article in
Section V.

II. RELATED WORK
The TSP is a well studied combinatorial optimization prob-
lem, and there are various ways to solve this problem.
Since our work follows the line of a learning-based method,
we restrict the literature survey only to the development of
various representative strategies used in the learning-based
methods.

In 1985, Hopfield et al. [27] proposed a neural network
to solve the TSP for the first time. After that, researchers
made many efforts to propose neural network based various
methods and also to improve their performances [28]–[33].
With the development of deep leaning in recent years, deep
neural networks have been adopted to solve the TSP also and
achieved remarkable results.

Vinyals et al. [9] proposed an architecture, called the
Pointer Net (Ptr-Net), to learn the conditional probability of
a tour using a mechanism of neural attention [34] in a super-
vised way. Instead of using attention to blend hidden units
of an encoder to a context vector, they used the same (atten-
tion) as pointers to the input vertices. During testing, they
used a beam search procedure to find the best possible tour.
Two flaws exist in that method. Firstly, the Ptr-Net can be
applied to solve small scale (n≤ 50) problems only. Secondly,
the beam search procedure might generate invalid routes also.

On the basis of the work in [9], Bello et al. [10] employed
the PtrNet as a policy model to learn a stochastic policy
over tours. Furthermore, they masked the visited vertices
to avoid deriving invalid routes and added a ‘‘glimpse’’
which aggregates different parts of the input sequence to
improve the performance of the method. Instead of training
the model in a supervised way, they introduced an actor-
critic algorithm [35] to learn the parameters of the model
and empirically demonstrated that the generalization is better
compared to optimizing a supervised mapping of labeled

VOLUME 8, 2020 108419

Z. Xing, S. Tu: GNN Assisted MCTS Approach to TSP

FIGURE 1. Approach overview. First, the graph is fed into the graph neural network, which captures graph characteristics and interactions between
vertices, and then generates a prior probability that indicates how likely each vertex is in the tour sequence. Then, with the assistance of the graph neural
network, a developed MCTS outputs an improved probability by scouting simulations. Lastly, we visit the best vertex among unvisited vertices according
to the improved probability. The above process will loop until all vertices are visited. Best viewed in color.

data. The algorithm significantly outperformed the super-
vised learning approach [9] with up to 100 vertices.

Kool et al. [11] introduced an efficient model and a training
method to improve the above stated learning-based heuristics
for routing problems. Compared to [10], they could reduce
the influence of order in which vertices are fed into the neural
network by replacing recurrence (LSTMs) with attention lay-
ers [36]. They also applied a reinforcement learning method
to train the model. Instead of learning a value function as a
baseline, they introduced a greedy rollout policy to generate a
baseline of improved quality and also to improve the conver-
gence speed of the approach. They improved the state-of-art
performance for 20, 50, and 100 vertices. Deudon et al. [17]
also proposed a framework, different from the work of
Kool et al. [11], which uses attention layers and the reinforce-
ment learning algorithm (actor-critic) to learn a stochastic
policy. They combined the machine learning methods with
the existing 2-opt heuristic algorithm to enhance the perfor-
mance of the framework.

However, as stated in [12], the above mentioned neural
architectures cannot yet effectively reflect the graph structure
of the TSP. Furthermore, Dai et al. [12] considered the
TSP as a graph, and proposed a framework which combines
reinforcement learning with graph embedding neural net-
work to construct solutions incrementally for the TSP and
other combinatorial optimization problems. They introduced
a graph embedding network based on the structure2vec [37]
to capture the current state of the solution and the structure
of a graph. Then, they used Q-learning parameterized by the
graph embedding network to learn a greedy policy that will
decide which vertex is to be inserted into the partial tour. They
adopted the farthest strategy [38] to get the best insertion
position in the partial tour.

Besides graph embedding [12], graph neural net-
work (GNN) is broadly used to solve graph-based problems.
Recently, some researchers have observed that GNN can be
used to discover useful patterns of the TSP [13], [14], [39]
and other graph-based combinatorial problems [15], [16], and

showed that GNN can find universal motifs that are present
in graphs of different scales.

Inspired by the success of GNN on combinatorial opti-
mization problems, we train a developed GNN to represent
the features of the TSP in a better way. Since the output of
the MCTS is the feedback information by fusing the prior
probability with the scouting exploration, we combine the
GNN with MCTS to get more reliable decisions.

III. PROPOSED APPROACH
Let G(V ,E) denotes a weighted graph, where V is the set
of vertices, and E is the set of edges. Also, let e(u, v) is
the weight of edge (u, v) ∈ E , where u, v ∈ V . We use
S = {v1, v2, . . . , vi} to represent a tour sequence that starts
with v1 and ends with vi, and S̄ = V \S is the set of candidate
vertices for addition to S.
Given the graph G(V ,E) or simply G, our goal is to derive

a tour by adding vertex v ∈ S̄ to S in turn. A natural approach
is to train a deep neural network to predict which vertex is to
be added to the partial tour sequence at a particular step. That
is, neural network f (G|S) will take graph G and partial tour
sequence S as input, and return probabilities of the vertices
indicating the likeliness of each vertex to get selected. For
the TSP, both the structural patterns of the graph and the state
of the vertices can become very complex to be described.
To represent such a complex context, we will leverage the
graph neural network (GNN) [40] to parameterize f (G|S).

Intuitively, we can directly use the prior probability to a
vertex, e.g., selecting a vertex with the highest probability,
to generate the tour sequence incrementally. However, deriv-
ing tours in this way might not be reliable as a learning based
algorithm has only one chance to compute the optimal tour,
and it never goes back to reverse the decision. To overcome
this drawback, we combine the graph neural network with the
Monte Carlo Tree Search [19], [20] to get a better policy.
On one hand, we use a variant of PUCT [41] to balance
exploration (i.e., visiting a state as suggested by the prior
policy) and exploitation (i.e., visiting a state that has the

108420 VOLUME 8, 2020

Z. Xing, S. Tu: GNN Assisted MCTS Approach to TSP

best value). Using the concept of prior probability, the search
space of the tree could be reduced substantially, enabling
the search to allocate more computing resources to the states
having higher values. On the other hand, we could get a more
reliable policy after a large number of simulations as the
output of the Monte Carlo Tree Search acts as the feedback
information by fusing the prior probability with the scouting
exploration. The overall approach is illustrated in Fig. 1.

A. DEEP NEURAL NETWORK ARCHITECTURE
To get a good network, information about the structures of
the concerned graph and contextual information, i.e., tour
sequence S = {v1, . . . , vi}, is required. We tag vertex v with
xv = 1 if it is already visited, otherwise xv = 0. Intuitively,
f (G|S) should summarize the state of such a ‘‘tagged’’ graph
and generate the prior probability for each vertex to get
included in S.
Unlike in other graph-based combinatorial optimization

problems such as the Maximal Independent Set (MIS) and
MinimumVector Cover (MVC) [15] as stated in [12], we have
not ignored edge features as the objective of the TSP is com-
puted based on the edge cost, i.e., the distance between two
vertices. Hence, we havemodified the basic GNN [40], which
we call the static edge graph neural network (SE-GNN),
to efficiently extract node and edge features of the TSP.

1) GRAPH NEURAL NETWORK
A GNNmodel consists of a stack of T neural network layers,
where each layer aggregates local neighborhood information,
i.e., features of neighbors of each node, and then passes
this aggregated information to the next layer. We use H t

v to
denote the real-valued feature vector associated with node
v at layer t. Specifically, the basic GNN model [40] can be
implemented as follows. In layer t = 1, 2, . . . ,T , a new
feature is computed as given by (1).

H t+1
v = σ

H t
vW

t
1 +

∑
u∈N (v)

H t
uW

t
2

 (1)

In (1), N (v) is the set of neighbors of vertex v, W t
1 and W t

2
are the parameter matrices for the layer t , and σ (·) denotes
a component-wise non-linear function such as a sigmoid
or a ReLU function. For t = 0, H0

v denotes the feature
initialization at the input layer.

As can be observed in (1), the edge information is not
taken into account. There are many ways to integrate edge
features. Gilmer et al. [42] considered the edge information
as a kind of metric to measure the usefulness of the neighbors
of a node, while Dai et al. [12] and Xie and Grossman [43]
took edge features as independent parts and integrated them
with node features. Since the edge information in the TSP is
important, we adopt the ways presented in [12], [43]. Accord-
ingly, edge features can be integrated with node features
using (2) [12].

µt+1v =σ

θ1xv+θ2 ∑
u∈N (v)

µtu+θ3
∑

u∈N (v)

σ (θ4w(v, u))

 (2)

In (2), θ1 ∈ Rl , θ2, θ3 ∈ Rl×l and θ4 ∈ Rl are all model
parameters.

We can see in (1) and (2) that the nonlinear mapping of the
aggregated information is a single-layer perceptron, which is
not enough to map distinct multisets into unique embeddings.
Hence, as per the suggestion in [44], we replace the single
perceptron with multi-layer perceptron. Finally, we compute
new node feature H using (3).

H t+1
v =MLPt

H t
vW

t
1+

∑
u∈N (v)

H t
uW

t
2+

∑
u∈N (v)

ev,uW t
3

 (3)

In (3), e(v, u) is the edge feature,1 W t
3 are parameter matrices,

and MLPt is the multi-layer perceptron for the layer t .
Note that SE-GNN differs from GEN [12] in the following

aspects: 1) SE-GNN replaces xv in (2) with Hv so that the
SE-GNN can integrate the latest feature of the node itself
directly. 2) each update process in the GEN can be treated
as one update layer of the SE-GNN, i.e., each calculation
is equivalent to going one layer forward, thus calculating T
times for T layers. Parameters of each layer of SE-GNN are
independent, while parameters in GEN are shared between
different update processes which limits the ability of the
neural network. 3)We replace σ in (2) withMLP as suggested
by [44] for helping neural networks to map distinct multisets
to unique embeddings.

We initialize the node feature H0 as follows. Each vertex
has a feature tag which is a 3-dimensional vector. The first
element of the vector is binary and it is equal to 1 if the
partial tour sequence S contains the vertex. The second and
third elements of the feature tag are, respectively, the x and
y coordinate values of the vertex. The problem is to find a
path from the last vertex to the first vertex, going through all
the unvisited vertices. To know the first and last vertices in
partial tour sequence S, we extend the node feature H0 by
adding feature tags of those vertices in S, besides the basic
feature tags as described above.

2) PARAMETERIZING f (G|S;2)
Once the feature for every vertex is computed after updating
T layers, we use the new feature for the vertices to define
f (G|S;2) function, which returns the prior probability for
each vertex indicating how likely the vertex will belong to
partial tour sequence S. More specifically, we fuse all vertex
feature HT

v as the current state representation of the graph
and parameterize f (G|S;2) as expressed by (4), where sum
means summation.

f (G|S;2) = softmax(sum(HT
1), . . . , sum(H

T
n)) (4)

During training, we minimize the cross-entropy loss for
each training sample (Gi, Si) in a supervised manner as given
by (5).

`(Si, f (Gi|Si;Θ)) = −
N∑
j=1

yj log f (Gi|Si(1 : j− 1);Θ) (5)

1Euclidean distance: given two points (x1, y1) and (x2, y2) in two-
dimensional plane, D =

√
(x2 − x1)2 + (y2 − y1)2

VOLUME 8, 2020 108421

Z. Xing, S. Tu: GNN Assisted MCTS Approach to TSP

In (5), Si is a tour sequence which is a permutation of the
vertices of graph Gi, and yj is a one-hot vector whose length
is N and the S(j)-th position is 1.

B. GRAPH NEURAL NETWORK ASSISTED MONTE CARLO
TREE SEARCH
Similar to the implementation in [18], the GNN-MCTS uses
graph neural networks as a guide ofMCTS. Each node s in the
search tree contains edges (s, a) for all legal actions a ∈ A(s).
Each edge stores a set of statistics,

{N (s, a),Q(s, a),P(s, a)}

where node s denotes the current state of graph including
sequence S and other graph information, action a denotes the
selection of vertex v from S̄ to S, N (s, a) is the visit count,
Q(s, a) is the action value and P(s, a) is the prior probability
of selecting edge (s, a).

It is to be mentioned that the following are three main
differences between the TSP and the Go game:
• TheGo game tracks the average winning rate of a branch
of MCTS to guide moves [18]. However, the TSP is
interested in finding the extreme, and hence the aver-
age value makes no sense to it as several suboptimal
routes may even surround the extreme route. Instead of
recording the average action value, we track the best
action value found under the subtree of each node for
determining exploitation value of tree node as suggested
in [26] in the context of the stock trading problem.

• In the Go game, it is common to use {0, 0.5, 1} to denote,
respectively, the loss, draw, and win in a game. It is not
only convenient, but it also meets the requirements of
UCT [20] if reward lies in the range of [0, 1]. In the TSP,
an arbitrary tour length can be achieved that does not
fall in a predefined interval. One can solve this issue by
adjusting the parameters of UCT in such a way that it
is feasible for a specified interval. Adjusting parameters
requires substantial trial-and-error due to the change in
the number of vertices. Instead, we address this issue by
normalizing the action value of node n, whose parent is
node p, in the range of [0, 1] using (6).

Qn =
Qn − wp
bp − wp

(6)

In (6), bp and wp are, respectively, the best (maximum)
and the worst (minimum) action value under p, andQn is
the action value of n. The actions under p are normalized
in the range of [0, 1] in such a way that the best action
is normalized to 1 and the worst action to 0.

• AlphaGo uses a learned value function (critic) v(s, θ)
to estimate the probability of the current player win-
ning from position s, where parameter θ is learned
from observation (s, π). However, in the TSP, such a
learned value function has to tolerate the large range
of value change between different solutions, while it is
also expected to preserve the sensitivity to very small
value change around the optimal solution. Thus, in our

Algorithm 1 Value Function
• start denotes the state of leaf node l
• B denotes the beam width
• S denotes the partial tour corresponding to a state.

1: Initialize beam = {start}
2: while beam 6= ∅ do
3: set = ∅
4: for each state s in beam do
5: for each successor state c of state s do
6: Compute value =

∑|S|
j=1 log f (G|S(1 : j − 1) of

the successor state c
7: set = set ∪ { successor state c }
8: end for
9: end for

10: beam = ∅
11: while set 6= ∅ and B < |set| do
12: Select state e in set with smallest value
13: Delete state e from set
14: end while
15: for each state s in set do
16: if state s is an end state then
17: Select state r in set with biggest value
18: Computer tour length corresponding to state r
19: return tour length
20: else
21: beam = beam ∪ { state s }
22: end if
23: end for
24: end while

view, the above reason makes the learned value func-
tion hardly workable in the TSP. Instead, we design a
non-learnable value function h(s) that combines the pre-
trained GNN and the beam search to evaluate the pos-
sible tour length from the current state to the end state.
Guided by the output of the pre-trained GNN, the value
function executes the beam search from the state leaf
corresponding to leaf node l until reaching an end state.
We set the value of leaf node l as Vl = −h(stateleaf). The
value function is described in Algorithm 1.

The GNN-MCTS proceeds by iterating over the four
phases and then selects a move to play.

• Selection Strategy.The first in-tree phase of each rollout
starts at the root of node s0 of the search tree and finishes
when the rollout reaches a leaf node sl at time step
l. At time step t<l, we use a variant of PUCT [41]
to balance exploration (i.e., visiting the states as sug-
gested by the prior policy) and exploitation (i.e., visiting
the states which have the best value) according to the
statistics in the search tree as given by (7) and (8),
respectively, where cpuct is a constant to trading off
between exploration and exploitation.

at = argmax
a
(Q(st , a)+ U (st , a)) (7)

108422 VOLUME 8, 2020

Z. Xing, S. Tu: GNN Assisted MCTS Approach to TSP

U (s, a) = cpuctP(s, a)

√∑
b N (s, b)

1+ N (s, a)
(8)

• Expansion Strategy. When a leaf node l is reached,
the corresponding state sl is evaluated by the graph
neural network to obtain the prior probability p of its
children nodes. The leaf node is expanded and the statis-
tic of each edge (sl, a) is initialized to {N (sl, a) =
0,Q(sl, a) = −∞, 2P(sl, a) = pa}.

• Simulation Strategy. Rather than using a random strat-
egy, we use value function h(s) to evaluate the length of
the tour that may be generated from the leaf node l.

• Back-Propagation Strategy. For each step t < l,
the edge statistics are updated in a backward process.
The visit counts are increased as N (st , at) = N (st , at)+
1, and the action value is updated to the best value as
Q(st , at) = max(Q(st , at),Vl).

• Play. At the end of several rollouts, we select the node
with the biggest P̂(a|s0) = 1− Q(s0,a)∑

b Q(s0,b)
as the next

move a in the root position s0. The search tree will be
reused at subsequent time steps: the child node relating
to the selected node becomes the new root node, and all
the statistics of sub-tree below this child node is retained.

IV. EXPERIMENTS
A. EXPERIMENTAL SETUP
1) INSTANCE GENERATION
To evaluate our method against other approximation algo-
rithms and deep learning-based approaches, we use an
instance generator from the DIMACS TSP Challenge [45]
to generate two types of Euclidean instances: ‘‘random’’
instances consisting of n points scattered uniformly at random
in the [106, 106] square; ‘‘clustered’’ instances consisting
of n points that are clustered into n/100 clusters. We con-
sider three benchmark instances, namely Euclidean TSP20,
TSP50, and TSP100.

2) BASELINES
To compute the optimal solutions, we use two state-of-the-art
solvers, Concorde 3 [46] and Gurobi 4 [47]. We compare our
results with those of the Nearest, Random and Farthest Inser-
tion, as well as Nearest Neighbor, which are non-learning
baseline algorithms that also derive a tour by adding ver-
tices successively. Additionally, we compare our results with
those of the excellent deep learning-based methods based on
the greedy framework as mentioned in Section II, the most
important of which are the methods of Vinyals et al. [9],
Bello et al. [10], Kool et al. [11], and Dai et al. [12].

3) TRAINING AND TESTING
To train SE-GNN (settings are in Section IV-E5), we generate
100,000, 40,000 and 20,000 instances for TSP20, TSP50,

2In the experiment, we initialize Q with -5.0, -10.0 and -15.0 for TSP20,
TSP50, and TSP100, respectively.

3http://www.math.uwaterloo.ca/tsp/concorde/
4http://www.gurobi.com/

and TSP100, respectively. We use two state-of-art solvers
(Gurobi and Concorde) to obtain the optimal tour for each
instance. Then we generate samples for each instance accord-
ing to the optimal tour sequence. We divide the dataset
into a training set, a validation set, and a test set in the
ratio of 8: 1: 1. We use Adam [48] with 512 mini-batches
and a learning rate of 10−3. The training is conducted for
60 epochs on a machine with 2080ti GPU. After training
models for TSP20, TSP50, and TSP100, respectively, we use
the pre-trained SE-GNN to guide MCTS. During testing,
we randomly generate 1000 instances for the above three
models. The parameter settings of the GNN-MCTS used
in our experiments are as follows: we set cpuct = 1.3 and
beam width = 1 (more discussion is in Section IV-E3); we
set rollouts = 800, 800 and 1200 for TSP20, TSP50, and
TSP100, respectively.

B. RESULTS
Besides non-learning algorithms, we compare our method
with excellent deep learning-based works which derive tours
using some greedy mechanisms. Results of the pointer net-
work [9] for random instances of TSP20 and TSP50 are
taken for optimality gaps. Moreover, we extend the work
of Li et al. [15], where GNN and breadth-first tree search
were combined for solving MIS, to the TSP with some
modifications (more details are in V). We pick the best tour
recorded during the search process as the final tour. Since
their algorithm [15] could not find any feasible solution
when the running time was same with that of GNN-MCTS,
we increase their running time by 10 times and get some
feasible solutions.

Rather than reporting the approximation ratio c
c∗ , where c

is the objective value of the solution tour and c∗ is the best
known objective value of the instance, we use the average
optimality gap c−c∗

c∗ =
c
c∗ − 1 as presented in [11]. Table 1

reports the gap between the solution of each approach and the
best-known solution for TSP20, TSP50, and TSP100. Table 2
reports the confidence interval of our method at different
confidence levels.

The results of our method and those of other learning-
based methods show that our approach performs favorably
against other methods up to 100 vertices on the ‘‘random’’
and ‘‘clustered’’ instances. Since the breadth-first tree search
cannot find a feasible tour in a limited time, the method of
Li et al. [15] fails on the TSP instances of size n ≥ 50.

C. GENERALIZATION TO LARGER PROBLEMS
In order to generalize our method, we train the SE-GNN
on small-scale instances and test the GNN-MCTS on
larger instances, including TSP200, TSP300, TSP500,
and TSP1000. We compare our work mainly with the
learning-based methods proposed by Kool et al. [11] and
Dai et al. [12], which achieved the best performance known so
far, in Encoder-Decoder and Graph Embedding framework,
respectively. The experimental results are shown in Table 3.

VOLUME 8, 2020 108423

Z. Xing, S. Tu: GNN Assisted MCTS Approach to TSP

TABLE 1. GNN-MCTS vs baselines. The gap % is w.r.t. the best value across all methods.

TABLE 2. Interval on different confidence levels.

We first train our method and the above mentioned two
learning-based methods on TSP100, and then test them on
TSP200, TSP300, and TSP500. All the three methods can
work on large-scale instances, but our method performsmuch
better than the methods proposed by Kool et al. [11] and
Dai et al. [12]. Furthermore, we train the three methods on
TSP500 and then test them on TSP1000. It is to be men-
tioned that the method proposed by Kool et al. [11] does
not converge when it is trained on TSP500; the reason of
which could be that the SE-GNN can find more universal
graph motifs on large-scale instances. Although the method
proposed by Dai et al. [12] could work on TSP500 and
TSP1000 when trained on TSP500, its performance was
worse than that obtained by training it on TSP100. Compared
with Dai et al. [12], our method could perform much better
on large-scale instances including TSP500 and TSP1000; the
reason of which could be that the GNN-MCTS can provide
more reliable decisions than 1-step Q-learning [49]used in the
method of Dai et al. [12]. These results show that our method
could be better generalized to larger instances than other
learning-based methods, even if trained on smaller instances.

D. RUNNING TIMES AND CONVERGENCE
CHARACTERISTICS
Running times are important, but hard to compare as theymay
vary in two orders of magnitude as a result of the differences
in implementation (Python or C++) and hardware (CPU or
GPU). We test our algorithm, Gurobi, and other learning-
based methods on a machine having 32 virtual CPU systems
(2 * Xeon(R) E5-2620) and 8 * 2080ti. At each epoch, we test

FIGURE 2. The running time of GNN-MCTS on different scale instances.
The gray polyline and blue polyline represent the running time of
GNN-MCTS on small scale and larger scale instances, respectively. Best
viewed in color.

32 instances in parallel. After 10 epochs, we report the time
taken to solve each test instance (see Table 4). Our method is
slower than other learning-based methods due to the scouting
exploration. Our code is written in Python and we notice that
the speed of the MCTS procedure can be increased by coding
it in C++. It is to be mentioned that the Gurobi solves the
instances of TSP1000 very slowly and it could not give any
feasible solution even after running for 10 hours.

Due to the GNN and MCTS, it is difficult to analyze the
time complexity of the GNN-MCTS, so we visualize the
running time of GNN-MCTS on instances of different sizes
(see in Fig. 2). By comparing the steepness of two polylines,
we can conclude that the time complexity of GNN-MCTS is
lower on larger scale instances.

Moreover, we analyze the running time of each part of
the GNN-MCTS. Before deriving a tour, our method needs
a large number of rollouts, where each rollout consists of
four phases, which are selection, expansion, simulation and

108424 VOLUME 8, 2020

Z. Xing, S. Tu: GNN Assisted MCTS Approach to TSP

TABLE 3. GNN-MCTS and other methods’ generalization on random instances.

TABLE 4. Running times of different methods.

TABLE 5. Running time of four phases in each rollouts.

backpropagation. The time cost of four phases in each rollout
is shown in Table 5. We can see that the simulation phase
takes up almost all the time.

MCTS has been proven to converge to optimal solu-
tions under assumptions of infinite memory and computation
time (see [20] for more information). Compared with basic
MCTS, GNN-MCTS replaces the uniform random selection
strategy by a learned value function in simulation phase,
i.e., incorporating specialized knowledge in MCTS, and the
latter approach typically allows for faster convergence at the
expense of simplicity and generality.

E. ABLATION STUDY
1) AVERAGE VS BEST
We analyze the effects of different strategies used in the
GNN-MCTS procedure. The comparison of the two strate-
gies are:
• Best. Unlike in AlphaGo, we track the best action value
found under the subtree of each node for determining
its exploitation value. At the end of several rollouts,
we select the node with the best (biggest) action value
as the next move in the root position.

• Average. As with the strategy used in AlphaGo, which
is common in a two-player game, we track the average
action value found under the subtree of each node as its
exploitation value. Rather than selecting the node with
the best (biggest) action value, we select the most visited
node as the next move in the root position.

We use GNN-MCTS represents that tree search uses
‘‘Best’’ strategy and GNN-MCTSave. represents that tree
search uses ‘‘Average’’ strategy. Table 1 shows the Gap
between the solutions of our approach with two strategies
and the best-known solution for TSP20, TSP50, and TSP100.

From the results of GNN-MCTS andGNN-MCTSave., we can
see that the performance of our method is affected seriously
when using the ‘‘Average’’ strategy. We believe that the
performance of GNN-MCTSave. is degraded as the average
action value under a node is not a good estimate if the optimal
value under the node is surrounded by some inferior values.

2) COMPONENT CONTRIBUTION ANALYSIS OF GNN-MCTS
We conduct a controlled experiment on the test set to ana-
lyze the contribution of each component to the presented
approach.
• Instead of the MCTS, we use SE-GNN to derive
tours directly, i.e., to select the vertex with the largest
prior probability at each step; we call this version as
GNN-MCTS-t (without tree search).

• We replace the value function h(s) (see in Algorithm 1)
with random rollout function to evaluate the state during
MCTS procedure; we call this version as GNN-MCTS-v
(without value function).

• We take the output of the SE-GNN out of the picture and
initialize prior probability to be 1 for newly expanded
nodes; we call this version as GNN-MCTS-p (without
prior probability provided by SE-GNN).

• A pure MCTS, which removes SE-GNN prior and
replace value function h(s) with random rollout function,
is listed for comparison; we call this version as MCTS
(equal to GNN-MCTS-p,v).

Table 1 shows the Gap between the solution of each
approach and the best-known solution for different TSP
instances. As a whole, the performance (‘‘Gap’’ measure)
of GNN-MCTS-t drops a lot from that of GNN-MCTS,
which shows that the developedMCTS can efficiently prevent
the algorithm from falling into any local optimum and it
plays an important role in enhancing the performance of
our method.

We make further detail analysis of the reasons why the
algorithm is improved. Firstly, by comparing the perfor-
mances of GNN-MCTS-p andGNN-MCTS, we can conclude
that SE-GNN prior could help MCTS to effectively reduce

VOLUME 8, 2020 108425

Z. Xing, S. Tu: GNN Assisted MCTS Approach to TSP

FIGURE 3. The performance of the value function with different beam
width. Histogram represents ‘‘Gap’’ and polyline indicates running time.
Best viewed in color.

the search space so that MCTS can allocate more computing
resources to the states with high action value. Secondly,
the results obtained from GNN-MCTS-v and GNN-MCTS
show that an appropriate value function h(s) can well estimate
the tour length from the state of the leaf node to the final
state, and it enables MCTS to perform better than that using
just a random rollout function. Finally, by comparing the
performances of GNN-MCTS-p, GNN-MCTS-v and other
learning-based methods, we can see that when one compo-
nent is removed from GNN-MCTS, i.e., SE-GNN prior or
value function, our method can still derive a reasonable tour
and perform well than other learning-based methods. That
is, when it is difficult to design appropriate components for
other similar problems, our method could achieve satisfactory
results even with only one of them.

3) FURTHER ANALYSIS OF VALUE FUNCTION
We conduct experiments to explore the effects of different
beam widths on the performance of the value function. Since
the beam width mainly affects the performance of the value
function, we use the result of this function as a measure and
define the ‘‘Gap’’ as reported in Table 1. Specifically, we set
beamwidth to 1, 5, 10, 15, 20, and test the performance of the
value function on random instances including TSP20, TSP50,
and TSP100. We also count the time cost of the value func-
tion when settings different beam widths. The experimental
results are shown in Fig. 3.

When the beam width is increased from 1 to 5, the
performance of the value function is greatly improved.
However, as the beam width continues to increase,
the improvement in the value function becomes less notice-
able. Moreover, the running time of the value function
increases about 5 times when the beam width is increased
from 1 to 5. The above results show that we need to make a
trade-off between the performance and the time cost of the
value function.

4) COMPARISON WITH OTHER GRAPH NEURAL NETWORKS
Compared with basic GNN [40] and GCN [50], [51],
SE-GNN integrates edge information for computing new
node feature, thus it should extract more information and
perform well than basic GNN and GCN. To support this
statement, we compare the performances of basic GNN,
GCN, and SE-GNN on random instances, including TSP20,
TSP50, and TSP100. We derive tours by directly using the
neural network, i.e., selecting vertex with the largest prior
probability at each step. The performance of the three GNN
is reported in Table 6.
The performances of the GNN, GCN, and SE-GNN show

that edge features are important for the TSP. We agree that in
principle the neural network should have learned the distance
information from the coordinates of the vertices. It is a simple
thing for people, but our empirical results indicate that it
is difficult for the neural network to learn such distance
information.

Moreover, we conduct a controlled experiment to ana-
lyze why SE-GNN performs better than other GNNs. Com-
pared with Crystal Graph Convolutional Neural Networks
(CGCNN) [43] and Message Passing Neural Networks
(MPNN) [42], the highest improvement of SE-GNN occurs
as the single perceptron is replaced with a multilayer per-
ceptron (MLP). To verify this point, we test the perfor-
mance of SE-GNNσ which replaces MLP in (3) with a single
perceptron (σ).
As shown in Table 6, the performances of SE-GNNσ and

CGCNN are comparable. However, when the single percep-
tron is replaced with MLP, the performance of the SG-GNN
is greatly improved, especially in the ‘‘Gap’’ metric. These
results show that the MLP, which is used as a non-linear
mapping function, plays an important role in achieving better
performance.

In addition to different mapping functions, the edge fea-
tures fusion mechanism of SE-GNN and other GNNs are also
different. MPNN considers the edge features as a kind of
metric to measure the usefulness of the neighbors of a node.
However, the SE-GNN and CGCNN consider edge features
and node features to be equally important during the updating
process. The results of SE-GNN, CGCNN and MPNN show
that the integrationmechanism used in SE-GNN andCGCNN
is more suitable for the TSP.

5) DIFFERENT SETTINGS OF SE-GNN
The SE-GNN has T = 3 update layers, which is deep
enough for a vertex to aggregate information associated with
its neighboring vertices. Since the input graph is composed
of vertices tagged with 9-dimensional features, the width of
the first layer is H0

= 9. The width of the other layers is
identical: H t

= 128 for t = 1, 2.
The SE-GNN has a deep architecture that consists of

several update layers. Therefore, as the model gets deeper
with more layers, more information can be aggregated by the
vertices. We train SE-GNN with different number of layers

108426 VOLUME 8, 2020

Z. Xing, S. Tu: GNN Assisted MCTS Approach to TSP

TABLE 6. Performance of different neural networks on random instances.

TABLE 7. Effect of the number of layers on random instances.

on random instances including TSP20, TSP50, and TSP100.
We directly use the prior probability to derive a tour sequence,
i.e., to select the vertex with the largest prior probability at
each step.

The results in Table 7 show that the performance of SE-
GNN will become better as the number of network layers
increases. However, three layers are enough for SE-GNN to
extract features for the TSP in our experiments. Therefore,
the three-layer SE-GNN is used by default.

V. CONCLUSION
In this work we tackle the classical traveling salesman prob-
lem (TSP) by combining a graph neural network (GNN) and
Monte Carlo Tree Search (MCTS). For better representation
of the features of TSP, we train a developed GNN to integrate
node features with edge features in a better way and to return
the prior probability for each vertex as the deciding factor for
the inclusion of the node to the partial tour. Instead of directly
using the prior probability evaluated by GNN to derive a
tour, we combine the GNN with the MCTS to provide a
more reliable decision as the output of MCTS is the feedback
information by fusing the prior probability with the scouting
exploration. The experimental results show that the proposed
approach can obtain shorter tours than other state-of-the-art
learning-based methods. Also, the proposed approach has a
good generalization capability on larger instances even if it is
trained on smaller instances. We see the presented work as a
step towards a family of solvers for NP-hard problems, which
leverages both GNN and MCTS.

APPENDIX
EXTENSION TO TSP
To make the method of Li et al. [15] applicable to TSP,
we make some changes as follows,
1) Li et al. adopt the hindsight loss and train GNN to

generate multiple probability maps to differentiate mul-
tiple optimal solutions for the same graph. However,
the optimal tour is unique for TSP. So we modify their
model by removing the hindsight loss and training GNN
to output single probability map.

2) Li et al. propose a breadth-first tree search to increase
the diversity of solutions, which maintains a queue of
incomplete solutions and randomly chooses one of them
to expand in each step. Li et al. also use graph reduction
algorithms [52], [53] to reduce the search space, but such
graph reduction algorithms are not available for TSP.
To reduce the search space, we only expand the states
with top three prior probability output by GNN and then
add these states to the queue.

ACKNOWLEDGMENT
The author Zhihao Xing thanks Kaixuan Zhao and Zhicheng
Wang for the help in experiments by the existing methods:
Pointer Net and Dai et al.’s method, and also thanks Wenjing
Huang, Qingsong Xie, Peiying Li, and Sicong Zang for help-
ful discussions. The authors thank anonymous reviewers for
all the comments and suggestions.

REFERENCES
[1] D. L. Applegate, R. E. Bixby, V. Chvatal, and W. J. Cook, The Trav-

eling Salesman Problem: A Computational Study. Princeton, NJ, USA:
Princeton Univ. Press, 2006.

[2] C. H. Papadimitriou, ‘‘The Euclidean travelling salesman problem is NP-
complete,’’ Theor. Comput. Sci., vol. 4, no. 3, pp. 237–244, Jun. 1977.

[3] E. L. Lawler, J. K. Lenstra, A. H. G. RinnooyKan, andD. B. Shmoys, ‘‘The
traveling salesman problem: A guided tour of combinatorial optimization,’’
J. Oper. Res. Soc., vol. 37, no. 6, p. 655, Jun. 1986.

[4] M. T. Goodrich and R. Tamassia, ‘‘The christofides approximation algo-
rithm,’’ Algorithm Design Application. Hoboken, NJ, USA: Wiley, 2015,
pp. 513–514.

[5] D. S. Johnson and L. A. McGeoch, ‘‘The traveling salesman problem:
A case study in local optimization,’’ Local search Combinat. Optim., vol. 1,
no. 1, pp. 215–310, 1997.

[6] M. Dorigo and L. M. Gambardella, ‘‘Ant colonies for the travelling sales-
man problem,’’ Bio Syst., vol. 43, no. 2, p. 73, 1997.

[7] K. He, G. Gkioxari, P. Dollár, and R. Girshick, ‘‘Mask R-CNN,’’ in Proc.
IEEE Int. Conf. Comput. Vis., 2017, pp. 2961–2969.

[8] Y. LeCun, Y. Bengio, and G. Hinton, ‘‘Deep learning,’’ Nature, vol. 521,
no. 7553, p. 436, 2015.

[9] O. Vinyals, M. Fortunato, and N. Jaitly, ‘‘Pointer networks,’’ in Proc. Int.
Conf. Neural Inf. Process. Syst., 2015 pp. 2692–2700.

[10] I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio, ‘‘Neural combi-
natorial optimization with reinforcement learning,’’ in Proc. 5th Int. Conf.
Learn. Represent. (ICLR), Toulon, France, Apr. 2017, pp. 1–8.

[11] W. Kool, H. van Hoof, and M. Welling, ‘‘Attention, learn to solve routing
problems!’’ in Proc. Int. Conf. Learn. Represent., 2019, pp. 1–8.

VOLUME 8, 2020 108427

Z. Xing, S. Tu: GNN Assisted MCTS Approach to TSP

[12] H. Dai, E. Khalil, Y. Zhang, B. Dilkina, and L. Song, ‘‘Learning combi-
natorial optimization algorithms over graphs,’’ in Proc. Adv. Neural Inf.
Process. Syst., 2017, pp. 6348–6358.

[13] M. Prates, P. H. Avelar, H. Lemos, L. C. Lamb, andM. Y. Vardi, ‘‘Learning
to solve np-complete problems: A graph neural network for decision TSP,’’
in Proc. AAAI Conf. Artif. Intell., vol. 33, 2019, pp. 4731–4738.

[14] E. Groshev, A. Tamar, M. Goldstein, S. Srivastava, and P. Abbeel, ‘‘Learn-
ing generalized reactive policies using deep neural networks,’’ in Proc.
AAAI Spring Symp., 2018, pp. 1–5.

[15] Z. Li, Q. Chen, and V. Koltun, ‘‘Combinatorial optimization with graph
convolutional networks and guided tree search,’’ in Proc. Adv. Neural Inf.
Process. Syst., 2018, pp. 539–548.

[16] M. Gasse, D. Chételat, N. Ferroni, L. Charlin, and A. Lodi, ‘‘Exact combi-
natorial optimization with graph convolutional neural networks,’’ in Proc.
Adv. Neural Inf. Process. Syst., 2019, pp. 15554–15566.

[17] M. Deudon, P. Cournut, A. Lacoste, Y. Adulyasak, and L. M. Rousseau,
‘‘Learning heuristics for the TSP by policy gradient,’’ in Proc. Int. Conf.
Integr. Constraint Program., 2018, pp. 170–181.

[18] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre,
G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner,
I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and
D. Hassabis, ‘‘Mastering the game of go with deep neural networks and
tree search,’’ Nature, vol. 529, no. 7587, pp. 484–489, Jan. 2016.

[19] R. Coulom, ‘‘Efficient selectivity and backup operators in monte-carlo tree
search,’’ in Proc. Int. Conf. Comput. Games. Springer, 2006, pp. 72–83.

[20] L. Kocsis and C. Szepesvári, ‘‘Bandit based monte-carlo planning,’’ in
Proc. Eur. Conf. Mach. Learn. Springer, 2006, pp. 282–293.

[21] L. Xu, ‘‘Deep bidirectional intelligence: AlphaZero, deep IA-search, deep
IA-infer, and TPC causal learning,’’ Appl. Informat., vol. 5, no. 1, p. 5,
Dec. 2018.

[22] L. Xu, ‘‘An overview and perspectives on bidirectional intelligence: Lmser
duality, double IA harmony, and causal computation,’’ IEEE/CAA J.
Autom. Sinica, vol. 6, no. 4, pp. 865–893, Jul. 2019.

[23] L. Xu, ‘‘Deep ia-bi and five actions in circling,’’ in Intelligence Science and
Big Data Engineering Visual Data Engineering, Z. Cui, J. Pan, S. Zhang,
L. Xiao, and J. Yang, Eds. Cham, Switzerland: Springer, 2019, pp. 1–21.

[24] L. Xu, P. Yan, and T. Chang, ‘‘Algorithm cnneim—A and its mean com-
plexity,’’ in Proc. 2nd Int. Conf. Comput. Appl.Beijing, China: IEEE Press,
Jun. 1987, pp. 494–499.

[25] Z. Xing, S. Tu, and L. Xu, ‘‘Solve traveling salesman problem by Monte
Carlo tree search and deep neural network,’’ 2020, arXiv:2005.06879.
[Online]. Available: http://arxiv.org/abs/2005.06879

[26] X. Gao, S. Tu, and L. Xu, ‘‘A∗ tree search for portfolio man-
agement,’’ 2019, arXiv:1901.01855. [Online]. Available: http://arxiv.
org/abs/1901.01855

[27] J. J. Hopfield and D. W. Tank, ‘‘Neural computation of decisions in
optimization problems,’’ Biol. Cybern., vol. 52, no. 3, p. 141, 1985.

[28] V. den Bout and Miller, ‘‘A traveling salesman objective function that
works,’’ in Proc. IEEE Int. Conf. Neural Netw., Jul. 1988, pp. 299–303.

[29] Brandt, W. Yao, Laub, and Mitra, ‘‘Alternative networks for solving the
traveling salesman problem and the list-matching problem,’’ in Proc. IEEE
Int. Conf. Neural Netw., 1988, pp. 333–340.

[30] F. Favata and R. Walker, ‘‘A study of the application of kohonen-type neu-
ral networks to the travelling salesman problem,’’ Biol. Cybern., vol. 64,
no. 6, pp. 463–468, 1991.

[31] J. C. Fort, ‘‘Solving a combinatorial problem via self-organizing process:
An application of the kohonen algorithm to the traveling salesman prob-
lem,’’ Biol. Cybern., vol. 59, no. 1, pp. 33–40, Jun. 1988.

[32] B. Angéniol, G. de La Croix Vaubois, and J.-Y. Le Texier, ‘‘Self-organizing
feature maps and the travelling salesman problem,’’ Neural Netw., vol. 1,
no. 4, pp. 289–293, Jan. 1988.

[33] T. Kohonen, ‘‘Self-organized formation of topologically correct feature
maps,’’ Biol. Cybern., vol. 43, no. 1, pp. 59–69, 1982.

[34] D. Bahdanau, K. Cho, and Y. Bengio, ‘‘Neural machine translation by
jointly learning to align and translate,’’ in 3rd Int. Conf. Learn. Represent.,
2015, pp. 1–8.

[35] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, ‘‘Asynchronous methods for deep rein-
forcement learning,’’ in Proc. 33nd Int. Conf. Mach. Learn., 2016,
pp. 1928–1937.

[36] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, ‘‘Attention is all you need,’’ in Proc. Int. Conf.
Neural Inf. Process. Syst., 2017, pp. 5998–6008.

[37] H. Dai, B. Dai, and L. Song, ‘‘Discriminative embeddings of latent variable
models for structured data,’’ in Proc. 33nd Int. Conf. Mach. Learn. (ICML),
2016, pp. 2702–2711.

[38] D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis, ‘‘An analysis of several
heuristics for the traveling salesman problem,’’ in Proc. Fundam. Problems
Comput., Essays Honor Professor Daniel J. Rosenkrantz, 2013, pp. 45–69.

[39] A. Nowak, S. Villar, A. S. Bandeira, and J. Bruna, ‘‘Revised
note on learning algorithms for quadratic assignment with graph
neural networks,’’ 2017, arXiv:1706.07450. [Online]. Available:
http://arxiv.org/abs/1706.07450

[40] W. Hamilton, Z. Ying, and J. Leskovec, ‘‘Inductive representation learn-
ing on large graphs,’’ in Proc. Adv. Neural Inf. Process. Syst., 2017,
pp. 1024–1034.

[41] C. D. Rosin, ‘‘Multi-armed bandits with episode context,’’ Ann. Math.
Artif. Intell., vol. 61, no. 3, pp. 203–230, Mar. 2011.

[42] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, andG. E. Dahl, ‘‘Neural
message passing for quantum chemistry,’’ in Proc. 34th Int. Conf. Mach.
Learn., vol. 70, 2017, pp. 1263–1272.

[43] T. Xie and J. C. Grossman, ‘‘Crystal graph convolutional neural networks
for an accurate and interpretable prediction of material properties,’’ Phys.
Rev. Lett., vol. 120, no. 14, Apr. 2018, Art. no. 145301.

[44] K. Xu,W.Hu, J. Leskovec, and S. Jegelka, ‘‘How powerful are graph neural
networks?’’ in Proc. Int. Conf. Learn. Represent., 2019, pp. 1–10.

[45] D. S. Johnson, G. Gutin, L. A. Mcgeoch, A. Yeo, W. Zhang, and
A. Zverovitch, ‘‘Experimental analysis of heuristics for the ATSP,’’ inProc.
Local Search Combinat. Optim., 2001, pp. 445–487.

[46] D. Applegate, R. Bixby, V. Chvatal, and W. Cook. (2006). Concorde TSP
Solver. [Online]. Available: http://www.math.uwaterloo.ca/tsp/concorde/

[47] G. Optimization. (2013). Gurobi optimizer 5.0. [Online]. Available:
http://www.gurobi.com

[48] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic opti-
mization,’’ 2014, arXiv:1412.6980. [Online]. Available: http://arxiv.
org/abs/1412.6980

[49] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

[50] M. Defferrard, X. Bresson, and P. Vandergheynst, ‘‘Convolutional neural
networks on graphs with fast localized spectral filtering,’’ in Proc. Adv.
Neural Inf. Process. Syst., 2016, pp. 3844–3852.

[51] T. N. Kipf and M. Welling, ‘‘Semi-supervised classification with graph
convolutional networks,’’ in Proc. 5th Int. Conf. Learn. Represent., 2017,
pp. 1–8.

[52] T. Akiba and Y. Iwata, ‘‘Branch-and-reduce exponential/FPT algorithms
in practice: A case study of vertex cover,’’ Theor. Comput. Sci., vol. 609,
pp. 211–225, Jan. 2016.

[53] S. Lamm, P. Sanders, C. Schulz, D. Strash, and R. F. Werneck, ‘‘Finding
near-optimal independent sets at scale,’’ J. Heuristics, vol. 23, no. 4,
pp. 207–229, Aug. 2017.

ZHIHAO XING received the B.S. degree in
software engineering from Shandong University,
Jinan, China, in 2016. He is currently pursu-
ing the M.Phil. degree in computer science and
technology with Shanghai Jiao Tong University,
Shanghai, China.

His research interests include machine learning
and combinatorial optimization problems.

SHIKUI TU (Member, IEEE) received the B.Sc.
degree from Peking University, in 2006, and the
Ph.D. degree from The Chinese University of
Hong Kong, in 2012.

From December 2012 to January 2017, he was
a Postdoctoral Associate with UMass, Worces-
ter. He is currently a tenure-track Associate
Professor with the Department of Computer
Science and Engineering, Shanghai Jiao Tong
University (SJTU). He is also the Academic

Secretary with the Center for Cognitive Machines and Computational Health
(CMaCH), SJTU. He has published more than 30 academic papers in top
conferences and journals, including Science, Cell, NAR, and so on with
high impact factors. His research interests include machine learning and
bioinformatics.

108428 VOLUME 8, 2020

