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Abstract
Leastmean square error reconstruction for the self-organizing network (Lmser) was proposed
in 1991, featured by a bidirectional architecture with several built-in natures. In this paper, we
developed Lmser into CNN based Lmser (CLmser), highlighted by new findings on strengths
of two major built-in natures of Lmser, namely duality in connection weights (DCW) and
duality in paired neurons (DPN). Shown by experimental results on several real benchmark
datasets, DCW and DPN bring to us relative strengths in different aspects. While DCW and
DPN can both improve the generalization ability of the reconstruction model on small-scale
datasets and ease the gradient vanishing problem, DPN plays the main role. Meanwhile, DPN
can form shortcut links from the encoder to the decoder to pass detailed information, so it can
enhance the performance of image reconstruction and enables CLmser to outperform some
recent state-of-the-art methods in image inpainting with irregularly and densely distributed
point-shaped masks.

Keywords Lmser · Duality in connection weights · Duality in paired neurons

1 Introduction

Studies on bidirectional neural networks can be traced back to auto-association in the 1980s
[4]. Typically, three-layer networks were used to make auto-association to learn inner rep-
resentations of observed signals [1]. Generally, the bottom-up part mapping from the input
layer X to the topmost coding layer Y , i.e., X → Y is called encoder, while the top-down
direction to recover the input from the topmost coding layer is called decoder, i.e., Y → X̂ ,
where X̂ represents a reconstruction of X . The two parts form an autoencoder (AE) network.
The underlying principle of AE implements approximately an identical mapping X → X̂ by
a direct cascading of X → Y and Y → X̂ , which forms a simple circle.

Another typical example was least mean square error reconstruction (Lmser) self-
organizing network that was first proposed in 1991 [23,24]. Proceeded beyond AE, Lmser is
featured by a bidirectional architecture with several built-in natures, for which readers can
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refer to Table I in Ref. [25]. Two major natures are duality in connection weights (DCW) and
duality in paired neurons (DPN). DCW refers to using the symmetric weights in correspond-
ing layers in encoder and decoder such that the direct cascading by AE is further enhanced.
DPN refers to constraining the neurons in corresponding layers between the encoder and
decoder to be the same.

The purpose of designing such a symmetrical structure in Lmser is to approximate identity
mapping per two consecutive layers simply through WTW ≈ I , where WTW = I holds
only if the weight matrix W is orthogonal. In image reconstruction, the network is trained to
form an identity mapping, and the two dualities aim to minimize the error between bottom-
up input and top-down prediction at every layer. Meanwhile, DCW and DPN can ease the
gradient vanishing problem by adding some extra terms to the gradients of parameters.

Although proposed early in 1991, only one-layer Lmser was implemented due to the lim-
itations on both computing power and data amount in the 1990s. It was shown theoretically
and experimentally that a neuron in Lmser net behaved like a feature detector in the cor-
tical field during the learning process [24]. However, the advantage of DPN could not be
demonstrated in one-layer Lmser, and several potential functions of Lmser in deep network
structure were speculated in [23] but have not been investigated.

In this paper, we present an effective and practical implementation of multilayer Lmser
and develop it into a convolutional neural network (CNN) based structure (CLmser) for image
data. In the perception phase of Lmser, the signals propagate forwardly and backwardly in
a dynamic process which is hard to implement in practice. To overcome this problem, we
decouple the dynamic process in the perception phase approximately into recurrent iterations
of a bottom-up pass with encoder-to-decoder skip connections and a top-down pass with
decoder-to-encoder feedback connections. Then the perception phase is implemented by
updating the neurons in a layer-by-layer way and alternatively update bottom-up signals and
top-down signals for multiple iterations. Meanwhile, as a result of the above decoupling
process, we can approximate Lmser parameter learning by backpropagation [20] to suit for
our implementation.

Moreover, we investigate the strengths of DCW and DPN in different aspects by building
intermediate models and evaluating their performances in different scenarios. When used
alone in image reconstruction, both DCW and DPN can help to improve the generalization
ability of the reconstruction model on small-scale datasets and accelerate the convergence
speed of the network. The reason is that DPN can pass details from encoder to decoder, and
DCW is designed to approximate identity mapping per two consecutive layers. When the
two dualities are used together in image reconstruction, both of them can play their positive
roles while DPN plays the main role. However, in image inpainting, DCW plays a negative
role while DPN plays a positive role and enables the network to outperform some recent
state-of-the-art methods [16,26,27] in inpainting with irregularly and densely distributed
point-shaped masks.

The contributions of this paper are threefold. Firstly, it is the first time that deep Lmser
learning is effectively and stably implemented on multiple layers and further developed into
CNN based Lmser (CLmser). Secondly, we found that both DCW and DPN can ease the
gradient vanishing problem during the process of training deep networks and enables the
Lmser network to perform more robust on the small-scale dataset. Thirdly, it is also found
that DPN can enhance the performance of image inpainting.
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2 RelatedWork

One major nature of Lmser is weights sharing, i.e., DCW. Weights sharing was also used
in stacked Restricted Boltzmann machines (RBMs) [9]. A stack of two-layer RBM with
symmetrically weighted connections was used to pre-train a multilayer AE in a layer-by-
layer way. The pretraining can help to remedy the gradient vanishing problem in the AE. The
AE unrolled from a stack of pre-trained RBMs worked well in dimensionality reduction [9].

DPN can form shortcut connections between neurons symmetrically placed in the encoder
and decoder. Similar shortcut connections were also found in recent works. One typical
example is the U-Net [19]. It consists of a contracting path as the encoder and an expansive
path as the decoder, and both paths form a U-shaped architecture. The feature map from
each layer of the contracting path was copied and concatenated with the symmetrically
corresponding layer in the expansive path. Experiments in [19] demonstrated that U-Net
worked well for biomedical image segmentation. Such skip connections were also adopted
in deep RED-Net [18], which directly adds feature maps in the encoder with corresponding
feature maps in the decoder by constraining their feature maps to be the same size. It has
been shown in [18] that deep RED-Net workedwell in image super-resolution reconstruction.
Moreover, U-Net like architectures were used in [11] for image transformations, and in [16]
with all convolutional layers replaced with partial convolutional layers for image inpainting
on irregular holes. Instead of adding shortcut connections symmetrically between encoder
and decoder, shorter connections in ResNet [7] and DenseNet [10] were added between the
layers close to the input and those close to the output, which makes parameter learning more
accurate and efficient.

Another nature of the Lmser is the dynamic process in the perception phase for updating
neurons according to both top-down signals and bottom-up signals due to DPN. Recently,
a deep predictive coding network (PCN) [6] was proposed for object recognition, which
also included local recurrent processing to update neurons. PCN includes both feedback and
feedforward connections, where the feedback connections carry top-down predictions and the
feedforward connections carry bottom-up errors of predictions. The two connections enable
PCN to update the adjacent layers locally and recurrently to refine representations towards
minimization of layer-wise prediction errors.

3 Preliminaries

As demonstrated in Fig. 1, the Lmser architecture consists of symmetric neurons and sym-
metric weights, due to DCW and DPN. As a result of DCW, Lmser cascades the layers via
bidirectional connections between every two consecutive layers to approximate identitymap-
ping simply through WTW ≈ I , where WTW = I holds only if W is an orthogonal matrix.
By DPN, each neuron zk is activated by both the bottom-up signal yk from the lower layers
and the top-down signal uk from the upper layers. It is noticed that Lmser net degenerates
back to AE by removing DCW and DPN.

The Lmser net works in two phases, i.e., perception phase and learning phase. In the
perception phase, the input triggers the dynamic process by passing the signals up from the
bottom layer, while simultaneously the signals in the upper layers will be passed down to the
lower layers. It has been proved that the process will converge into an equilibrium state [24].
After the process reached its stable state, the top-down signal to the input layer u0 is regarded
as a reconstruction of the input x . The discrepancy between u0 and x will trigger the learning
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Fig. 1 Visulization of the two dualities: DCW and DPN. By DCW, Lmser cascades the layers via bidirectional
connections between every two consecutive layers. By DPN, each neuron zk is activated by both the bottom-up
signal yk = Wkzk−1 and the top-down signal uk = W�

k+1zk+1

phase to reduce the difference between u0 and x . In the learning phase, the parameters are
updated by minimizing the mean square error between the input and reconstruction. Given
by Eq. (5a) in [24], the loss function for Lmser learning is:

J = 1

2
E

(
‖−→x − W�

1
−→z1 ‖2

)
, (1)

where E(·) denotes the expectation,W1 is the weight matrix in the first layer, z1 = s(y1+u1)
are the activities of the neurons in the first layer which receive both the bottom-up signals y1
and the top-down signals u1. As given by Eqs. (6a)–(8b) in [24], the gradients to update the
network parameters were restated below:

− ∂ J

∂Wpqk
=

nk∑
i=1

εik
∂zik

∂Wpqk
+

nk−1∑
i=1

εi(k−1)
∂zi(k−1)

∂Wpqk

≈ s′
pkεpk zq(k−1) + s′

q(k−1)εq(k−1)z pk, (2)

where εik = ∑nk−1
j=1 ε j(k−1)Wi jk , Wi jk is the weight connecting the i-th unit on (k − 1)-th

layer and j-th unit on k-th layer. zik is the activity of i-th unit on k-th layer, nk is the number
of units on the k-th layer, and s(·) is a sigmoid function.

4 Method

4.1 CNN Based Lmser (CLmser)

Due to the lack of computing resources and big data in the early 1990s, the Lmser was
implemented with only one hidden layer when it was proposed. Instead of simply consid-
ering the original fully-connected layers in [24], we develop Lmser into deep convolutional
Lmser (CLmser) to further investigate its dualities and to deal with image data. For the deep
implementation of Lmser, we need to handle the following issues:
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Fig. 2 The approximate deep implementation of Lmser. Signals flow in the network by multiple bottom-
up passes and top-down passes. One bottom-up pass and one top-down pass compose one reflection. The
perception phase is implemented by repeating multiple reflections

1. In the perception phase, it is hard to implement the exact dynamic process in multi-
ple layers because neurons are highly coupled and it may be time-consuming to reach
convergence.

2. In the learning phase, we need to modify the learning rule of the original Lmser to suit
for our implementation.

To handle the first issue,we propose an effective and simple approximation for the dynamic
process. As shown in Fig. 2, we decouple the bidirectional propagation into propagating
signals by bottom-up pass and top-down pass alternatively and update the neurons in a layer-
by-layer way. We call one bottom-up pass and one top-down as one reflection and repeat
multiple reflections to approximate the convergence process of the perception phase.

At the beginning t = 0, the image is fed into the bottom layer of the network, which
triggers the bottom-up signal propagation layer by layer. In the first bottom-up pass, there
is no input signal on the top layer, thus the top-down signals from the higher layers are
initialized to be zero and the neurons are initialized as follows:

t = 0,∀i > 0, there exist: Ut
i = 0, Ht

0 = x, Ht
i = f (Y t

i ) = f (Wi H
t
i−1), (3)

where Ht
i denotes the values of ni × 1 neurons in the i-th layer at time t , Y t

i denotes the
ni × 1 bottom-up signals, and Ut

i denotes the ni × 1 top-down signals. Wi is the ni × ni−1

weight matrix, and f (·) is a nonlinear activation function.
After the first bottom-up pass, all neurons have been initialized.According to the scheme in

Fig. 2, the top-down signals and bottom-up signals are alternatively updated by the following
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Fig. 3 Architecture of the CNN based Lmser networks (CLmser). Blocks in the same color share the same
weights. The bottom-up signals are computed by convolution while the top-down signals are computed by
deconvolution. DCW is implemented by sharing weights between convolution and deconvolution block while
DPN is implemented by feedback and shortcut links

rules:

t = 2k, k ≥ 1, bottom-up: Ht
i = f (Y t

i +Ut−1
i ), Y t

i = Wi H
t
i−1; (4)

t = 2k − 1, k ≥ 1, top-down: Ht
i = f (Y t−1

i +Ut
i ),U

t
i = W�

i+1H
t
i+1. (5)

Note that in the perception phase of original Lmser, each neuron receives both top-down
and bottom-up signals simultaneously, as given by:

Ht
i = f (Y t

i +Ut
i ), Y t

i = f (Wi H
t
i−1), Ut

i = f (W�
i+1H

t
i+1) (6)

Comparing our implementation by Eqs. (4)–(5) with the original dynamic process by Eq. (6),
it can be noticed that the neuron values Hi are computed by alternatively updating top-down
and bottom-up signals. In the bottom-up pass, we fixUi at the previous stateU

t−1
i and update

Yi from lower layers, while in the top-down pass, we fix Yi at the previous state Y
t−1
i and

update Ui from upper layers. In practice, this is an efficient approximation.
For CNN based Lmser, the bottom-up signal is calculated by convolution, while the top-

down signal is computed via deconvolution. Based on the decoupling process of Fig. 2, the
architecture of CLmser is shown in Fig. 3. To enable DCW, we force the convolution and
deconvolution block to share the same weights. The DPN nature is featured by two types
of links. One is the skip connection from the encoder to the decoder, and the other is the
feedback link from the decoder to the encoder. It should be noted that the information fusion
between Y t

i and Ut
i here is implemented as a simple summation. In general, other fusion

operations are possible. For example, in U-Net, the bottom-up signal and top-down signal
are concatenated first and then the neuron values are calculated via a convolution operation
on the concatenated signals [19].

For the second issue, instead of using Eqs. (6a)–(8b) in [24], we compute the gradients of
parameters via backpropagating the errors through the backward path as indicated in the right
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Fig. 4 The error back propagation path for calculating gradients of AE (left) or Lmser (right, demonstrated
with one reflection). Compared with AE, Lmser has shortcuts for error propagation (the horizontal black
arrows) to avoid gradient vanishing

Table 1 Description of the
intermediate models

Model Description

CLmser CNN based Lmser

CLmser-w CLmser without DCW

CLmser-n CLmser without DPN

CAE CLmser-w-n, CLmser without DCW nor DPN

subfigure of Fig. 4. The objective of the learning phase is still to minimize the loss function
in Eq. (1). At the start of the training process, weight parameters are inaccurate, and thus the
execution of the learning phase does not need to wait for the convergence of the perception
phase. Experimental results show that implementing the perception phase by repeating one
reflection works well in practice.

4.2 Dualities

To investigate the roles of DCW and DPN respectively, we build intermediate models in
CLmser by removing DCW (denoted as “-w”) or removing DPN (denoted as “-n”) or remov-
ing both which degenerates back to AE. We use CLmsers to represent all the intermediate
models. The intermediate models are described in Table 1 and repeated by one reflection
in their perception phase, which is the same with AE. The learning rule of the intermediate
models for calculating the gradients of parameters can be obtained by error backpropagation
[20] through the backward paths defined by the models.

• For AE, as shown in the left subfigure of Fig. 4, when calculating gradients of parameters
in the decoder, the reconstruction error propagates backwardly through a bottom-up path;
when calculating gradients of parameters in the encoder, the error propagates backwardly
through a bottom-up path cascaded by a top-down path. The parameters in the encoder
and the decoder are all free and independent. If the network is deep, the process of training
for AE may encounter the gradient vanishing problem.

• For Lmser-n, as shown in the right subfigure of Fig. 4, the parameters of the encoder
and the decoder are constrained to be same due to the DCW, so that there are two error
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propagation paths for calculating the gradients of parameters, which eases the gradient
vanishing problem, especially for the weights in the lower layers of the encoder.

• For Lmser-w, as shown in the right subfigure of Fig. 4, shortcut connections are added
between the encoder and the decoder, so the errors can be backpropagated through the
shortcut links, which avoids the problem of gradient vanishing and leads to faster con-
vergence of parameters.

To further demonstrate the contributions of DCW and DPN to easing gradient vanishing
problem, we give the gradient calculation formula for each intermediate model. For all the
models, we have:

∂ J

∂zdik
=

nk−1∑
j=1

∂ J

∂zdj(k−1)

s′
j(k−1)Wjik,

∂ J

∂zeik
=

nk+1∑
j=1

∂ J

∂zej(k+1)
s′
j(k+1)Wi j(k+1), (7)

where Wi jk is the weight connecting the i-th unit on (k − 1)-th layer and j-th unit on k-th
layer, zeik and z

d
ik represent the activities of i-th unit on k-th layer in the encoder and decoder

stage respectively. J is the loss function of the models, which is defined in Eq. (1). s(·) is the
activation function and s′(·) is the derivative of activation function.

• For AE, we have:

∂ J

∂Wd
pqk

=
nk−1∑
i=1

∂ J

∂zdi(k−1)

∂zdi(k−1)

∂Wd
pqk

, − ∂ J

∂We
pqk

=
nk∑
i=1

∂ J

∂zeik

∂zeik
∂We

pqk
(8)

∂zdi(k−1)

∂Wd
pqk

= s′
i(k−1)δi pz

d
qk,

∂zeik
∂We

pqk
= s′

ikδiq z
e
p(k−1), (9)

where δi p is dirac delta function, δi p = 1 under the condition i = p, otherwise, δi p = 0.
Consequently, the gradients of parameters in AE can be calculated by the following rule:

∂ J

∂Wd
pqk

= ∂ J

∂zdp(k−1)

s′
p(k−1)z

d
qk, − ∂ J

∂We
pqk

= ∂ J

∂zeqk
s′
qk z

e
p(k−1), (10)

where ∂ J
∂zdp(k−1)

and ∂ J
∂zeqk

can be obtained from Eq. (7).

• For Lmser-n, we have:

− ∂ J

∂Wpqk
=

nk−1∑
i=1

∂ J

∂zdi(k−1)

∂zdi(k−1)

∂Wpqk
(11)

∂zdi(k−1)

∂Wd
pqk

= s′
i(k−1)δi pz

d
qk + s′

i(k−1)

nk∑
j=1

∂zdjk
∂Wpqk

Wi jk,
∂zdjk

∂Wpqk
= s′

jk

∂udjk
∂Wpqk

(12)

where udjk is the top-down signal to z
d
jk . Thus, the gradients in Lmser-n can be computed

by:

∂ J

∂Wpqk
= ∂ J

∂zdp(k−1)

s′
p(k−1)z

d
qk +

nk−1∑
i=1

∂ J

∂zdi(k−1)

s′
i(k−1)

nk∑
j=1

s′
jk

∂udjk
∂Wpqk

Wi jk (13)

• For Lmser, the difference comparedwith Lmser-n is that zdik is activated by both top-down
signal udik and bottom-up signal ydik rather than single top-down signal in Lmser-n. Thus,
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the only difference in the learning rule is:

∂zdjk
∂Wpqk

= s′
jk

(
∂udjk

∂Wpqk
+ ∂ ydjk

∂Wpqk

)
= s′

jk

(
∂udjk

∂Wpqk
+ δ jq z

e
p(k−1)

)
(14)

Therefore, the general formula for computing the gradients in Lmser is as follows:

− ∂ J

∂Wpqk
= ∂ J

∂zdp(k−1)

s′
p(k−1)z

d
qk +

nk−1∑
i=1

∂ J

∂zdi(k−1)

s′
i(k−1)

nk∑
j=1

s′
jk

∂udjk
∂Wpqk

Wi jk

+
nk−1∑
i=1

∂ J

∂zdi(k−1)

s′
i(k−1)s

′
qk z

e
p(k−1) (15)

As shown in Eq. (10), when calculating the gradients for parameters in the encoder in AE
framework, ∂ J

∂We
k
and ∂ J

∂Wd
k
are in multiplication forms, which may lead to gradient vanishing

in deep networks especially when activation function is not appropriate. It could be observed
from Eq. (13) that when DCW is incorporated, a term is added to the gradient to ease the
gradient vanishing problem. Furthermore, when DPN is incorporated, more terms are added
to the gradient according to Eq. (15), which can improve the convergence speed of the
network, as will also be demonstrated by experiments later.

5 Experiments

In this section,we conduct experiments on two tasks: image reconstruction and image inpaint-
ing. The detailed settings of network architectures and training procedures are described in
Tables 2 and 3 respectively. We conduct the experiments on three dataset including STL10
[5] for image reconstruction and CelebA-HQ [12], Places2 [28] for image inpainting. The
details of the datasets are listed below:

• STL10 [5]: A ten class image set with 500 training images and 800 testing images per
class. We divide the training images into a training set and a test set in the ratio of 4: 1.

• CelebA-HQ [12]: A high-quality version of the human face dataset generated from
CelebA [17]. We randomly split it into 27,000 images and 3000 images for training
and testing respectively.

• Places2 [28]: A well-known real-world image dataset. It contains images of 365 scenes
collected from the natural world. We train models on 180k subset of the original training
set and test models on 10,000 images which are randomly chosen from the original test
set.

To investigate the strengths of DCW and DPN in different scenarios, we conduct exper-
iments as follows: (1) in Sect. 5.1, we investigate influences of DCW and DPN on the
generalization ability of image reconstruction on the small-scale dataset; (2) in Sect. 5.2,
we investigate influences of DCW and DPN on convergence speed of the reconstruction
model; (3) in Sect. 5.3, we evaluate influences of DCW and DPN on image inpainting. To
investigate the roles of DCW and DPN separately, the intermediate models described in
Table 1 are all evaluated in each scenario. Moreover, several recent networks related to DCW
and DPN are also listed for comparisons.

After reporting the experimental results, we analyze the effectiveness of DCW and DPN
in each scenario. Furthermore, we summarize their strengths in Sect. 5.4 for clarity.
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Table 2 Detailed configurations of CLmsers on different datasets

Dataset d Kernel Channel Stride

STL10 5 3 16, 32, 64, 128, 256 1, 2, 2, 2, 2

C&P 7 3 16, 32, 64, 128, 256, 256, 256 1, 2, 2, 2, 2, 2, 2

Common settings: activation function is ReLU, the number of reflections in perception phase is 1 (d: depth of
network; C&P: CelebA-HQ & Places2)

Table 3 Training parameters of
CLmsers on different datasets

Parameters STL10 CelebA-HQ, Places2

Epochs 20 20

Learning rate 0.01 0.001

Optimization method SGD&Adam Adam

Batch size 100 16

Table 4 Reconstruction performance of the models on STL10 with varying training sample sizes, i.e., 400,
100, 10 (CL: CLmser; CL-w: CLmser-w; CL-n: CLmser-n)

Sample size (n) Metric CL CL-w U-Net [19] CL-n CAE

400 MSE 0.0060 0.0090 0.0105 0.0576 0.0779

SSIM 0.8656 0.8284 0.8093 0.3405 0.2508

PSNR 28.60 26.86 26.21 18.78 17.49

100 MSE 0.0067 0.0101 0.0107 0.0562 0.0782

SSIM 0.8607 0.8188 0.7971 0.3663 0.2545

PSNR 28.11 26.41 26.21 18.95 17.47

10 MSE 0.0069 0.0108 0.0106 0.0546 0.0847

SSIM 0.8590 0.8124 0.8054 0.3566 0.2379

PSNR 27.99 26.07 26.27 19.04 17.13

Bold indicates that it achieves the best performance for the corresponding metric. For l1 and MSE, the smaller
the better; for SSIM and PSNR, the larger the better

5.1 Robustness

We first investigate the robustness of different models on small-scale dataset. Although it is
relatively easier to collect big data such as face images nowadays, the data collection is still
expensive in some domains, such as biology and health. Therefore, the generalization of a
model trained on a small-scale dataset is a preferred feature.

We conduct experiments of image reconstruction on dataset STL10 [5]. To investigate
the robustness of models with various sizes of the training set, we train models on datasets
with different scales and evaluate their performance on the same test set. We use STL10-
n to represent the dataset which contains n samples per class where n is set as 400, 100
and 10, respectively. To evaluate the quality of the restored images, we follow the previ-
ous image reconstruction works [16,18] by reporting Peak Signal-to-Noise Ratio (PSNR),
Structural SIMilarity (SSIM) index [21], andMean Square Error (MSE). We also take U-Net
[19] into comparison, which has a similar architecture with CLmser-w. Here, U-Net, orig-
inally proposed for biomedical image segmentation, is modified for image reconstruction.
All experimental results are summarized in Table 4.
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Fig. 5 Examples of reconstructed images from models trained on STL10-100: (columns from left to right) the
reconstruction by CAE, CLmser-n, CLmser-w, CLmser, the original input image

From Table 4, we can observe that CLmser performs best and the models incorporated
with DPN generally perform better than the others as the training sample size decreases from
400 to 10, which indicates that DPN plays an important role in enhancing the performance
of the image reconstruction. As discussed in Sect. 4.1, the DPN act as a shortcut from the
encoder to the decoder, so the more detailed information in the low levels in the encoder can
be directly passed to the corresponding layers of decoder, which can increase the restoration
quality. As expected, the performances ofU-Net andCLmser-w are similar, because they both
include skip connections but without DCW. Examples of the outputs of image reconstruction
are provided in Fig. 5.

By comparing the results of CAE and CLmser-n, we find that DCW can also enhance the
performance of image reconstruction slightly. Theoretically, the reconstruction capability of
CAE should not be worse than that of CLmser-n because DCW places an extra constraint
over the weights. However, in this paper, we mainly focus on the generalization ability of
models on small-scale datasets. When the samples are insufficient, CAE may meet the over-
fitting problem and get stuck in an unsatisfying local minimum. However, DCW enforces
an approximate identity mapping by symmetric weights layer by layer, which can guide the
network to reach a better local minimum. When the sample size increases, the performance
of CAE and CLmser-n should be closer, which can be seen from Table 4 by comparing the
performance of CLmser-n andCAEwhen the sample size increases from 10 to 400. To further
investigate the influence of DCW on reconstruction capability of models, we conduct more
experiments on a known challenging dataset Places2 [28] and find that CLmser-n can still
outperform CAE slightly. A possible reason is that for the complete image reconstruction
task, where the output pattern is the same as the input pattern, DCW can show its advantage
as it enforces an approximate identity mapping layer by layer, which may help the network
to approximate the identity mapping. More details can be found in “Appendix B”.

5.2 Convergence Speed

In this section, we analyze the contribution of DCW and DPN to the convergence speed of
the network on image reconstruction. We visualize the mean square error between input and
reconstruction during the training procedure on STL10-100 in Fig. 6. The loss curves of
models trained with stochastic gradient descent (SGD) [3] and Adammethod [13] are shown
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Fig. 6 Loss function visualizations for different models trained with SGD (a) and Adam (b) on STL10-100
dataset

in Fig. 6a, b respectively.We can observe from Fig. 6 that both DPN and DCW can accelerate
the convergence speed of the reconstruction model, but DPN plays the main role. This can be
explained by Eqs. (13) and (15) that DCW and DPN can add more terms to the gradients so
that they can alleviate the gradient vanishing problem and accelerate the convergence speed
of the network.

5.3 Image Inpainting

In this section, we applied CLmser on image inpainting [2], the task of filling in corrupted
parts in an image with plausible imagination. Some works [16] have studied different types
of masks or holes, such as rectangular-shaped masks and irregular masks. In this paper, we
mainly focus on images with slight damage, i.e., the corrupted image still holds its main
structural information and its identification features. For example, one can still identify the
person in the damaged image. We consider the type of irregularly and densely distributed
point-shaped mask as illustrated in the left-most column of Fig. 7. The comparisons are
conducted on two high quality image datasets including CelebA-HQ [12] and Places2 [28],
and we resize the images to 256 × 256 . We compare our models with some state-of-the-art
works as follows,

• PConv [16]: Partial Convolution (PConv), a generative model that replaces the convolu-
tional layer by the partial convolutional layer for filling irregular holes.

• PEN-Net [26]: Pyramid-context ENcoder Network (PEN-Net), a generative model built
upon a U-Net structure with a pyramid-context encoder and a multi-scale decoder.

• PICNet [27]: Pluralistic image completion, which introduces a new image completion
network with two parallel but linked training pipelines, one is VAE-based reconstructive
path and the other is a generative path.

Besides L1 loss, MSE, PSNR, and SSIM, we use Fréchet Inception Distance (FID) [8] as an
evaluation metric. As shown in [8], FID can measure the discrepancy between the ground-
truth distribution and the generated distribution.

The comparisons of different models on CelebA-HQ and Places2 are summarized in
Table 5. The results demonstrate that CLmser-w, which removes DCW from CLmser, out-
performs other models on most metrics. More exactly, the DPN can work well for inpainting
images with small missing areas. Meanwhile, from the comparison of CLmser and CLmser-
w, we can see that whenDCWandDPN are used together, DCWplays a slightly negative role
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Table 5 The performance of image inpainting on CelebA-HQ (top) and Places2 (bottom) with irregularly and
densely distributed point-shaped masks (CL: CLmser; CL-w: CLmser-w; CL-n: Clmser-n)

Model �1(10−2) MSE(10−3) PSNR SSIM FID

CelebA-HQ CL 0.6657 0.6186 32.13 0.9460 2.686

CL-w 0.6030 0.5405 32.73 0.9522 2.321

CL-n 0.6847 0.6659 31.81 0.9465 2.695

CAE 0.6917 0.6700 31.79 0.9456 2.744

PConv [16] 0.6632 0.7015 31.60 0.9457 2.953

PEN-Net [26] 0.9528 1.3100 28.86 0.9126 9.679

PICNet [27] 0.6700 0.6617 31.84 0.9446 2.216

Places2 CL 1.010 1.384 28.65 0.9279 3.142

CL-w 0.932 1.281 28.99 0.9341 2.636

CL-n 1.092 1.608 28.00 0.9214 4.110

CAE 1.076 1.620 27.96 0.9222 4.085

PConv [16] 1.188 1.980 27.10 0.9084 5.901

PEN-Net [26] 1.370 2.557 25.98 0.8930 8.847

PICNet [27] 1.008 1.426 28.52 0.9292 2.870

Bold indicates that it achieves the best performance for the corresponding metric. For l1 and MSE, the smaller
the better; for SSIM and PSNR, the larger the better

Fig. 7 Qualitative comparisons of image inpainting on CelebA-HQ: (columns left to right) masked image,
CLmser, CLmser-w, CLmser-n, CAE, PConv, PEN-Net, PICNet, ground truth

Table 6 Per-frame inference time of image inpainting onCelebA-HQ test set (CL: CLmser; CL-w: CLmser-w;
CL-n: Clmser-n)

Model CL CL-w CL-n CAE PConv [16] PEN-Net [26] PICNet [27]

Time(10−3) 2.593 2.630 2.595 2.602 2.198 32.18 5.074 − 75.69

Bold indicates that PConv cost the minimum per-frame inference time
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in image inpainting. A possible reason is that the goal of the network is not to approximate
the identity mapping when the input pattern and output pattern are different, so the design
of symmetric weights will affect the inpainting performance of the model. Examples from
CelebA-HQ are visualized in Fig. 7, and more qualitative examples on Places2 can be found
in Appendix C. Although PEN-Net performs worse than CLmser-w under irregularly and
densely distributed point-shaped mask, PEN-Net can generate realistic samples for damaged
images with large missing areas [26].

We also analyze the per-frame inference time of differentmodels.We calculate the average
inference time of different models that predict 3000 images on the test set of CelebA-HQ.
We repeat the experiments for 5 times to reduce the random errors. In our experiments, all
models run on a machine with 2080ti and the size of the input image is 256 × 256. Table 6
reports the per-frame inference time of each model.

We can see from Table 6 that the PConv has minimal per-frame inference time, which
demonstrates that PConv can work effectively in real-time. CLmsers (CL, CL-w, Cl-n, CAE)
can also run in real-time due to the similar inference time to PConv. We can also see that
PEN-Net takes much more time than CLmsers and PConv. The pyramid-context encoder in
PEN-Net improves the quality of encoding by filling regions from high-level feature maps to
low-level feature maps through the Attention Transfer Network (ATN) [26], which may cost
some extra time. The per-frame inference time of PIC-Net varies with its sampling numbers:
5.074× 10−3 for 1 sample and 75.69× 10−3 for 20 samples (PICNet can generate multiple
samples for a masked image and choose the best one as the final prediction).

5.4 Summary of DPN and DCW

In Sect. 5.1, we can see that DPN can significantly enhance the performance of image
reconstruction by comparing the performance of CLmser-w and CAE. Moreover, from the
results of the CLmser-n and CAE, we can see that DCW can also slightly improve the
generalization ability of the reconstruction model, but it is less effective than DPN. We
can get similar observations in Sect. 5.2 that both DPN and DCW can contribute to faster
convergence in training and DPN plays the main role. In Sect. 5.4, we can see that when using
DPN alone, the model can get the best performance in image inpainting.

In summary, when used alone, bothDCWandDPN can enhance the performance of image
reconstruction on small-scale datasets and accelerate the convergence speed of themodel, but
DCW is always less effective than DPN. What’s more, DCW plays a slightly negative role
in the experiment of image inpainting while DPN plays a positive role. All the experimental
results are consistent with the corresponding discussions in Sect. 4.2.

6 Conclusion

We have implemented a deep multilayer version of Lmser net for the first time and further
developed it into CNN based Lmser. We conducted extensive experiments on benchmark
datasets to show that not only the early proposed Lmser indeed works, but also the two
major built-in natures, i.e., DCW and DPN, show their strengths in different aspects. For
image reconstruction, both DPN and DCW can ease gradient vanishing problem and make
the CLmser network perform better on small-scale datasets and converge faster in training.
However, DPN always plays the main role. For image inpainting, while DCW affects the
inpainting performance, DPN can enhance the inpainting performance and enables CLmser-
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Table 7 Image classification on MNIST, Fashion-MNIST and Cifar10

Dataset MNIST Fashion-MNIST Cifar10

Model CLmser CNN CLmser CNN CLmser CNN

Accuracy 0.9923 0.9906 0.9037 0.9114 0.6518 0.6717

MSE 0.0021 – 0.0054 – 0.0114 –

w to outperform some recent state-of-the-art methods in inpainting with irregularly and
densely distributed point-shaped masks.

In this paper, CLmser is applied to image reconstruction and image inpainting. It will be
interesting to extendCLmser in other areas, such as image classification and imagegeneration.
When Lmser [23] is firstly proposed, it also has the supervised version, which is referred to
another duality in Lmser, i.e., Duality in the Supervision Paradigm (DSP) [25]. This duality
makes Lmser able to handle image classification tasks. It will be a further research topic.
We conduct some simple experiments on MNIST [15], Fashion-MNIST [22] and Cifar10
[14] to show the potential of CLmser on image classification. We implement the DSP by
feeding both the image and its label into the network and adding a classification error to
the reconstruction error. The performance of classification and reconstruction is reported in
Table 7, from which we can observe that DSP enables CLmser to complete the task of image
classification and image reconstruction simultaneously.

As for image generation, DPN can pass the details from the encoder to the decoder which
may disturb the top-down generated features. How to fuse the top-down information and the
detailed information from the encoder also deserves further research.

Acknowledgements This work was supported by National Science and Technology Innovation 2030 Major
Project (2018AAA0100700) of the Ministry of Science and Technology of China, and SJTU Medical Engi-
neeringCross-cuttingResearch Foundation (ZH2018ZDA07), aswell as ZhiYuanChair Professorship Start-up
Grant (WF220103010) from Shanghai Jiao Tong University.

A Implementations

For PConv [16], we use an implementation in PyTorch.1 For PEN-Net [26], we use their
official implementation2 and follow all their original settings. For PICNet [27], we use their
official implementation3 and follow all the settings in their original work except that we
start training from the provided pre-trained models and training for 1,000,000 iterations for
CelebA-HQ and 2,000,000 iterations for Places2.

B Additional Results on Reconsturction Capability

To further investigate the reconstruction capability of CLmser-n and AE, we conduct exper-
iments on Places2 dataset. We train the two models on 180,346 samples randomly chosen

1 https://github.com/naoto0804/pytorch-inpainting-with-partial-conv.
2 https://github.com/researchmm/PEN-Net-for-Inpainting.
3 https://github.com/lyndonzheng/Pluralistic-Inpainting.
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Table 8 Performance of image
reconstruction on Places2

Model �1 MSE PSNR SSIM

CAE 0.0431 0.00471 23.29 0.6842

CLmser-n 0.0417 0.00453 23.46 0.6942

Bold indicates that it achieves the best performance for the corresponding
metric. For l1 and MSE, the smaller the better; for SSIM and PSNR, the
larger the better

from the train set of Places2 and test them on 10,000 images which are randomly chosen
from the test set of Places2. The results are listed in Table 8.

The results show that the design of the symmetric weights (DCW) does not affect the
reconstruction performance.

C Qualitative Examples

See Fig. 8.

Fig. 8 Qualitative comparisons of image inpainting on Places2: (columns left to right) masked image, CLmser,
CLmser-w, CLmser-n, CAE, PConv, PEN-Net, PICNet, ground truth
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