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Abstract. Medical image segmentation is the premise of many medical
image applications including disease diagnosis, anatomy, and radiation
therapy. This paper presents a k-Dense-UNet for segmentation of Elec-
tron Microscopy (EM) images. Firstly, based on the characteristics of
the long skip connection of U-Net and the mechanism of short skip con-
nection of DenseNet, we propose a Dense-UNet by embedding the dense
blocks into U-Net, leading to deeper layers for better feature extrac-
tion. We experimentally show that Dense-UNet outperforms the popular
U-Net. Secondly, we combine Dense-UNet with one of the newest U-Net
variants called kU-Net into a network called k-Dense-UNet, which con-
sists of multiple Dense-UNet submodules. Skip connections are added
between the adjacent submodules, to pass information efficiently, help-
ing the model to identify fine features. Experimental results on the ISBI
2012 EM dataset show that k-Dense-UNet achieves better performance
than U-Net and some of its variants.
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1 Introduction

High-resolution Electron Microscopy (EM) image segmentation has great value
on many medical image applications, and it has shown important value in
anatomy, radiation therapy, and biomedical research. Manual labeling the ele-
ment in the EM images is normally done by a human neuroanatomist. However,
since the medical image data is very complicated, it is time-consuming to manu-
ally label such data. Thus, artificial intelligence technology has gradually become
a popular direction of medical image segmentation.

In recent years, deep learning approaches based on Convolutional Neural
Networks [1-7] have been used on the EM image segmentation task. One of the
most well-known attempts is U-Net [2]. It consists of a contraction path and a
symmetric expansion path. To enable precise localization, high-resolution fea-
tures from the contracting path are combined with the upsampled output. Such
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Fig. 1. Examples in the ISBI 2012 EM dataset: an EM image (A) and its ground truth
segmentation (B).

skip connections enabled U-Net to work well on biomedical image segmentation
tasks.

However, deep learning networks normally suffer the vanishing gradient prob-
lem, which limits their depth. He et al. [8] proposed ResNet, with skip connection
between layers, the network’s depth can be improved without damaging its per-
formance. Huang et al. [9] proposed DenseNet, by using dense connections. It
achieved better performance than ResNet in certain datasets.

Many following works were built on U-Net, and they tend to increase the
depth of U-Net by certain metrics. FusionNet [3] applied residual blocks in U-Net
to enable the model to have a larger depth to achieve better performance. This
model also combined long and short skip connection together. kU-Net [7] consists
of multiple submodule U-Net to sequentially extract information at different
scales, from the coarsest scale to the finest scale. Each submodule will propagate
information to the subsequent submodule to help feature extraction.

Actually, key features of recent models such as U-net, ResNet, and DenseNet
have been found in Least Mean Square Error Reconstruction (Lmser) self-
organizing network, which was first proposed in 1991 [17,18]. Lmser is a fur-
ther development of autoencoder (AE) with favorable features, including Dual-
ity in Paired Neurons (DPN) and Duality in Connection Weight (DCW), which
come from folding AE along the central coding layer. DPN can be regarded
as adding shortcut connections between the paired neurons. The feedback links
from decoder to encoder can be regarded as the skip connections between two
U-Nets in kU-Net. More advances about Lmser are referred to a recent review
in [19].

In this paper, Dense-UNet is proposed on segmentation of EM images. Not
only we experimentally show that Dense-UNet outperforms U-Net, but also we
proceed to a version called k-Dense-UNet that integrates Dense-UNet and kU-
Net. Experimental results on the ISBI 2012 EM dataset show that k-Dense-UNet
achieves better performance than U-Net and some of its variants.
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Our contributions are as follows:

— We present k-Dense-UNet for EM image segmentation. It integrates Dense-
UNet and kU-Net. There are corresponding long skip connections between
adjacent modules, which can pass coarser-scale information to the next sub-
module, helping the model to identify finer features.

— Experimental results show that the proposed method can achieve better per-
formance than U-Net and some of its variants in the ISBI 2012 EM challenge.
Ablation study demonstrates that the skip connection between the adjacent
submodules can enhance and refine the segmentation outputs.

2 Related Work

2.1 Deep Learning Methods for EM Image Segmentation

One of the earliest work was done by Ciresan et al. [1]. He implemented a succes-
sion of convolutional and max-pooling layers to predict the segmentation. Their
work won the ISBI 2012 challenge. Long et al. [10] proposed the FCN structure
to replace fully connected layers with convolutional layer which can preserve the
spatial information. Since then, many variants of FCN have been proposed for
EM image segmentation task. Shen et al. [11] created a multi-stage and multi-
recursive-input FCN. The model can predict outputs at a different level in each
stage, and combining all the predictions with the original images to generate the
next stage’s input. Ronneberger et al. [2] proposed U-Net architecture, which
consists of four downsampling steps and four corresponding upsampling steps.
Long skip connection layers exist between the downsampled feature map and
the commensurate upsampled feature map, which can preserve low-level infor-
mation. This model won the ISBI 2015 challenge. However, it still suffers the
vanishing gradient problem, which limits the depth of U-Net. He et al. [8] pro-
posed the residual blocks and demonstrated that short skip connections between
layers can reduce the influence of vanishing gradients. Quan et al. [3] presented
FusionNet, which embedded U-Net with residual blocks to combine short and
long skip connections.

2.2 DenseNet Architecture

DenseNet [9] was proposed in 2017, by using dense connections, it reaches better
results compares to ResNet [8] and pre-activated ResNet [12] on multiple datasets
(CIFAR-10, CIFAR-100 [13], SVHN Small-Scale Dataset [14]). In DenseNet,
each layer obtains additional inputs from all preceding layers and passes on its
own feature-maps to all subsequent layers. This so-called dense block structure
enables the network to be thinner and compact, which lead to higher compu-
tational efficiency and memory efficiency. We refer the readers to [9] for the
detailed architecture of DenseNet.
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2.3 kU-Net Structure

kU-Net [7] is the combination of U-Net submodules, it was observed that human
experts tend to first zoom out the image to determine the target object and then
zoom in to obtain the accurate boundaries of the targets. The kU-Net structure
contains two mechanisms which can simulate such human behaviors.

— kU-Net contains a sequence of submodule U-Nets to enable the information
extraction carried at different scales sequentially.

— The information extracted by the submodule U-Net in a coarser scale will
be propagated to the subsequent submodule U-Net to enable the feature
extraction at a finer scale.

We refer the readers to [7] for the detailed structure of kU-Net.

3 Methods

3.1 Overview of the Proposed Network

k-Dense-UNet is the combination of Dense-UNet and kU-Net, an example of
its architecture is shown in Fig. 2. It takes advantage of Dense-UNet’s feature
extraction and combines the idea of kU-Net to gradually extract the features to
a finer scale. Similar to U-Net, the upsampling part of the submodule Dense-
UNet is skip-connected to the subsequent Dense-UNet’s max pooling part, which
is equivalent to transferring the coarser information to the next sub-module to
achieve more precise image segmentation result.

output
segmentation

Fig. 2. Architecture of k-Dense-UNet(k = 2)

In practice, all the convolutional layers adopt 3 x 3 kernels with stride size as
1. For all the upsampling layers, 3 x 3 kernels are applied with stride size as 2.
Activation functions are set as ReLUs. Batch normalization [16] is implemented
to reduce over-fitting and increase the model’s learning rate.
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3.2 Dense-UNet Architecture

DenseNet has more diverse features and tend to have richer modes since each
layer receives all of the previous layers as input: the so-called dense block struc-
ture. At the same time, because features of all complexity levels are used.
DenseNet performs well when training data is insufficient.

Based on the above advantages of DenseNet, we embedded the dense block
into U-Net to obtain more sufficient feature extraction and get a more precise
segmentation map. This resulted in the Dense-UNet shown in Fig. 3. The gray
arrow indicates the long skip connection between the max pooling layer and the
corresponding upsampling layer, the red arrow indicates the 2 x 2 max pooling
operation, the green arrow indicates the upsampling operation. It is worth not-
ing that after the max pooling of the network, three dense blocks are embedded
instead of the original two-convolution with batch normalization and ReLu acti-
vation function. These dense blocks are represented by purple rectangular blocks
in the figure, and the corresponding operations are indicated by yellow arrows.
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Fig. 3. Dense-UNet architecture (Color figure online)

Let’s take the second dense block as an example to describe its operation
shown in Fig. 4: Set the input x to obtain the output y through the dense oper-
ation. The dense operation is defined as: input through 128 1 x 1 convolution
kernels, 128 3 x 3 Convolution kernel, 512 1 x 1 convolution kernels. The net-
work is subject to batch regularization and ReLu activation functions to reduce
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Fig. 4. Dense Block structure

gradient disappearance and over-fitting after each convolution operation. For the
second dense block (16 x 16 x 512), the input is subjected to the dense operation
to obtain the output a. a after the dense operation to get the output b, b after
the dense operation and add a to get c, ¢ after the dense operation and add a
and b to get d, which is the final output.

The dense operation for the three dense blocks are shown in Table 1.

Table 1. Dense operation

Type Dense operation Times
Dense Block 1| (1 x 1,64)(3 x 3,64)(1 x 1,64) 3
Dense Block 2 | (1 x 1,128)(3 x 3,128)(1 x 1,512) |4
Dense Block 3 | (1 x 1,256)(3 x 3,256)(1 x 1,1024) | 6

Similar to DenseNet, the k' layer receives the feature-maps of all preceding
layers, xq,...,Tr_1 as input:

xp = Hy([xo, 21, ..., 2k—1])

where [zg, 21, . .., zr_1] refers to the concatenation of the feature-maps produced
in layers 0,...,k — 1.

It is worth noting that in order to reduce the complexity and size of dense
blocks, a 1 x 1 convolution is added, and then a 3 x 3 convolution input is
performed, which can greatly reduce the amount of calculation without damaging
the accuracy of the model. This is also the design of the bottleneck layer of
ResNet.

3.3 k-Dense-UNet Formation

In the k-Dense-UNet model, the internal operation of each sub-module is simi-
lar to Dense-UNet, and the dark blue arrow indicates the two-convolution with
batch normalization and ReLu activation function, the red arrow represents the
max pooling of 2 x 2 scale, and the green arrow represents the upsampling oper-
ation, the operation yellow arrow stands is consistent with that described in
Dense-UNet, the grey arrow represents skip connections between the adjacent
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submodules and within the submodules. The purple rectangular block repre-
sents the dense block, and its definition and implementation are the same as
the Dense-UNet. The submodules consist of six downsampling steps followed
by six upsampling steps. There are six skip connections between the adjacent
submodules, corresponding to the long skip connection inside the submodules.

4 Experiments and Results

4.1 Dataset and Evaluation Metrics

We use the ISBI 2012 EM Segmentation Dataset to test the effectiveness of
our model. Figure 1 shows an example of the dataset. The training part of the
dataset contains 30 pairs of EM images and ground truth labels. The testing
part contains 30 EM images without the ground truths.

The Evaluation metrics are the Foreground-restricted Rand Scoring after
border thinning: V4", The details of this metric can be found in [15].

4.2 Experiments on Loss Function

In order to compensate for the different frequency of pixels in a certain class
form the training set, We use weighted loss function in all the experiments to
force the network to learn the small borders between cells.

In this experiment, we compare three loss functions: weighted-bce, weighted-
dice, and weighted dice & weighted-bce loss function. The model is U-Net. The
training dataset is 30 pairs of EM images. As this dataset is small, we applied
several data augmentation techniques to enlarge the dataset, which includes
rotation, horizontal and vertical flip. We training the model using Adam opti-
mizer with a learning rate of 2 x 10™*. The training metric is IOU score. We
also applied the EarlyStopping, ReduceLROnPlateau methods to improve the
performance of the model.

The predicted segmentation images obtained form these loss functions are
shown in Fig. 5. Among them, A, B, C are the result of the weighted dice loss
function, weighted dice& weighted-bce loss function, weighted bcee loss function
respectively. D, E, F are the same enlarged part of A, B, C respectively.

We observed that the boundary of the predicted image obtained by weighted
dice& weighted-bce loss function is more complete than the rest two. The result
of the above models is shown in Table2, which are sorted by V%" Since

Table 2. Results of three types of loss functions sorted by Vend

Model | Loss function y Rand

U-Net | Weighted-dice 0.886397133
U-Net | Weighted-bce 0.941848881
U-Net | Weighted-bce& weighted-dice | 0.950320002
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Fig. 5. Comparison of different loss function’s result

weighted dice& weighted-bce loss function also has the highest V"¢ score, we
use this loss function in the rest of the experiments.

4.3 Experiments on Differenet Backbones

This experiment first tested the V""¢ of U-Net as the benchmark. Then, similar
to Dense-UNet, we embedded ResNet50, ResNet101, ResNeXt, and SEResNet
into U-Net as the backbone to test the V7%"? of these networks.

The optimization function of the model is Adam. The training metric is IOU
score. The loss function is weighted bce & weighted dice function. All models
are trained for 20 epochs. Besides the data augmentation methods used in the
previous experiment, we also adopted the elastic transformation method.

Table 3. Results of U-Net with different backbones sorted by V#end

Model | Backbone | VFand

U-Net | ResNet50 |0.931212484
U-Net | SeresNet50 | 0.9429939
U-Net | ResNext50 | 0.948937035
U-Net | None 0.950320002
U-Net | ResNet101 | 0.957619972
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The results of U-Net with different backbones are shown in Table 3. It can
be seen that embedded ResNet101 as the backbone can achieve the best result
among the five.

4.4 Ablation Study

We conduct the ablation study to evaluate the effectiveness of k-Dense-UNet, and
the results are shown in Table 4. For this experiment, the optimization function
is Adam. The training metric is IOU score. The loss function is weighted bce
& weighted dice function. All models are trained for 20 epochs. This time we
use the real-time data augmentation method. We define a phase which means
30 images has been processed, and one epoch contains 300 phases. It is worth
noting that due to this method, pictures processed at each stage phase contains
subtle differences, that is, each training image is unique.

The models involved in this experiment include U-Net, kU-Net (k=3), kU-
Net (k=2), U-Net with ResNet101 as the backbone, Dense-UNet and k-Dense-
UNet (k=2). We can see a mild increase in performance with the embedding of
the dense blocks. The performance if further significantly improved when embed-
ding the dense block structure into kU-Net. We can summarize this experiment
as follows:

— kU-Net structure can propagate coarser scales to subsequent modules to assist
in finer feature extraction.

— Dense-UNet takes advantage of DenseNet’s feature extraction capabilities
which can achieve better results than U-Net and U-Net (ResNet101 as back-
end)

— The parameter k in kU-Net increases the input window size of the network
exponentially. The smaller k value is sufficient to process many biomedical
images (k= 2): the model of kU-Net (k= 3) is not as good as k= 2. The result
might be that the model is too complicated, which lead to the network to a
certain degree of over-fitting.

Table 4. Results of U-Net with different backbones sorted by VFend

Model Backbone | V/Rand

U-Net None 0.956101213
kU-Net (k=3) None 0.959437719
kU-Net (k=2) None 0.963030825
U-Net ResNet101 | 0.963493141
Dense-UNet DenseNet | 0.964117979
k-Dense-UNet (k=2) | DenseNet |0.972352852




A k-Dense-UNet for Biomedical Image Segmentation 561

5 Conclusion

In this paper, by embedding dense blocks into U-Net, we present Dense-UNet for
biomedical image segmentation. It can obtain more sufficient feature extraction
and get a more precise segmentation map compared to U-Net. Moreover, by
integrating kU-Net and Dense-UNet, we proposed k-Dense-UNet, which takes
advantage of Dense-UNet’s feature extraction capabilities and combines the idea
of kU-Net to gradually extract the features to a finer scale. By harnessing the
short skip connection in the dense block, the long skip connection in the Dense-
UNet submodules and the skip connection between the adjacent submodules,
we can achieve more precise image segmentation maps. Experimental results on
the ISBI 2012 EM dataset show that the proposed method can achieve better
results compared to U-Net and some of its variants.
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