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Abstract. Proposed in 1991, Least Mean Square Error Reconstruction
for self-organizing network, shortly Lmser, was a further development
of the traditional auto-encoder (AE) by folding the architecture with
respect to the central coding layer and thus leading to the features of
Duality in Connection Weight (DCW) and Duality in Paired Neurons
(DPN), as well as jointly supervised and unsupervised learning which is
called Duality in Supervision Paradigm (DSP). However, its advantages
were only demonstrated in a one-hidden-layer implementation due to the
lack of computing resources and big data at that time. In this paper, we
revisit Lmser from the perspective of deep learning, develop Lmser net-
work based on multiple fully-connected layers, and confirm several Lmser
functions with experiments on image recognition, reconstruction, asso-
ciation recall, and so on. Experiments demonstrate that Lmser indeed
works as indicated in the original paper, and it has promising perfor-
mance in various applications.
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1 Introduction

Least Mean Square Error Reconstruction (Lmser) self-organizing network was
first proposed in 1991 [13,14], and it is a further development of autoencoder
(AE) with favorable features. Early efforts on AE can be traced back to 1980s.
Three-layer networks, i.e., networks with only one hidden layer, were used to
make auto-association to learn inner representations of observed signals [1,2].
In this framework, the network architecture is considered to be symmetric with
the hidden layer as the central coding layer Y . The input pattern X is mapped
through the encoder part to the central coding layer, while the output X̂ is
constrained to reconstruct the input via the decoder part to decode the internal
representations back to the data space.

The Lmser architecture is obtained from folding AE along the central coding
layer Y , and then is improved into a distributed cascading by not only con-
straining X → Y and Y → X̂ to share the same architecture, but also using the
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same neurons for the two layers symmetrically paired between the encoder and
decoder with respect to the central coding layer, and using the same connection
weights for the bidirectional links along the directions of X → Y and Y → X̂.
One neuron takes dual roles in encoder and decoder, and this nature is shortly
called Duality in Paired Neurons (DPN), which can be regarded as adding short-
cut connections between the paired neurons. Using the same connection weights
for the bidirectional links is referred to Aj = WT

j , where Wj is the weight matrix
for layer j in the direction X → Y and Aj is the weight matrix at the corre-
sponding layer in the direction Y → X̂. The matrix equality Aj = WT

j indicates
that each connection weight between a pair of neurons plays a dual role for both
directions, and thus this nature is shortly called Duality in Connection Weight
(DCW). DCW enables Lmser to approximate identity mapping for each layer
simply through WjAj = AT

j Aj ≈ I which holds exactly for an orthogonal matrix
Aj . Therefore, AE implements a direct approximation of inverse of X → Y by
Y → X̂ in a simple cycle, whereas Lmser improves the direct cascading into a
distributed cascading by DPN and DCW.

Due to the above architectural features, Lmser works in two phases, i.e.,
perception phase and learning phase. In perception phase, the signal propagation
from two directions X → Y and Y → X̂ constitute a dynamic process which will
approach equilibrium in a short term [14]. If the reconstruction X̂ is not close
to the input X, then Lmser enters the learning phase to update the connection
weights to reduce the discrepancy between X and X̂. Moreover, part of the
central (or top) layer Y can be used for label prediction YL and thus supervised
learning at the top by labeled data and unsupervised learning at the bottom
by unlabeled data are made jointly. This nature is shortly called Duality in
Supervision Paradigm (DSP). More advances about Lmser are referred to a
recent review in [15].

As discussed in [13], Lmser potentially has many functions. However, due
to the lack of powerful computing facility and big data at the time of 1990’s,
Lmser was implemented by computer simulations with only one hidden layer. It
was shown that a neuron in Lmser net behaved similar to a feature detector in
the cortical field during learning [13]. In recent years, some features of Lmser
were also adopted in the literature. For example, stacked restricted Boltzmann
machines (RBMs) [5] constrained the weight parameters to be symmetrically
shared by the encoder and decoder network, while neurons in U-Net [11] and
deep RED-Net [10] shared values by skip connections from the layers in the
encoder to the layers in the decoder. However, whether Lmser indeed works on
deep network structures and whether it is effective for those potential functions
as indicated in [13], are still not systematically explored.

In this paper, we revisit Lmser by implementing it on a multi-layer network,
and confirm that it indeed works as indicated in [13,14]. Since the dynamic
process in the perception phase of multi-layer Lmser net can not be exactly
implemented in practice, we present an effective implementation to approximate
the dynamic process by updating neurons in a layer-by-layer way. Meanwhile,
instead of using original Lmser learning rule to calculate gradient when updat-
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ing parameters, we compute the gradients via back propagation, which is easy
to implement and works well in practice. Experiments confirm several poten-
tial functions of Lmser and demonstrate its promising performance in various
applications. Our contributions are summarized as follows:

– We revisit Lmser net by implementing it on multiple layers of neural networks.
Our implementation can train the deep Lmser networks stably and effectively.

– Experiments are conducted on image reconstruction, generation, associative
recall, and classification, in comparisons with AE as a baseline. The results
not only confirm that Lmser works as indicated in the original paper, but
also demonstrate its promising performance in various applications.

2 Related Work

2.1 Networks with Symmetrically Weighted Connections

A stack of two-layer restricted Boltzmann machines (RBMs) with symmetrically
weighted connections was used in [6] to pretrain an AE that has multiple hidden
layers in a one-by-one-layer way. AE consisting of multiple layers may have a slow
convergence speed when optimizing its weights because the gradients vanishes
as it propagates from the last layer of decoder to early layers in encoder. The
pretrain can help to remedy this problem. The stacked RBMs worked well in
dimensionality reduction.

2.2 Networks with Symmetrically Skip Connections

One recent typical example network architecture with symmetrically skip con-
nections is the U-Net [11]. It consists of a contracting path as encoder and an
expansive path as decoder, and both paths form a U-shaped architecture. The
feature map from each of the layer of the contracting path was copied and con-
catenated with the symmetrically corresponding layer in the expansive path.
Such skip connections can be regarded as a type of sharing the encoder neu-
ron values with the correspondingly paired decoder neuron. Experiments in [11]
demonstrated that U-Net worked very well for biomedical image segmentation.
Such skip connections were also adopted in deep RED-Net [10]. Different from
U-Net, it directly adds old feature map with present top-down signal. Feature
map must be in the same size, so it only add skip connections for specific layers.
It has been shown in [10] that deep RED-Net worked well in super-resolution
image restoration. Moreover, with the appearance of ResNet [4] and DenseNet
[7], deep neural networks with skip-connections become very popular and showed
impressive performance in various applications.

3 A Brief Review of Lmser

The Lmser self-organizing net was proposed in [13,14] based on the principle
of Least Mean Square Error Reconstruction (LMSER) of an input pattern. An
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example of Lmser architecture is demonstrated in Fig. 1(a). When Lmser net
consists of multiple layers, each neuron zk in the k-th layer receives both bottom-
up signal yk from the lower layer and top-down signal uk from the upper layer,
and is activated by their summation.

The Lmser net works in two phases, i.e., perception and learning. In the
perception phase, the input pattern X triggers the dynamic process by passing
the signals up from the bottom layer, while simultaneously the signals in the
upper layers will be passed down to the lower layers. It has been proved that
the process will converge into an equilibrium state [13]. The top-down signal to
the input layer is regarded as reconstruction of the input. In the learning phase,
the parameters are updated by minimizing the mean square error between the
input and reconstruction. Given by Eq. (5a) in [14], the loss function for Lmser
learning is:

J =
1
2
E(‖−→x − WT

1
−→z1‖2) (1)

where E(·) denotes the expectation, W1 is the weights of the first layer, z1 =
s(y1+u1) is the activity of the first layer neurons which receive both the bottom-
up signals y1 and the top-down signals u1. As given by Eqs. (6a)–(8b) in [14],
the gradients to update the network parameters are restated below:

for k = 1, εi0 = xi − ui0, εi1 = yi1 − yr
i1,

∂J

∂wpq1
= εq0zp1 + s′

p1εp1xq

for k ≥ 2, εik =
n(k−1)∑

j=1

εj(k−1)wijk

∂J

∂wpqk
≈ s′

q(k−1)εq(k−1)zpk + s′
pkεikzq(k−1) (2)

4 Methods

4.1 Revisit Lmser and Implement It on Multiple Fully-Connected
Layers

In order to further study the features and functions of Lmser, we need to imple-
ment it on multiple fully-connected layers. There is one technical challenge that
it is hard to exactly implement the dynamic process in the perception phase
and it may be time consuming to reach the convergent state. To overcome this
problem, we propose an effective and simple way to approximate the dynamic
process.

As shown in Fig. 1(b), we update the neurons in a layer-by-layer way. At the
very beginning, a signal vector x is placed at the input layer into the network,
and then it will trigger the bottom-up signal propagation through the layers one
by one. In the first bottom-up pass, there is no input signal for the top layer, so
at the i-th layer, the top-down signals from (i + 1)-th layer to the i-th layer are
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Fig. 1. (a) The architecture of multi-layer Lmser, where connection is bidirectional
and symmetric, uk is the top-down signal, yk is the bottom-up signal, and each neuron
is output as a sigmoid activation, i.e., zk = s(uk + yk), where uk = Wk+1

T zk+1,
yk = Wkzk−1. (b) The reflection implementation, where zt

k denotes the value of zk at
time t. (c) The calculation of gradients during back propagation.

initialized to be zero. After the first bottom-up pass, all neurons are given activity
values. Then, the first top-down pass propagates the signals backwards and the
neuron activation at the i-th layer is calculated as a sigmoid of the summation
of ui and yi. In analogy to light reflections, we call such one bottom-up and one
top-down pass as one reflection. In this way, bottom-up signal and top-down
signal can be updated alternatively until they become stable. In practice, we use
the Rectified Linear Units (ReLU) as the neuron activating function, and we find
that instead of reaching the stable state of the updating process, one reflection
followed by learning phase works well for the whole Lmser learning.

Another difference in our implementation from the original Lmser net is the
learning rule. In the learning phase, for the calculation of gradient, instead of
directly using Eq. (2), we compute it via an approximate back propagation. Such
implementation enables us to use the available computational platform and back
propagation library efficiently, and has been shown to work well in practice.

∂J
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When we set reflection T = 1, as shown in Eq. (3), we can decompose ∂J
∂Wk

to

sum of multiplications of factors in the form of ∂J
∂zt

k
, ∂z1

k−1

∂z1
k

, and ∂zt
l

∂Wk
, where

∂zt
l

∂Wk
can be further decomposed or easily computed. Finally, ∂J

∂Wk
is composed

of factors in the form of ∂J
∂zt

k
, ∂z1

k−1

∂z1
k

, ∂z1
k

∂z0
k−1

, and ∂z0
k

∂z0
k−1

, which can be calculated

effectively in the process of back propagation, as shown in Fig. 1(c).

4.2 Jointly Supervised and Unsupervised Lmser Learning

In Lmser, each input pattern X can be recognized by a label YL output at the
top layer, which plays the same role as a classifier. Thus, for the input with
labels, Lmser can be implemented jointly both in an unsupervised manner to
reduce the reconstruction error at the bottom layer and in a supervised way by
minimizing the discrepancy between the predicted label YL and the true label.
The reconstruction error will push the network to do self-organizing, which helps
network to learn structure information of input and facilitates concept abstract-
ing and formation at the top domain. The self-organizing learning directed by
reconstruction error plays the role of regularization, which help network to pre-
vent over fitting and make classification be more robust such as defense against
adversarial attacks.

In perception phase, the implementation of dynamic process is the same as
in Sect. 4.1, but with two parts computed at the top layer, i.e., one for pre-
dicted labels and the other as input to the decoder for top-down reconstruction.
In learning phase, the loss function includes two terms for reconstruction and
classification separately:

J =
1
2
E(‖−→x − WT

1
−→z1‖2) + L(f(x), y) (4)

where the additional term L(f(x), y) measures the error between the Lmser
predicted f(x) and the given label y.

5 Experiments

In this section, we demonstrate the effectiveness and strengths of the deep Lmser
learning by some promising results on image recognition, reconstruction, gen-
eration, and associative recall. We use Lmser(un) to denote the Lmser net-
work trained only in the unsupervised manner, use Lmser(un-n) to denote the
Lmser(un) by removing DPN, use Lmser(sup) to denote the Lmser network
trained jointly in the supervised and unsupervised manner.

5.1 Datasets and Experimental Settings

We evaluate Lmser on two benchmark datasests: MNIST [9] and Fashion-
MNIST [12].
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Fig. 2. Examples of reconstructed images on MNIST. (a) AE, τ = 500; (b) Lmser(un-
n), τ = 500; (c) Lmser(un), τ = 500; (d) Lmser(sup), τ = 500; (e) AE, τ = 5000; (f)
Lmser(un-n), τ = 5000; (g) Lmser(un), τ = 5000; (h) Lmser(sup), τ = 5000. (τ : the
number of training iterations.)

– The MNIST constains 60, 000 training images and 10, 000 testing images. The
images are handwritten digits from 250 people. Each picture in the data set
consists of 28 × 28 pixels, each of which is represented by a gray value.

– Fashion-MNIST (F-MNIST) is a MNIST-like dataset which shares the same
image size and structure of training and testing splits. F-MNIST is served
as a replacement for the original MNIST dataset for benchmarking machine
learning algorithms.

For MNIST and F-MNIST, we use 4 layers with the numbers of neurons
[10, 100, 300, 784] for Lmser based on fully-connected layers. We train every net-
work model with Adam (Adaptive moment estimation) optimiser method [8]. In
the training process, the batch size is set to be 50 and the adaptive learning rate
is set to be 0.01 with decay rate 0.9999.

5.2 Reconstruction

We evaluate the reconstruction performance on MNIST dataset and F-MNIST
dataset. Lmser is a development of AE, thus for comparisons, AE is used as
a baseline. Detailed reconstruction errors are summarized in Table 1. Examples
of the reconstructed results are given in Fig. 2 for different number of training
iterations.
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Fig. 3. Examples of reconstructed images on Fashion-MNIST. (a–c) AE, τ =
1000, 5000, 10000; (e–g) Lmser(un), τ = 1000, 5000, 10000. (τ : the number of train-
ing iterations)

Table 1. Reconstruction error on MNIST, where τ denotes the number of training
iterations.

Model τ = 500 τ = 5000 τ = 20000

AE 0.071 0.036 0.020

Lmser(un-n) 0.030 0.021 0.016

Lmser(un) 0.0067 0.0018 0.0006

Lmser(sup) 0.0078 0.0025 0.0007

It can be observed that Lmser converges faster with smaller reconstruction
errors than AE, and Lmser(un) is better than Lmser(un-n), which suggests that
shortcuts between paired neurons play a significant role in reconstruction perfor-
mance. Lmser(sup) is slightly worse than Lmser(un), but still much better than
Lmser(un-n) and AE, indicating that there is a trade-off between the classifica-
tion and reconstruction. Moreover, we also test the reconstruction performance
on F-MNIST. Examples are shown in Fig. 3. Obviously, Lmser converges faster
and is better than AE, which is consistent to the observations from Fig. 2.

5.3 Recognition

In this section, we investigate the classification performance of Lmser(sup), which
is trained jointly in supervised manner and unsupervised manner. The classifica-
tion accuracies of Lmser(sup) and a fully-connected feedforward network (FCN)
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Fig. 4. Structure of supervised Lmser for image generation: (a) training stage; (b)
generation stage

are comparably high, both over 98%. When there exist adversarial attacks at
intensity level 0.3 from the Fast Gradient Sign Method (FGSM) [3], a well-
known adversarial attack method, the classification accuracy of FCN drops down
to 2.68%, while Lmser(sup) still gets 31.16%.

In this section, we investigate the performance of deep Lmser learning in
image generation by manipulating the latent code to get different styles of hand-
written digit numbers and clothes. In addition to the categorical coding units, we
add two more hidden coding units h1

sect and h2
sect to the top layer of Lmser(sup)

to get different styles of handwritten digits, as shown in Fig. 4. We assume that
the two additional coding units are independent and follow Gaussian distri-
butions. In practice, when we train the model Lmser(sup), the means of the
two additional coding units are computed by encoder. Before they are fed into
the decoder, we perturb them by a zero-mean Gaussian. When generating dig-
ital numbers, as shown in Fig. 4(b), the decoder will generate digital numbers
according to not only the label by the categorical coding units but also randomly
sampled style codes by the two additional hidden coding units. The style codes
may also be assigned at specific values. Figure 5(e) show that when assigning
the coding unit with different values, the digital number is gradually changing
in different styles.

5.4 Generation

For the input patterns without labels, no labels can be used to guide the sepa-
ration of categorical information and non-categorical styles. Lmser is still able
to form a self-organized top coding domain, which preserves the neighbourhood
relations and topological similarities. By manipulating one coding unit in the top



206 W. Huang et al.

Fig. 5. Generated digital numbers by Lmser(un). There are 10 codes in the latent space,
where Zi represent the i-th coding unit. (a) manipulating Z3; (b) manipulating Z0; (c)
manipulating Z5; (d) manipulating Z9. (e) Generated digital number by Lmser(sup-n)
with changing two coding units. Top: manipulating h1

sect; middle: manipulating h2
sect;

bottom: manipulating both the two units. It seems that the two units can control
different shape changing.

layer with others fixed, we can observe pattern changing smoothly as the coding
value varies, which indicates that the coding regions are well self-organized and
clustered. With such property, we are able to synthesize images in a controllable
way or in a creative way for novel synthesis and reasoning. Figure 5(c) shows that
when specifying the coding unit with values from 0 to 10, the digital number
is gradually changed to have a circle created over the head, while in Fig. 5(d)
another coding unit seems to control the tilt degree of generated images.

5.5 Association

For the incomplete input, Lmser is able to recover the missing part by asso-
ciative memory from the observed part. This function is related to tasks such
as associative recall of recover the whole image with some key parts blocked.
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Fig. 6. Examples of associative recall from partial mnist images. (top) the ground-
truth images; (middle) partial images with half blocked; (bottom) associative recall by
Lmser(un-n).

Specifically, the observed part of the image is fed into the Lmser network, and
triggers the bottom-up signals passing to the top layers. Then, the activated neu-
rons passing the top-down signals back to the bottom layer to give a complete
image, which actually recovers unobserved part based on what has been learned
by the network layers. The sharing connection weights by both directions of the
links between the consecutive layers enables Lmser to catch invertible structures
under input patterns for restoring these structures under partial input.

We train the Lmser net on the MNIST dataset, and then feed the masked
images into the model for the output of reconstructed complete images. In prac-
tice, we have found that shortcuts between paired neurons is helpful in recon-
struction, but not so beneficial in associative memory, because it can also pass
hole to the low layers of decoder when it pass the detailed information from
encoder to decoder. Therefore, we only present the results by the Lmser net
without using the paired neurons for both encoder and decoder in Fig. 6. Exam-
ples of the half blocked images are given in the middle row in Fig. 6, and the cor-
responding reconstructed complete digits from the associative memory by Lmser
are shown in the bottom row, which are similar to the ground-truth images in
the top row. The results demonstrate that Lmser is promising for this task of
associative recall from partial input.

6 Conclusion

In this paper, we have revisited the Lmser network for the practical implemen-
tation of multiple layers, and confirmed that several of its potential functions
indeed work effectively via experiments on image recognition, reconstruction,
associative memory, and generation. Experiments demonstrate that Lmser not
only works as preliminarily discussed in the original paper, but also is promising
in various applications. It deserves further investigations on Lmser in the future
for its improvements and comparisons with state-of-the-art methods in many
real applications.
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