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ABSTRACT

Recently, one earliest skip connected networks named Lmser

was revisited and its convolutional layer based version named

CLmser was proposed. This paper studies CLmser for seg-

mentation (shortly CLmser-S) of Electron Microscopy (EM)

images and also one further development. First, we exper-

imentally show that CLmser-S outperforms the popular U-

Net and save many free parameters. Second, we combine

one newest formulation named Flexible Lmser (F-Lmser) and

CLmser-S into a version called F-CLmser-S, together with

learned masks replacing the similarity based one used in F-

Lmser for implementing fast-lane skip connections. Exper-

imental results on the ISBI 2012 EM dataset show that F-

CLmser-S improves CLmser and achieves competitive per-

formance with state-of-the-art results.

Index Terms— electron microscopy, image segmenta-

tion, flexible Lmser, CLmser, gated skip connections

1. INTRODUCTION

High-resolution Electron Microscopy (EM) image has been

used in biomedical research to investigate the detailed struc-

ture of tissues, cells, organelles and so on. For example,

EM images were used to study Drosophila brain structure [1]

which required segmentation of neural structures from the im-

ages. Manual labeling of each element in the image requires

by an expert human neuroanatomist. However, due to the vi-

sual complexity of the EM images, it can be time-consuming

for human experts to interpret them one-by-one, which drives

the demand for automated approaches.

Recently, deep learning methods have been used to solve

the task of EM image segmentation based on Convolutional

Neural Networks (CNN) [2, 3, 4, 5, 6, 7, 8, 9]. One of the

early attempts is U-Net [3]. It consists of a contracting path

as encoder and an expansive path as decoder, and both paths

form a U-shaped architecture. The feature map from each of

the layer of the contracting path was copied and concatenated

with the symmetrically corresponding layer in the expansive

path. Such skip connections enabled U-Net to work very well

for biomedical image segmentation [3].

(a) (b)

Fig. 1. Examples in the ISBI 2012 EM dataset: an EM image

(a) and its ground truth segmentation (b).

Many following works were built upon a U-Net-like

structure[4, 7]. FusionNet[4] adopts residual blocks in the

U-Net structure so that the coexistence of long skip connec-

tions and short-cuts enable the model to have a deeper depth

and achieve higher performance. Based on conditional Gen-

erative Adversarial Network, ADDN[7] uses a U-net-like ar-

chitecture with dilated convolutions in its generator, called

densely dilated network.

The skip connections used in U-net [3] can actually be

backtracked to one earliest skip connected networks called

Lmser proposed in 1991 [10, 11]. The Lmser architecture is

obtained by folding AE along the central hidden layer, and

thus the same architecture takes a dual role for both encoder

and decoder. Such folding also make the neurons on the

paired layers between encoder and decoder merge into one,

equivalently got skip connections in forward and backward

directions jointly. Though Lmser learning was proposed in

[10, 11] as one multiple layer deep learning approach, its ad-

vantages were only demonstrated in a one-hidden-layer im-

plementation due to the lack of computing resources and big

data at that time.

Recently, Huang et al. in [12] has revisited Lmser and

has confirmed that deep Lmser learning works well on sev-

eral potential functions addressed in [10, 11], demonstrated

by experiments on image recognition, reconstruction, associ-

ation recall, and so on. Moreover, Lmser is developed into
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a multiple convolutional layers based version named CLmser

for image related tasks.

In this paper, the fast-lane CLmser is applied on segmen-

tation of EM images, i.e., only skip connections from encoder

to decoder are considered, without feedback from decoder

to encoder. Not only we experimentally show that CLmser

outperforms U-Net and save many free parameters, but also

we proceed to a version called F-CLmser-S that integrates

CLmser and one newest formulation named Flexible Lmser

(F-Lmser) [13], featured with fast-lane skip connections that

are regularised by learned templates instead of by similar-

ity between bottom-up pattern and top-down pattern as sug-

gested in F-Lmser. Experimental results on the ISBI 2012 EM

dataset show that F-CLmser-S improves CLmser and achieves

competitive performance with state-of-the-art results.

We summarize our contribution as follows:

• We present a F-CLmser-S network for EM image

segmentation. We consider the fast-lane version of

CLmser, to have skip connections from the neurons of

encoder to the ones in symmetrically paired layers of

decoder, without feedback from decoder to encoder.

• We propose to gate the patterns transferring through the

skip connections at different levels of layers, in order to

reduce the noisy, redundant, uninformative patterns for

the task of segmentation. At high-level layers close to

the central hidden layer, we compute the gating mask

from the layer output in encoder to filter the feature

maps by channels and by pixels, while at low-level lay-

ers close to input and output, we compute the gating

mask from the layer output in decoder to identify the

uncertain prediction to be supplied with more details

from encoder.

• Experimental results show that the proposed method

can have comparable performance with state-of-the-

art methods in the ISBI 2012 EM challenge. Abla-

tion study and qualitative evaluation further demon-

strate that the gating masks at low- or high-level layers

can enhance and refine the segmentation outputs.

2. RELATED WORK

2.1. Deep Model for EM Image Segmentation

One of the earliest work by Ciresan et al.[2] simply used a

succession of convolutional and max-pooling layers to per-

form the prediction. Their pioneer work won the ISBI 2012

challenge. Long et al.[14] proposed to replace fully con-

nected layers with fully convolutional layer for preserving

spatial information and allowing arbitrary input size. Since

then, many variants of FCN have been proposed for EM im-

age segmentation. Chen et al.[6] adopts a concatenation of

multi-level feature maps to integrate different contextual in-

formation. Shen et al.[5] present a multi-stage and multi-

recursive-input FCN. In each stage, the model learns to pre-

dict outputs at different levels. Then, all the predictions are

combined with the original images to form the input for the

next stage. Ronneberger et al.[3] proposed a U-net architec-

ture consisted of a contracting path and a symmetric expand-

ing path. They replace pooling operations by upsampling,

and use skip connections to preserve low-level information.

The skip connections are then combined with high resolu-

tion features from the contracting paths. However, the model

still suffers from the vanishing gradient problem, which lim-

its the depth of U-net. He et al.[15] proposed the residual

blocks and demonstrated that shortcut connections and direc-

tion summations can reduce the influence of vanishing gra-

dients. Combining short and long skip connections, Quan et
al.[4] presented FusionNet, which leverages the U-net with

residual blocks.

2.2. Attention Mechanism

Inspired by the human perception process, numerous studies

have been proposed to apply attention mechanism into neural

networks. Recently, several approaches attempt to integrate

attention modules with state-of-the-art deep model architec-

ture to improve the performance of networks[16, 17, 18].

Residual Attention Network[16] was built by stacking at-

tention modules, the network performs very well on sev-

eral benchmarks and is proven to be robust to noisy inputs.

Zhang et al.incorporate Residual network with channel at-

tention which is able to re-scale channel-wise features to

solve image super-resolution problems[17]. A lightweight

and general module called Convolutional Block Attention

Module(CBAM) [18] combines channel attention and spatial

attention. It can be incorporated into existing models to im-

prove the results in classification and detection problems.

3. METHODS

3.1. Overview of the proposed network

The overall architecture of the proposed model is similar to

the CNN based Lmser in [12], as shown in Figure 2. Different

from [12], we use residual blocks as the basic building mod-

ules, and we propose a gating strategy to make the skip con-

nections focus on the important features and ignore the redun-

dant ones. Specifically, we compute attention masks based on

the output of layers in encoder, for filtering pixel-level and

channel features transferred from encoder at high-level lay-

ers close to the central hidden layer, while we compute con-

fidence masks based on the output of layers in decoder, to

allow the uncertain segmentation regions to receive more de-

tails from the encoder, for low-level layers close to the input

and final segmentation output. With the gating masks at dif-

ferent levels, the irrelevant patterns are blocked, the missing
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details are enhanced, and then the final segmentation results

are refined and improved.

In practice, all the convolutional layers adopt 3×3 kernels

with stride size as 1. For all the deconvolutional or transposed

convolutional layers, we use 3× 3 kernels with stride size as

2. Activation functions are set as ReLUs.

3.2. Gating Feature Maps by Channels and by Pixels

Channel gating aims to capture the inter-dependencies of dif-

ferent channels by first squeezing and then expanding the

channel size. Pixel-level gating is to filter essential spatial

patterns by the computed weights.

Figure 2(b) shows the details of two gating modules in

high-level layers. Given the feature map F∈RH×W×C which

will be transferred through the skip-connections, the gating

weight matrix WCG ∈ R
1×1×C to gate the channels are com-

puted from F itself, and the weight matrix WPG ∈ R
H×W×1

are calculated from the output feature map F1 of the gated

channels,

F1 = WCG ⊗ F, F2 = WPG ⊗ F1, (1)

where ⊗ indicates the scaling operator along the channel or

pixel coordinates.

Channel Gating. We construct the channel gating mod-

ule in the same way as [17]. As shown in Figure 2(b), we first

apply average pooling on the feature maps F to get a feature

vector F1 ∈ R
1×1×C . Then, two 1 × 1 convolutional lay-

ers are used to compute the weights for filtering information

along the channel dimension. The number of channels is kept

unchanged.

Pixel-level Gating. As in Figure 2(b), average pooling

operation is used to aggregate the channel information of a

feature map, then a convolutional layer and a sigmoid acti-

vation function are employed to compute pixel-level gating

map.

3.3. Gating Low-level Layers

Different from pixel-level and channel gating weights, the

gating masks for low-level layers are computed on the outputs

of the decoder layers close to the final segmentation output,

to select the uncertain segmentation regions, and they allow

the skip connections to pass more details from the encoder to

refine the segmentation on such uncertain regions.

Specifically, the mask is computed by:

f(x) = (1− x2)γ , (2)

where x denotes an entry of the feature maps, γ is a hyper-

parameter to control the shape of the function curve. The

whole process of generating a gating mask is illustrated in

Figure 2(c).

The segmentation task can be viewed as a binary classi-

fication problem on pixels, where the membrane is −1 and

cell is +1. The prediction is considered of high confidence

with pixel values near −1 or +1, while values near 0 indicate

that the network cannot tell whether the corresponding pixels

are within the membrane or non-membrane region. The func-

tion by Eq.(2) has high values with inputs near 0 and low val-

ues with inputs near −1 and +1, which allows the skip con-

nections to focus more on uncertain prediction. Therefore,

we can refine the outputs by fusing the decoder layers with

filtered patterns passed through skip connections. In prac-

tice, other functions with similar characteristics might also be

used.

3.4. Loss Function

Since the cross entropy loss might induce gradient vanish-

ing problem in modern deep-learning frameworks, we adopt

smooth L1 loss [19] as our loss function:

L(X,Y ) =
1

w × h

∑
i,j

Ei,j (3)

Ei,j =

{
0.5(Xi,j − Yi,j)

2, if |Xi,j − Yi,j | < 1

|Xi,j − Yi,j | − 0.5, otherwise
, (4)

where X ∈ Rh×w and Y ∈ Rh×w are network prediction

and ground truth respectively, h and w are the height and

width of the test images.

4. EXPERIMENTS AND RESULTS

4.1. ISBI 2012 EM Segmentation Dataset

The training data are 30 pairs of EM images and ground truth

labels obtained from ISBI 2012 EM Segmentation Challenge

[20]. Figure 1 shows an example of the dataset, where the

ground truth is a binary image with membranes in white and

non-membrane area in black. The testing data for public also

contain 30 EM images, while the ground truths are not pro-

vided.

4.2. Experimental Setup

In the training phase, we randomly split the dataset into 25
training pairs and 5 validation pairs. As the training dataset is

small, we apply several data augmentation techniques to en-

rich our training data, including rotation, horizontal flip, elas-

tic transformation, random crop, and mirror reflections on the

boundary. We set the parameter γ = 3 in Eq.(2) to compute

the confidence mask 1. We train the model using Adam opti-

mizer. The learning rate is set to be 2× 10−4 initially and de-

cays by a factor of 10 every 300 epochs. We use weight decay

policy to prevent the network from overfitting with weighting

1We perform experiments on γ = 1, 2, 3, 4, and γ = 3 shows the best

results.

870



(a) Overview of the Proposed Method

(b) Channel and Pixel-level gating (c) Gating Mask for Low-level Layers

Fig. 2. Overview of the proposed model. (a) shows the overall structure. We adopt channel and pixel-level gating in high-level

layers to filter the corresponding skip connections. And at low level layers, a two-stage cascading usage of masks is applied

to refine the temporary outputs step by step to obtain the final outputs. (b) describes the computation of the channel-level and

pixel-level gating. (c) depicts the computation of the gating mask in low-level layers.

parameter as 10−4. Post-processing[21] is performed to ob-

tain the final segmentation results.

In the testing phase, we evaluate the performance of the

proposed model using two different metrics, i.e., Foreground-

restricted Rand Scoring after border thinning(V Rand) and

Foreground-restricted Information Theoretic Scoring after

border thinning(V Info). The details of these two metrics can

be found in [20]. The results are sorted by V Rand since it is

more robust.

4.3. Ablation Study

We conduct ablation study to evaluate the effectiveness of dif-

ferent functional modules in our model, and the numerical

evaluation results are given in Table 1. We use the fast-lane

CLmser without duality on connection weights(CLmser-w)

as the baseline model, which have residual blocks as the basic

Table 1. Roles of different ingredients. Here, the fast-lane

CLmser without duality on connection weights(CLmser-w) is

used as a baseline.
Model V rand V info

CLmser-w 0.97310 0.98712

CLmser-w + CG 0.97359 0.98726

CLmser-w + CG + PG 0.97438 0.98868

CLmser-w + CG + FullPG 0.97709 0.98710

CLmser-w + CG + PG + GM 0.98223 0.98919

building blocks within the CLmser structure. CG and PG rep-

resent channel-level and pixel-level gating respectively, and

they are all applied in skip connections at deep layers. GM
means the gating mask applied in skip connections at low-
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Table 2. Comparison between Different Models

Method V rand V info

SFCNNs [22] 0.98680 0.99144
ADDN [7] 0.98317 0.99088

Our approach 0.98223 0.98919

PolyMtl[8] 0.98058 0.98816

M2FCN [5] 0.97805 0.98919

FusionNet [4] 0.97804 0.98893

CUMedVision [6] 0.97682 0.98865

FCN+LSTM [9] 0.97537 0.98743

Unet [3] 0.97276 0.98662

Table 3. Parameters comparisons between Different Models

Method Parameters(M)

Our approach 8.3
ADDN [7] 8.9

PolyMtl[8] 13

FusionNet [4] 31

Unet [3] 33

leval layers. We can see a mild increase in performance with

the addition of channel-level gating on the baseline model.

After applying pixel-level gating, the model sees a larger

improvement. The performance is further significantly im-

proved when adding the masks to refine the predicted output

in successive steps.

As both pixel-level gating and the masks for low-level lay-

ers provide gating policies on the spatial dimension for skip

connections, we compare two alternatives in model choice by

applying either one in the low-level layers. Comparison be-

tween the results of the last tow lines in Table 1 also demon-

strate that that using gating mask in low-level layers outper-

forms the usage of pixel-level gating, where FullPG means

pixel-level gating is applied in all skip connections. The rea-

son might be that the gating masks generated at low-level lay-

ers help the skip connections extract more useful low-level

features to predict a better segmentation.

4.4. Comparisons with state-of-the-art approaches

We compare the proposed method with other models on this

benchmark dataset. For fair comparisons, we only list pub-

lished results for models whose main contribution lie in a new

model architecture. From Table 2, we can see that the pro-

posed model can achieve competitive performance with state-

of-the-art. Table 3 records the results of parameters compar-

ison between several methods. Note that FusionNet [4] is a

combination of U-net and residual blocks. Thus, it shares a

similar architecture with our baseline model but with much

deeper layers. With the help of gating mechanisms on skip

Fig. 3. Visualization of original EM images and the corre-

sponding segmentation results by our method. The darker

color of pixels represent higher probability of being mem-

brane

connections, the proposed model outperforms FusionNet with

fewer parameters.

Figure 3 shows examples of testing input-prediction pairs

by the proposed method. We can see that the predictions by

the proposed model remove the nucleus and other tiny ele-

ments within cells while maintaining the boundaries between

neurons.

5. CONCLUSION

In this paper, we present a F-CLmser-S network for biomed-

ical image segmentation, which integrates the fast-lane

CLmser and F-Lmser. Based on the built-in dualities of

Lmser, the encoder and decoder of the proposed network

share the same architecture, and skip connections have been

added symmetrically from encoder to decoder. We leverage

feature levels of different layers to compute the gating poli-

cies for the feature maps, to improve the efficiency of the skip

connections. At high-level layers close to the central coding

layer, we gate the skip connections by weighting the channels

and pixels, while at low-level layers, we exploit the masks to

filter the skip feature maps. Experimental results on the ISBI

2012 EM dataset show that the proposed model can achieve
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competitive performance with state-of-the-art.
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