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Abstract. Gaussian Mixture Model (GMM) has been applied to clus-
tering with wide applications in image segmentation, object detection
and so on. Many algorithms were proposed to learn GMM with appropri-
ate number of Gaussian components automatically determined. Lagrange
Ying-Yang alternation method (LYYA) is one of them and it has advan-
tages of no priors as well as the posterior probability bounded by tradi-
tional probability space. This paper aims to investigate the performance
of LYYA, in comparisons with other methods including Bayesian Ying-
Yang (BYY) learning, Rival penalized competitive learning (RPCL),
hard-cut Expectation Maximization (EM) method, and classic EM with
Bayesian Information Criterion (BIC). Systematic simulations show that
LYYA is generally more robust than others on the data generated by
varying sample size, data dimensionality and real components number.
Unsupervised image segmentation results on Berkeley datasets also con-
firm LYYA advantages when comparing to the Mean shift and Multiscale
graph decomposition algorithms.

Keywords: Gaussian Mixture Model · Lagrange Ying-Yang alternation
method · Unsupervised image segmentation · Lagrange coefficient

1 Introduction

Gaussian Mixture Model (GMM) is a classic probabilistic model and has been
widely used in clustering analysis, image segmentation, speaker identification [1].
Parameters learning and model selection are two essential parts of conventional
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learning in GMM. Parameter learning is often implemented by Expectation-
Maximization (EM) algorithm to maximize the likelihood, while determining
the number, denoted as k, of Gaussian components is a model selection problem
which is traditionally selected by a criterion, e.g., Bayesian Information Criterion
(BIC), via a two-stage implementation which runs EM for all possible candidate
component numbers.

However, this traditional model selection method is time-consuming. Efforts
have been made on automatic model selection. Rival penalized competitive learn-
ing (RPCL) [2] is an early attempt on automatic model selection. Proposed in
[3], BYY combines parameter learning with model selection and provides the
general learning framework as well as specific algorithms. Moreover, automatic
model selection can also be implemented via Bayesian approach with proper
priors. Minimum message length (MML) [4] and variational Bayes(VB) [5] in
GMM learning are two instances of this roadway. Readers can refer to [6] for a
detailed analysis and comparison among the three Bayesian approaches.

Further improvements on Ying-Yang two-step alternation algorithm indicate
that BYY learning methods may be improved without any help of priors if they
can restrict covariance matrices as positive definite matrices [7] which is not
considered in traditional BYY method. One recent method given in [8] is called
Lagrange Ying-Yang alternation method (LYYA), which ignores influences from
priors. It considers the Kullback-Leibler divergence between Ying structure and
Yang structure as a Lagrange constraint and uses the coefficient η to control this
restriction. There is still lack of a detailed investigation of LYYA in comparisons
with other methods.

In this paper, we provide such a detailed investigation. A wide scope of con-
figurations of experiments are considered to generate simulated data sets, with
varying sample size, data dimensionality, number of clusters, overlap degree of
clusters, and so on. LYYA shows best performance in simulations, comparing
with the classic EM with BIC, RPCL, hard-cut EM. Even if repeating 5 times,
BIC is still worse than LYYA when processing data with high overlapping degree
or high dimensionality. We also study the impact of the coefficient η on model
selection and clustering, and suggest an optimal scope of η. Real world applica-
tions are also considered. Unsupervised image segmentation results on Berkeley
show that LYYA is better than other methods including hard-cut EM, RPCL,
BYY and Mean shift algorithm [9].

2 Gaussian Mixture Model and EM Algorithm

For an item x ∈ Rn, Gaussian Mixture Model (GMM) supposes that it comes
from a linear combination of k Gaussian distributions:

q(x|θ) =
k∑

j=1

αjG(x|μj , Tj), αj ≥ 0,

k∑

j=1

αj = 1, θ = {αj , μj , Tj}k
j=1, (1)

where G(x|μj , Tj) represents a Gaussian density with mean μi and covariance
matrix Ti, αj is the mixing weight of the j-th Gaussian component. GMM can be
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treated as a latent variable model by introducing a latent binary vector y =
{y1, . . . , yk} to mark the Gaussian component the data x belongs to, where
∀j, yj ∈ {0, 1},

∑k
j=1 yij = 1. Then, we have

q(x|θ) =
∑

y

q(x, y|θ), q(x, y|θ) =
k∏

j=1

[αjG(x|μj , Tj)]yj (2)

Parameters can be estimated from a set of observations XN = {x}N
i=1 which

is assumed to be independently identically distributed (i.i.d.) following GMM,
by maximizing the likelihood function, i.e., maxθ q(XN |θ) =

∏N
t=1 q(xt|θ), with

the help of Expectation-Maximization (EM) algorithm, which iterates between
the expectation step (E-step) and the maximization step (M-step):
E-step:

pij = p(j|xi, θ) =
αold

j G(xi|μold
j , T old

j )
∑k

j=1 αold
j G(xi|μold

j , T old
j )

(3)

M-step:

αnew
j =

∑
i pij

N
,μnew

j =
∑

i xipij∑
i pij

, Tnew
j =

∑
i pij(xi − μj)(xi − μj)T

∑
i pij

. (4)

3 Model Selection Methods

3.1 Traditional Two-Stage Model Selection Method

Maximum likelihood (ML) is not a good principle to determine the number k of
Gaussian components in GMM because its value increases as k grows, leading to
the overfitting problem. A conventional way is to select the component number
according to a model selection criterion such as Bayesian Information Criterion
(BIC):

k∗ = arg max
k

JBIC(k), JBIC(k) = ln q(XN |θ̂ML) − 1
2
dk ln N, (5)

where θ̂ML is the ML estimate of parameters, dk is the number of free parameters
in GMM, and N is the sample size.

3.2 RPCL and Hard-Cut EM

Model selection by Eq. (5) is time-consuming because it requires running EM
for a set of candidate component numbers. Efforts have been made on selecting
k automatically during parameter learning. An early attempt is RPCL [2], in
which not only the winner (i.e., the one with maximum posterior) is learned but
also its rival (i.e., the second winner) is repelled a little bit from the sample
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to reduce a duplicated information allocation. Thus, a batch version of RPCL
learning is to replace Eq. (3) by:

pnew
ij =

⎧
⎪⎨

⎪⎩

1 j = j∗, j∗ = maxj p(j|xi, θ)
−γ j = r, r = maxj �=j∗p(j|xi, θ)
0 otherwise

(6)

where p(j|xi, θ) is the posterior probability computed by Eq. (3), and j∗,r
represents the winner and the rival respectively, and γ controls the de-learning
strength. When γ = 0, it degenerates to the so called hard-cut EM algorithm,
see Eqs. (19) and (20) in [3].

3.3 Ying-Yang Alternation Method in BYY System

Firstly proposed in [3] and systematically developed in the past two decades,
Bayesian Ying-Yang (BYY) harmony learning on typical structures leads to a
class of algorithms that approach automatic model selection during parame-
ter learning. Readers can refer to [8] for recent systematic introduction about
BYY harmony learning. Briefly, BYY considers best harmony between two
types of decomposition, namely Yang machine p(R|X)p(X) and Ying machine
q(X|R)q(R), where data X is regarded to be generated from its inner repre-
sentation R = {Y, θ} with latent variables Y and parameters θ. Mathematically,
the BYY harmony learning is to maximize the following function, which is called
harmony measure [3]:

H(p||q) =
∫

p(R|X)p(X) ln[q(X|R)q(R)]dXdR (7)

For GMM given in Eq. (1), if ignoring prior distributions over parameters,
we have

H(p||q) =
k∑

j=1

n∑

i=1

p(j|xi, θ) ln[αjG(xi|μj , Tj)] (8)

Maximizing the Eq. (8), subject to the structure p(j|xi, θ) as the posterior dis-
tribution, leads to a BYY algorithm, iterating between Ying-Step which is the
same as M-step in EM algorithm by Eq. (4) and Yang-Step given by

pnew
ij = p(j|xi, θ)(1 + δij(θ))

δij(θ) = ln[αjG(xi|μj , Tj)] −
k∑

j=1

p(j|xi, θ) ln[αjG(xi|μj , Tj)]
(9)

where p(j|xi, θ) is calculated by Eq. (3) and δij(θ) is the adjustment on poste-
rior probability p(j|xi, θ). When δij(θ) > 0, it will award the effect of the jth

component on sample xi by enhancing the value of pij . When δij(θ) < 0, it will
give a punishment on pij and reduce the degree that the jth component evolves
toward sample xi.
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3.4 Lagrange Ying-Yang Alternation Method

The existing algorithms for maximizing Eq. (7) directly impose the equal-
covariance constraint between Ying machine and Yang machine. Posterior prob-
ability pij calculated in Eq. (9) may be negative, which makes learning suffer
from local optimum problem and learning instability [8]. To tackle this prob-
lem, the equal-covariance constraint can be indirectly considered as a Lagrange
constraint [8], i.e.,

HL(θ) = H(θ) − ηKL(p(Y |X)p(X)||q(X|Y, θ)q(Y |θ))
H(θ) =

∫
p(Y |X)p(X) ln[q(X|Y, θ)q(Y |θ)]dY dX

(10)

where η is a Lagrange coefficient bounded by η ≥ 0.
Maximizing Eq. (10) for GMM in Eq. (1) gives an algorithm called Lagrange

Ying-Yang alternation (LYYA), in which Ying step is the same as the M-step in
EM algorithm by Eq. (4), while Yang-step is given by:

pij =
[αold

j G(xi|μj , Tj)]
1+η

η

∑k
j=1[α

old
j G(xi|μj , Tj)]

1+η
η

(11)

when η → ∞, (1+η)
η → 1, Lagrange Ying-Yang alternation method will be

equivalent to EM algorithm. When η → 0, (1+η)
η → ∞, Lagrange Ying-Yang

alternation method will be extremely closed to hard-cut EM algorithm.

3.5 Rules to Trim a Gaussian Component During Automatic Model
Selection

Automatic model selection is achieved during learning with the component being
discarded when their mixing weights and determinants of covariance matrices are
small enough. In this paper, we adopt the same trimming rule for all algorithms,
i.e., for each iteration, among all the components with small enough mixing
weights and covariance matrix determinants, the one with least determinant is
discarded.

4 Simulation Experiment

4.1 Illustration on 2-D Datasets

To demonstrate how automatic model selection algorithms work, we give two
synthetic 2-D datasets as shown in Fig. 1. We run EM+BIC, hard-cut EM,
RPCL(γ = 0.0001), BYY and LYYA(η = 2) algorithms on both datasets, for
500 independent trials, respectively. All algorithms are initialized after the first
round of K-means algorithm.

We use Rand Index (RI), Normalize Mutual Information (NMI) as well as
Correct selection rate (CSR) to evaluate performances of algorithms. CSR is the
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(a) Initial state
in Dataset 1

(b) Result state
in Dataset 1

(c) Initial state
in Dataset 2

(d) Result state
in Dataset 2

Fig. 1. (a) Dataset 1 is generated by a 4-component GMM with equal weights α∗
j =

0.25, with 800 points and the component number is initialized to be k = 15. (c)
Dataset 2 (taken from http://cs.joensuu.fi/sipu/datasets/) consists of 5000 points in
15 categories and is initialized with k = 50. (b) and (d) Successful cases with correct
number of components determined. (Red indicates data points, blue represents means
and black boundary indicates a contour of density of a Gaussian component.) (Color
figure online)

frequency of correct number of clusters obtained by algorithms. All three criteria
are at range [0, 1] and the larger value, the better performance. Results in Table 1
show that LYYA gets best result except in CSR column of Dataset 2 where
BYY obtains best result. In this two datasets, the performances between LYYA
algorithm and BYY algorithm are closed and both are better than the other
three algorithms.

Table 1. Performances of BIC, hard-cut EM, RPCL, BYY and LYYA on two datasets,
where numbers in bold type indicate the best within columns

Algorithms Dataset 1 Dataset 2

RI NMI CSR RI NMI CSR

BIC 0.9895 0.9688 0.6980 0.9469 0.7466 0.0360

hard-cut EM 0.9791 0.9519 0.5300 0.9634 0.7905 0.2240

RPCL 0.9797 0.9530 0.5440 0.9609 0.7882 0.2520

BYY 0.9957 0.9822 0.9940 0.9638 0.7949 0.6400

LYYA 0.9961 0.9826 0.9940 0.9640 0.7951 0.2340

4.2 Systematic Comparisons

We compare all algorithms with extensive experiments as in [6] which cover
a wide scope of conditions by varying sample size n, real components num-
ber k∗, data dimensionality d and overlap degree β. The synthetic datasets
are generated by GMMs, and their mean vectors μj and covariance matrices
Tj are randomly generated according to the joint Normal-Wishart distribution
G(μj |mj , Tj/)W (Tj |φ, γ) with φ = I, γ = 50, mj = 0. The weights of compo-
nents in all synthetic datasets are equal.

http://cs.joensuu.fi/sipu/datasets/
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For each configuration {n, d, k∗, β} in Table 2, all algorithms are run on 500
randomly generated datasets, starting from k = 20. The BIC value may not
be reliable because EM suffers from local optimum problem. Therefore, we also
repeatedly implement EM for 5 times and select the one with the largest likeli-
hood for BIC calculation, denoted as BIC(5). It can be noted from the results
in Fig. 2 that BIC(5) is much better than BIC(1) at the cost of 4 times more
computation. Two main observations in Fig. 2 can be summarized as follows:

(1) Compared with RPCL, hard-cut EM and BYY algorithms, LYYA algorithm
has better performance in all series experiments except for β > 0.4 in series 4.

(2) Even if ignoring the huge computational cost by BIC(5), LYYA is still more
robust than BIC(5) for the cases with the data dimensionality exceeding 25
and the overlapping degree growing high.

Table 2. Four series comparison experiments

Starting cases {n, d, k∗, β} = {500, 5, 5, 0.02}
Series 1 n varies in [50, 100, 150 · · · 500] with fixed d,k∗ and β

Series 2 d varies in [5, 6, 7 · · · 40] with fixed n,k∗ and β

Series 3 k∗ varies in [5, 6, 7 · · · 16] with fixed n,d and β

Series 4 β varies in [0.1, 0.2, 0.3 · · · 2] with fixed n,k∗ and d

(a) series 1 experiment (b) series 2 experiment

(c) series 3 experiment (d) series 4 experiment

Fig. 2. Results from BIC, hard-cut EM, RPCL, BYY, LYYA in four series experiments
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4.3 Investigation on η in LYYA

We choose series 1 experiment in Table 2 to study the change of η in LYYA,
which details are illustrated in Table 3. The differences of datasets among various
series experiments mainly come from their weights(α∗) of Gaussian components.
From series 1.1 to series 1.4, the data volume difference of Gaussian components
increases gradually. Each configuration {n, d, k∗, β} consists of 500 cases and
Initializes with 20 components. All cases are processed with 11 different η.

The result is shown in Fig. 3. When datasets share equal weights like series
1.1 experiment in Fig. 3(a), the performance of LYYA algorithm gets better as η
grows and remains stable after η = 10. However, when data volume difference of
Gaussian components increases in Fig. 3(b)–(d), η = 1 and η = 10 two red lines

Table 3. Four series experiments of η ∈ {10−5, · · · , 1, · · · , 105} in LYYA

Starting cases {n, d, k∗, β} = {n, 5, 5, 0.02}
Series 1.1 α∗ = { 1

5
, 1
5
, 1
5
, 1
5
, 1
5
}, n varies in [50, 100, · · · 500] with fixed d,k∗,β

Series 1.2 α∗ = { 1
7
, 2
7
, 1
7
, 2
7
, 1
7
}, n varies in [70, 140, · · · 700] with fixed d,k∗,β

Series 1.3 α∗ = { 1
9
, 1
3
, 1
9
, 1
3
, 1
9
}, n varies in [90, 180, · · · 900] with fixed d,k∗,β

Series 1.4 α∗ = { 1
11

, 4
11

, 1
11

, 4
11

, 1
11

}, n varies in [110, 220, · · · 1100] with fixed
d,k∗,β

(a) series 1.1 experiment (b) series 1.2 experiment

(c) series 1.3 experiment (d) series 1.4 experiment

Fig. 3. Performances among 11 various η in LYYA from four series experiments
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Table 4. Average score of criteria of 100 test images on BSDS300 dataset(k = 30),
where numbers in bold type indicate the best within rows

Algorithms Mean shift MN-Cut Hard-cut EM RPCL BYY LYYA

PRI 0.4037 0.4214 0.4806 0.4960 0.4866 0.5023

RI 0.7242 0.7327 0.7289 0.7304 0.7282 0.7359

NMI 0.5352 0.5765 0.4799 0.4801 0.4827 0.4836

Fig. 4. Segmentation results of two images in BSDS300 dataset among six algorithms

obtain outstanding performances. As a result, we recommend that the value of
η should be controlled within [1, 10] when using LYYA method.

5 Application on Image Segmentation

We apply algorithms to unsupervised image segmentation on 100 test images in
Berkerly dataset (http://www.eecs.berkeley.edu/Research/Projects/CS/vision/
bsds/). We use Blobworld feature [10,11] plus position information to represent
information of pixels. Blobworld feature of a pixel is a 6-D vector which consists
of its color information from Lab space and 3-D texture information. Position
information of a pixel is a 2-D vector of image coordinate and total feature is an
8-D vector per pixel.

We compare LYYA with hard-cut EM, RPCL, BYY, Mean shift [9] and
Multiscale graph decomposition(MN-Cut) [12] algorithms on the dataset. The
former four algorithms as well as MN-Cut algorithm initialize with 30 compo-
nents and the bandwidth of Mean shift method is 0.15. Since the real component
numbers (k∗) of images are uncertain, we evaluate segmentation results with RI,
NMI as well as Probabilistic Rand Index(PRI) [13]. Each value of criteria is the
average score of ground truth segmentations per image and the result is shown
in Table 4. In this experiment, no data post-processing is applied, and thus the
original clustering is kept.

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
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Table 4 shows that LYYA method has best result in PRI as well as RI and
MN-Cut algorithm owns the best score of NMI. On the vision of the segmentation
examples in Fig. 4, the results of hard-cut EM, RPCL, BYY and LYYA are closed
and they have better description than Mean shift as well as MN-Cut algorithms
in image details though their dividing lines of different regions tend to be more
rough.

6 Conclusion

In this paper, based on GMM, we provide a comparative study on several
automatic model selection algorithms including LYYA, BYY, hard-cut EM and
RPCL, together with BIC model selection criterion, through systematic exper-
iments. Results indicate that LYYA algorithm is generally more robust than
others on the data generated by varying sample size, data dimensionality and
real components number. Described in [7], BYY algorithm may be unstable for
little constrain on the range of posterior probability. The calculation of pij can
be negative and may be not in the traditional probability space. Different from
it, LYYA algorithm is easy computation and doesn’t need extra adjustment
to solve above problem. We provide an investigation on the Lagrange coeffi-
cient η in LYYA algorithm and the result indicates that as the amount of data
in Gaussian components is increasingly unbalanced, the choice of various η is
increasingly important and the ideal scope of η should be controlled in [1, 10].
Moreover, on image segmentation, LYYA outperforms hard-cut EM, RPCL as
well as the previous BYY algorithm and also is generally better than Mean shift
and MN-Cut algorithms.
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