
单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Raytracing and Shadows

Dr. Sheng Bin(盛斌)
Shanghai Jiao Tong University
Lecture 8

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Lecture Overview
• Ray Tracing

• Ray Casting
• Light Reflection & Light Rays
• Object/Ray Intersections
• Acceleration

• Shadows
• Hard &Soft Shadows
• Shadow Mapping
• percentage-closer soft shadows
• Irregular Z buffer Shadows

• Official GeForce RTX Real-Time Ray Tracing Demo

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

What is ray tracing?
• A technique capable producing a very high degree of visual realism

• A technique capable simulating a wide variety of optical effects, such

as reflection and refraction, scattering, and dispersion phenomena.

• Best suited for applications where taking a relatively long time to

render a frame can be tolerated, such as in still images and film and

television visual effects, and more poorly suited for real-time

applications such as video games where speed is critical

• It works by tracing a path from an imaginary eye through each pixel

in a virtual screen, and calculating the color of the object visible

through it.

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Outline in Code
Image Raytrace(Camera cam, Scene scene, int width,int
height)
{
Image image=New Image(width, height);
for (int i=0; i<height; i++)

for (int j=0; j<width; j++)
{

Ray ray=RayThruPixel(cam,i,j);
Intersection hit=Intersect (ray,scene);
Image[i][j]=FindColor(hit);

}
return image;
}

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Play the
video

“What is ray
tracing”

• Online practice:
• https://www.khanacademy.org/partner-content/pixar/rendering/rendering1/e/ray-

tracing

https://www.khanacademy.org/partner-content/pixar/rendering/rendering1/e/ray-tracing

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

• The exercise online is really amazing!!!
• Please try !!!!

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Ray Tracing vs Rasterization
• Raytracing first goes to each pixel, and

figures out what it should do at each
pixel and then go over each object.

• It has historically been slow because
the cost is the number of pixels times
the number of objects.

• There are things like acceleration
structure now, which is good for
walkthroughs of extremely large
models (amortize preprocessing, low
complexity)

• In contrast, rasterization first
goes to all of the objects in
the scene. And then, for each
of the object, to see which
pixels are needed to consider.

• Still pay the cost of the
number of the objects, but
the number of pixels is just
the number of the pixels a
given object covers, which
could be 10 or 20.

Ray Casting

Virtual Viewpoint

Virtual Screen Objects

Ray misses all objects: Pixel colored blackRay intersects object: shade using color, lights, materialsMultiple intersections: Use closest one (as does OpenGL)

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

• Ray casting, ray tracing and ray marching all tend to be used interchangeably as a generalists catch-all term for a rendering

process which relies on computed lines of intersection, but there are subtle distinctions implied when speaking precisely.

• Ray casting is a process where points of intersection with a line are computed analytically, using formulas of intersection.

• For instance, when I'm trying to figure out where a user's touch on a touch screen device (screen space) is in world space, I

cast a ray from the camera and find out where it intersects the game world. I might also cast a ray down from a character to

figure out if they are above the ground, or forward to see if they are about to collide with something.

• Ray marching is a specific algorithm, a variant on ray casting where samples are taken down a line to test for intersections or

other criteria. This is easier to implement and allows for speed optimizations via number of samples, but is not as precise even

when large numbers of samples are used.

• Ray tracing is a more complex series of tasks to render a 3d sence, which uses ray casting and/or ray marching to compute

not only the point of intersection between origin and object surface (or voxel cell etc) but which iteratively computes

secondary and tertiary rays, which can be used to collect data used typically (but not exclusively) for calculation of reflected or

refracted light.

• As a rendering technique, ray tracing is generally too slow to be effectively used in game development.

Confused among ray casting ,marching & tracing?

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Light reflection

Play the
video:
Light

reflection

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Light rays

Play the
video:

Light rays

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Question &Thinking
• A surface will be display specular highlights if it is

 choose 1 answer
• Transparent
 Shiny
• Fuzzy
• Colorful

• () is caused by light reflecting at a random directions on a
surface.

• () is caused by light reflecting in a single direction on a surface.

 Diffuse light
 Specular light

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Question &Thinking
• In the image below we can see the tennis ball on the surface of the pool

ball.
• If we want to simulate this effect in a ray tracer, what rays do we use?

 choose 1 answer
• Camera rays
• Specular rays
 Reflected rays
• Refracted rays

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Question &Thinking

• How many refraction rays are shown in this image?
• And how many reflection rays?

 choose 1 answer
 Shiny
 Transpaten

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Hints

• Two rays leave the window:
• 1. a reflection ray goes left. 2. a refraction ray goes through the window to the right.

The reflected ray hits the surface of the pink car sending another reflected ray towards the
window.
• Finally this ray passes throught the window sending a refracted ray outside to the left.

• The primary ray travels from the camera and hits the surface of the car.
• The car is shiny, so a reflection ray leave the car surface, travelling towards the window.

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Question &Thinking

• If we created the scene below in a ray tracer, there would be a
shadow ray going from the () to ().

 Light
• Camera
 Cross on the tennis ball
• A random direction

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Question &Thinking
• In the image below we can't really see the entire ball:

• choose 1 answer
• No you’ d need another light.
• Yes, by holding the light very far

away
 Yes, by bouncing light off another

object, such as a white card.
• It depends on the type of ball

surface.

• With only one flashlight is it possible
to illuminate all sides of the ball?

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Question &Thinking
• The face behind the glass appears warped. If we want our ray tracer to

simulate this effect we need to calculate the direction of the () rays.

• choose 1 answer
• Primary
• Shadow
• Reflected
 refracted

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Question &Thinking
Which of the following object would result in refraction rays?

• choose all answers that apply
 A solid glass statue
 A glass of water
 An empty glass
• A polished metal cup

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Hints
• Refraction occurs when the light travels from one transparent material

to another transparent material with a different density.
• Glass and water are transparent, but metal is not.
• So refraction rays are created for:

 A solid glass statue
 A glass of water
 An empty glass

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Question &Thinking
• What causes the red highlight to appear on her cheek?

• choose 1 answer
• Reflacted rays
• Color rays
• Shadow rays
 Reflected rays

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Interesting results in rendering

Play the
video:

Rendering
Mike

Wazowski

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Ready to dive into math?

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Ray object Intersection

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Ray object Intersection
• Ray object intersection is the most fundamental calculation a ray

tracer performs.

• Since objects in our scenes are modeled using millions of tiny
triangles, each intersection is between a ray and a triangle.

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Ray object Intersection
• We'll start with the a simpler version of this problem, the intersection of

a ray and a line in 2D.

• Finally we'll extend these ideas from two dimensions to work in three
dimensions. By the end of this lesson we'll need to solve a pretty
meaty system of equations with 4 unknowns.

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Calculate intersection point

Play the video:
Calculate

intersection point

Find the code and implement here!
https://www.khanacademy.org/pixar/ray-tracing-in-2d-v2/5119189004845056

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Line equation (Implict form)

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Question &Thinking
• In the diagram below, what does I, C,P represent?

 choose the answers
• The ray tracer.
 An intersection point

on the object.
 The camera.
 A pixel on image plane.

• With what will every ray generated by ray tracing algorithm touch?

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Question &Thinking
• We can parameterize the ray from

C through P as a function of t:

• R(t)=(1-t)C+tP

• With C at (0,0) and P at (2,-3), R(t)
intersects a line defined by the
equation:

• 𝑦 =
𝑥

2
− 7

• If the intersection point is I and
I=R(𝑡∗), what is the value of 𝑡∗ ?

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

3D Ray object Intersection

Play the video:
3D ray tracing part1

to determine I is inside or outside the
triangle

Play the video:
3D ray tracing part2

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Question &Thinking

• We are using ray-tracing to create an image of image of a
plane that’s defined by the equation, 3𝑥 + 3y + 5z − 13 = 0

• We draw a ray from the camera at coordinate (0,0,0) through a
pixel at coordinate (5,2,1), and find that it intersects with the
plane at point I.

• What are the coordinates of I ?

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Question &Thinking

• Triangle ABC is defined by 3 points:

• A=(-2,2,2),B=(3,-3,2),C=(4,1,-4)

• A ray intersects the plane defined by ABC at a point, I.

• If I=(1.4, 0.6, -1.2), is I inside triangle ABC?

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Acceleration

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Acceleration
Testing each object for each ray is slow

• Fewer Rays

• Adaptive sampling, depth control

• Generalized Rays

• Beam tracing, cone tracing, pencil tracing etc.

• Faster Intersection

• Optimized Ray-Object Intersections

• Fewer Intersections

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Acceleration Structures

• When given a ray, we want to ensure that test as few objects
as possible: Ideally only the object the ray will hit.

• This is not possible but we can consider the number of
intersections to be logarithmic in the total size of the number
of the objects.

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Acceleration Structures

Bounding Box

Ray

Bounding boxes (possibly hierarchical)
• If no intersection bounding box, needn’t check objects

Spatial Hierarchies (Oct-trees, kd trees, BSP trees)

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Acceleration Structures: Grids

• Regular grids are the simplest acceleration structure.

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Acceleration and Regular Grids

• Simplest acceleration, for example 5*5*5 grid

• For each grid cell, store overlapping trangles

• March ray along grid (need to be careful with this), test againist
each triangle in grid cell

• More sophisticated: kd-tree,oct-tree, bsp-tree

• Or use (hierarchical) bounding boxes.

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Acceleration and Regular Grids
kd-
tree

oct-
tree

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Shadows

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Shadows
• Important for creating realistic images and in providing the user with

visual cues about object placement.

= +
.

Shadow t erminology: light source, occluder, receiver, shadow, umbra, and penumbra .

• Occluders: objects that cast
shadows onto receivers

• Umbra: a fully shadowed region
of each shadow

• Penunmbra: a partially
shadowed region

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Hard & Soft Shadows
Hard shadows:
• fully shadowed regions generated by punctual light sources with no area
• faster to render than soft shadows
• look less realistic and sometimes be misinterpreted as actual geometric features

Soft shadows:
• are produced if area or volume light sources are used.
• are recognized by their fuzzy shadow edges.
• generally cannot be rendered correctly by just blurring the edges of a hard

shadow with a low-pass filter.
• The closer the shadow-casting geometry is to the receiver, the sharper a correct

soft shadow is.
• The umbra region of a soft shadow decreases in size as the light source grows

larger, and it might even disappear, given a large enough light source and a
receiver far enough from the occlude.

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

A mix of hard and soft shadows. Shadows from
the crate are sharp, as the occluder is near the
receiver. The person’s shadow is sharp at the
point of contact , softening as the distance to the
occluder increases. The distant tree branches give
soft .

At the left, a correct shadow is shown, while in the
figure on the right, an antishadow appears, since the
light source is below the topmost vertex of the
object.

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Drop shadow. A shadow texture is generated by rendering the shadow casters
from above and then blurring the image and rendering it on the ground plane.

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

• A common z-buffer-based renderer could be used to generate
shadows quickly on arbitrary.

• The idea is to render the scene, using the z-buffer, from the
position of the light source that is to cast shadows.

• When this image is generated, only z-buffering is required.
Lighting, texturing, and writing values into the color buffer can
be turned off.

• Each pixel in the z-buffer now contains the z-depth of the object
closest to the light source, and the entire contents of the z-
buffer is the shadow map.

Shadows Maps

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

• Shadow mapping is a popular algorithm because it is relatively
predictable.

• The cost of building the shadow map is roughly linear with the
number of rendered primitives, and access time is constant.

• The shadow map can be generated once and reused each frame
for scenes where the light and objects are not moving, such as
for computer-aided design.

Shadows Maps

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Play the
video:

Shadow
Mapping

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

• Shadow mapping.
• On the top left, a shadow map is

formed by storing the depths to the
surfaces in view.

• On the top right, the eye is shown
looking at two locations. The sphere
is seen at point va, and this point is
found to be located at texel a on the
shadow map. The depth stored there
is not (much) less than point va is
from the light, so the point is
illuminated. The rectangle hit at point
vb is (much) farther away from the
light than the depth stored at texel b,
and so is in shadow.

• On the bottom left is the view of a
scene from the light’s perspective,
with white being farther away.

• On the bottom right is the scene
rendered with this shadow map.

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

• One disadvantage ：the quality of the shadows depends on the resolution (in
pixels) of the shadow map and on the numerical precision of the z-buffer.

• Since the shadow map is sampled during the depth comparison, the algorithm
is susceptible to aliasing problems.

• A common problem is self-shadow aliasing, often called “surface acne” or
“shadow acne,” in which a triangle is incorrectly considered to shadow itself.

• This problem has two sources:

• the numerical limits of precision of the processor

• geometric (samples generated for the light are almost never at the same
locations as the screen samples) .

• When the light’s stored depth value is compared to the viewed surface’s depth,
the light’s value may be slightly lower than the surface’s, resulting in self-
shadowing.

• Introducing a bias factor can help avoid various shadow-map artifacts.

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

On the left, the bias is too low, so
self-shadowing occurs.

Shadow-mapping bias artifacts.

On the right, a high bias causes the shoes to not
cast contact shadows. The shadow-map
resolution is also too low, giving the shadow a
blocky appearance.

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

• The surfaces are rendered into a shadow map for an overhead light, with the vertical lines
representing shadow-map pixel centers. Occluder depths are recorded at the × locations.

• We want to know if the surface is lit at the three samples shown as dots. The closest shadow-
map depth value for each is shown with the same color ×.

Shadow bias

The shadow map is formed by
moving each polygon away
from the light proportional to
its slope. All sample depths are
now closer than their shadow-
map depths, so all are lit.

A constant depth bias is
subtracted from each sample,
placing each closer to the light.
The blue sample is still
considered in shadow because it
is not closer to the light than the
shadow-map depth it is tested
against.

If no bias is added, the blue and
orange samples will be incorrectly
determined to be in shadow, since
they are farther from the light
than their corresponding shadow-
map depths.

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

On the left, surfaces facing the
light, marked in red, are sent to
the shadow map. Surfaces may
be incorrectly determined to
shadow themselves (“acne”), so
need to be biased away from
the light.

Shadow-map surfaces for an overhead light source

front faces second-depth midpoint

b

c

b

a b

In the middle, only the
backfacing triangles are
rendered into the shadow map.
A bias pushing these occluders
downward could let light leak
onto the ground plane near
location a; a bias forward can
cause illuminated locations near
the silhouette boundaries
marked b to be considered in
shadow.

On the right, an intermediate surface
is formed at the midpoints between
the closest front- and backfacing
triangles found at each location on
the shadow map. A light leak can
occur near point c (which can also
happen with second-depth shadow
mapping), as the nearest shadow-
map sample may be on the
intermediate surface to the left of this
location, and so the point would be
closer to the light.

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

• The image to the left is created using standard shadow mapping; the image to the right using
LiSPSM(light space perspective shadow maps).

• The projections of each shadow map’s texels are shown.
• The two shadow maps have the same resolution, the difference being that LiSPSM reforms the

light’s matrices to provide a higher sampling rate nearer the viewer.

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

On the left the light is nearly
overhead. The edge of the shadow
is a bit ragged due to a low
resolution compared to the eye’s
view.

On the right the light is near the horizon,
so each shadow texel covers considerably
more screen area horizontally and so
gives a more jagged edge.

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

On the left, the view frustum from the eye is split into
four volumes. On the right, bounding boxes are created
for the volumes, which determine the volume rendered
by each of the four shadow maps for the directional
light.

view

frustum light

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

On the left, the scene’s wide viewable area causes a single shadow map at a 2048×2048
resolution to exhibit perspective aliasing.
On the right, four 1024×1024 shadow maps placed along the view axis improve quality
considerably. A zoom of the front corner of the fence is shown in the inset red boxes.

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Effect of depth bounds. On the left, no special processing is used to adjust the near and far
planes. On the right, SDSM is used to find tighter bounds. Note the window frame near the left
edge of each image, the area beneath the flower box on the second floor, and the window on
the first floor, where undersampling due to loose view bounds causes artifacts. Exponential
shadow maps are used to render these particular images, but the idea of improving depth
precision is useful for all shadow map techniques.

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

percentage-closer filtering (PCF)

• Retrieving multiple samples from a shadow map and blending the results.

• Resulting an artificially soft shadow.

• The name “percentage-closer filtering” refers to the ultimate goal, to find the
percentage of the samples taken that are visible to the light. This percentage is
how much light then is used to shade the surface.

• Retrieving four nearest samples off the shadow map.

• Interpolate between the results of their comparisons with the surface’s depth.

• (The surface’s depth is compared separately to the four texel depths, and for
the results, 0 for shadow and 1 for light, and are then bilinearly interpolated to
calculate how much the light actually contributes to the surface location.)

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

area light

occluder

p receiver p

point light

occluder

On the right, a point light does not cast a penumbra. PCF approximates the effect of an area light by
reversing the process: At a given location, it samples over a comparable area on the shadow map to
derive a percentage of how many samples are illuminated. The red ellipse shows the area sampled on the
shadow map. Ideally, the width of this disk is proportional to the distance between the receiver and
occluder.

On the left, the brown lines
from the area light source
show where penumbrae are
formed. For a single point p
on the receiver, the amount
of illumination received could
be computed by testing a set
of points on the area light’s
surface and finding which
are not blocked by any
occluders

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Using this pattern to sample the shadow map
gives the improved result in the lower left,
though artifacts are still visible.

The upper left shows PCF sampling in a 4×4
grid pattern, using nearest neighbor sampling.

The upper right shows a 12-tap Poisson
sampling pattern on a disk.

In the lower right, the sampling pattern is rotated
randomly around its center from pixel to pixel. The
structured shadow artifacts turn into (much less
objectionable) noise.

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

• In the left figure, a bias cone is
formed and the samples are
moved up to it. The cone’s
steepness could be increased to
pull the samples on the right
close enough to be lit, at the risk
of increasing light leaks from
other samples elsewhere (not
shown) that truly are shadowed.

• In the right figure, normal offset bias
moves the samples along the surface’s
normal direction, proportional to the sine
of the angle between the normal and the
light. For the center sample, this can be
thought of as moving to an imaginary
surface above the original surface. This
bias not only affects the depth but also
changes the texture coordinates used to
test the shadow map.

Additional shadow bias methods
• For PCF, several samples are taken surrounding the original sample location, the center of the five dots.

All these samples should be lit.

• In the middle figure,
all samples are
adjusted to lie on the
receiver’s plane. This
works well for convex
surfaces but can be
counterproductive at
concavities, as seen
on the left side.

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

• On the left, hard
shadows with a little PCF
filtering.

• On the right, variable-width
soft shadows with proper
hardness where objects are
in contact with the ground.

• In the middle, constant
width soft shadows.

Percentage-closer filtering and percentage-closer soft
shadows

• One problem with PCF is that because the sampling area’s width remains
constant, shadows will appear uniformly soft, all with the same penumbra width.

• This may be acceptable under some circumstances, but appears incorrect
where there is ground contact between the occluder and receiver.

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

• In the upper left, standard shadow
mapping.

• Lower right, variance shadow
mapping with a constant soft
shadow width, each pixel shaded
with a single variance map sample.

• Lower left, percentage-closer soft
shadows, softening the shadows
as the occluder’s distance from
the receiver increases.

• Upper right, perspective shadow
mapping, increasing the density of
shadow-map texel density near the
viewer.

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

• Variance shadow mapping,
where the distance to the
light source increases from
left to right.

• On the left, variance shadow
mapping applied to a teapot.

• On the right, a triangle (not
shown) casts a shadow on the
teapot, causing objectionable
artifacts in the shadow on the
ground.

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

z-buffering

• known as depth buffering, it is the management of image depth coordinates in
3D graphics, usually done in hardware, sometimes in software.

• It is one solution to the visibility problem, which is the problem of deciding
which elements of a rendered scene are visible, and which are hidden.

• A z-buffer can refer to a data structure or to the method used to perform
operations on that structure.

• In a 3d-rendering engine, when an object is projected on the screen, the depth
(z-value) of a generated pixel in the projected screen image is stored in a buffer
(the z-buffer or depth buffer). A z-value is the measure of the perpendicular
distance from a pixel on the projection plane to its corresponding 3d-
coordinate on a polygon in world-space.

• The z-buffer has the same internal data structure as an image, namely a 2d-
array, with the only difference being that it stores a z-value for each screen
pixel instead of pixel data.

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

z-buffering and how does it works

Play the video:
Z-buffer

Play the video:how does
the z-buffer works

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

irregular Z-buffer (IZB)

• an algorithm designed to solve the visibility problem in real-time 3d computer graphics.

• related to the classical Z-buffer in that it maintains a depth value for each image sample
and uses these to determine which geometric elements of a scene are visible.

• the buffer itself has a normal ,regular shape for a shadow map.

• the contents are irregular, as each shadow map texel will have one or more receiver
locations stored in it, or possibly none at all.

• key difference:

• classical Z-buffer requires samples to be arranged in a regular grid.

• irregular Z-buffer allows arbitrary placement of image samples in the image place.

• These depth samples are explicitly stored in a two-dimensional spatial data structure.
During rasterization, triangles are projected onto the image plane as usual, and the data
structure is queried to determine which samples overlap each projected triangle. Finally,
for each overlapping sample, the standard Z-compare and (conditional) frame buffer
update are performed.

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

• In the upper left, the view from the
eye generates a set of dots at the
pixel centers. Two triangles
forming a cube face are shown.

• In the upper right, these dots are
shown from the light’s view.

• In the lower left, a shadow-map
grid is imposed. For each texel a
list of all dots inside its grid cell is
generated.

• In the lower right, shadow testing
is performed for the red triangle
by conservatively rasterizing it. At
each texel touched, shown in light
red, all dots in its list are tested
against the triangle for visibility by
the light.

Irregular z-buffer

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

• On the left, PCF gives uniformly softened shadows for all objects. In the middle,
PCSS softens the shadow with distance to the occluder, but the tree branch
shadow overlapping the left corner of the crate creates artifacts. On the right,
sharp shadows from IZB blended with soft from PCSS give an improved result

Irregular z-buffer Shadows

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

• At the top is an image
generated with a basic soft-
shadows approximation. At
the bottom is voxel-based
area light shadowing using
cone tracing, on a
voxelization of the scene.
Note the considerably more
diffuse shadows for the cars.
Lighting also differs due to a
change in the time of day.

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Official GeForce RTX Real-Time Ray Tracing Demo

Play the video:
Atomic Heart: Official

GeForce RTX Real-Time
Ray Tracing Demo

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Official GeForce RTX Real-Time Ray Tracing Demo

Play the video:
Battlefield V: Official
GeForce RTX Real-
Time Ray Tracing
Demo

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Further Reading and Resources
• A website: https://www.khanacademy.org/partner-content/pixar/rendering/

• https://developer.nvidia.com/rtx/raytracing

• The book Real-Time Shadows by Eisemann et al. focuses directly on
interactive rendering techniques, discussing a wide range of algorithms along
with their strengths and costs.

• Woo and Poulin’s book Shadow Algorithms Data Miner provides an overview
of a wide range of shadow algorithms for interactive and batch rendering.

https://www.khanacademy.org/partner-content/pixar/rendering/
https://developer.nvidia.com/rtx/raytracing

