
单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Texturing

Dr. Sheng Bin(盛斌)
Shanghai Jiao Tong University
Lecture 7

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

What is texturing?

a process that takes a surface
and modifies its appearance at
each location using some image,
function, or other data source.

works by modifying the values
used in the shading equations

The values changed based on
the position on the surface

Texturing. Color and bump maps
were applied to this fish to increase
its visual level of detail.

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Lecture Overview

• The Texturing Pipeline

• Image Texturing

• Proceduring Texturing

• Some common methods : Material Mapping , Alpha Mapping,

Bump Mapping , Parrallax Mapping

• Textured Lights

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

The texturing pipelines

object

space

location

projector

function

corresponder

function(s)

obtain

value

value

transform

function

parameter

space

coordinates

texture

space

location
texture

value

transformed

texture

value

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

The texturing pipeline

• A location in space is the starting point for the texturing process.
more often in the model’s frame of reference.

• Projector function applies to the point to obtain texture coordinates.
• Corresponder functions can be used to transform the texture

coordinates to texture space.
• The retrieved values are transformed by a value transform function,

and these new values are used to modify some property of the
surface

object

space

location

projector

function

corresponder

function(s)

obtain

value

value

transform

function

parameter

space

coordinates

texture

space

location
texture

value

transformed

texture

value

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

• a triangle has a brick wall texture
and a sample is generated on its
surface

• the projector function here
typically changes the position (x,y,z)
vector into a two-element vector
(u,v)

• the corresponder function
multiplies the (u,v) by 256 each,
giving (81.92,74.24)

• Pixel(81,74) is found in the brick
wall image , and is color of
(0.9,0.8,0.7)

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

The projector Function

• converting a 3D point in space into texture coordinates.

• D i ff e r e n t t e x t u r e
projections:

• Spherical, cylindrical, planar,
a n d n a t u r a l (u , v)
projections (from left to
right).

• The bottom row : each of
these projections applied
to a single object (no
natural projection).

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

The projector Function

• The spherical projection casts points onto an imaginary
sphere centered around some point.

• Cylindrical projection computes the u texture coordinate the
same as spherical projection, with the v texture coordinate
computed as the distance along the cylinder’s axis. Useful
for objects with a natural axis.

• The planar projection is like an x-ray beam, projecting in
parallel along a direction and applying the texture to all
surfaces. Use for applying decals.

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

The projector Function

How varies texture projections are used on a
single model. Several smaller textures for the statue model, saved

in two larger textures. The right figure shows how the
triangle mesh is unwrapped and displayed on the
texture to aid in its creation.

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

The Corresponder Function

• converting texture coordinates to texture-space locations.

• one example of it : use the API to select a portion of an existing
texture for display for subsequent operations

• Another type: a matrix transformation, enables to translating,
rotating, scaling, shearing, or projecting the texture on the surface

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

The Corresponder Function

• An image will appear on the surface where (u,v) are in the
[0,1] range. But what happens outside of this range?

• A type of corresponder functions determine the behavior.
• it is called “wrapping mode” in OpenGL, and “texture

addressing mode” in DirectX.

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

The Corresponder Function

wrap mirror clamp border

• Wrap: useful for having an image of a material repeatedly cover a
surface.

• Mirror: provides some continuity along the edges of the texture.
• Clamp: useful for avoiding accidentally taking samples from the opposite

edge of a texture when bilinear interpolation happens near a texture’s
edge

• Border: good for rendering decals onto single-color surfaces.

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Play the
video

(texturing.mp4)

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Image Texturing

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

• Assume that we have a texture of size 256×256 texels and that
we want to use it as a texture on a square.

• As long as the projected square on the screen is roughly the
same size as the texture, the texture on the square looks almost
like the original image.

• But what happens if the projected square covers ten times as
many pixels as the original image contains (called
magnification), or if the projected square covers only a small
part of the screen (minification)?

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Magnification

Texture magnification of a 48×48 image onto 320×320 pixels.

Left: nearest neighbor filtering, where the nearest texel is chosen per
pixel. Middle: bilinear filtering using a weighted average of the four
nearest texels. Right: cubic filtering using a weighted average of the 5×5
nearest texels.

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Magnification

Left: the individual texels become apparent because the method requires
only one texel to be fetched per pixel, resulting in a blocky appearance.

Middle: blurrier, and much of the jaggedness from using the nearest
neighbor method has disappeared

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Bilinear interpolation

Bilinear interpolation. The four texels involved are illustrated by the four
squares on the left, texel centers in blue. On the right is the coordinate
system formed by the centers of the four texels.

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Bilinear interpolation

(u’,v’): the location formed by the four texel centers
t(x,y): the texture access function
x,y: the color of the texel is returned

Bilinear interpolation interpolates linearly in two directions.
The bilinearly interpolated color for any location (u′,v′) can be computed
as a two-step process:
• Interpolate t(x,y) and t(x+1,y), t(x,y + 1)
and t(x + 1,y + 1) using u’
• Interpolate using v’ to get the
interpolated color b:

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Nearest neighbor, bilinear interpolation, and part way in between by
remapping, using the same 2 × 2 checkerboard texture.
Note how nearest neighbor sampling gives slightly different square sizes,
since the texture and the image grid do not match perfectly.

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Four different ways to magnify a one-dimensional texture.
The orange circles indicate the centers of the texels as well as the texel
values (height).
From left to right: nearest neighbor, linear, using a quintic curve between
each pair of neighboring texels, and using cubic interpolation

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Minification

When a texture is minimized, several texels may cover a pixel’s cell.
A view of a checkerboard-textured square through a row of pixel cells,
showing roughly how a number of texels affect each pixel.

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Minification

rendered with
nearest neighbor

rendered with
mipmapping

rendered with
summed area tables

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Mipmapping

The most popular method of antialiasing for textures is called mipmapping

“Mip” stands for multum in parvo, Latin for “many things in a small place”
—a good name for a process in which the original texture is filtered down
repeatedly into smaller images

Two important elements in forming high-quality mipmaps are good
filtering and gamma correction

Benefit: instead of trying to sum all the texels that affect a pixel individually,
precombined sets of texels are accessed and interpolated.
Drawback: overburring

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Summed-Area Tabel

• Method to avoid overburring

• An example of anisotropic filtering algorithm

• Is able to retrieve texel values effectively in primarily horizontal
and vertical directions.

• High quality at a reasonable overall memory cost, can be
implemented on modern GPUs

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Summed-Area Tabel

• To use it, first creates an array contains more bit of precision for
the color stored

• At each location in the array, compute and store the sum of all
the corresponding texture’s texels in the rectangle formed by
this location and the origin

• Then determine the average color using SAT, by the formula:

x and y are the texel coordinates of the rectangle and s[x,y] is the
summed-area value for that texel

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Summed-Area Tabel

The pixel cell is back-projected onto the texture, bound by a rectangle; the
four corners of the rectangle are used to access the summed-area table.

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Unconstrained Anisotropic Filtering

For current graphics hardware, the most common method to
further improve texture filtering is to reuse existing mipmap
hardware

The basic idea is that the pixel cell is back-projected, this
quadrilateral (quad) on the texture is then sampled several times,
and the samples are combined

Uses several squares to cover the quad. The shorter side of the
quad can be used to determine d , and the longer side is used to
create a line of anisotropy parallel to the longer side and through
the middle of the quad.

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Unconstrained Anisotropic Filtering

Anisotropic filtering. The back-projection of the pixel cell creates a
quadrilateral. A line of anisotropy is formed between the longer sides.

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Mipmap versus anisotropic filtering

Left: Trilinear mipmapping. Right: 16 : 1 anisotropic filtering on the
right. Toward the horizon, anisotropic filtering provides a sharper result,
with minimal aliasing

1. https://threejs.org/examples/#webgl_materials_texture_anisotropy
2. http://www.realtimerendering.com/erich/udacity/exercises/unit3_anisotropy

_solution.html

Online
Examples

https://threejs.org/examples/#webgl_materials_texture_anisotropy
http://www.realtimerendering.com/erich/udacity/exercises/unit3_anisotropy_solution.html

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Play the
video

(anisotropic.mp4)

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Play the
video

(anisotropic2.mp4)

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Volume Textures

• Advantages: t he complex process of finding a good 2D
parameterization for 3D mesh can be skipped, avoiding the
distortion and stem problems

• Disadvatanges: higher storage requirements, more expensive to filter.
Inefficient for surface texturing

A direct extension of image textures is three-dimensional image data
that is accessed by (u,v,w) or (s,t,r) values.

For example, medical imaging data can be generated as a three-
dimensional grid; by moving a polygon through this grid, one may
view two-dimensional slices of these data.

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Textures Representation

Texture atlas: one put several images into a single larger texture.
But may cause problems with mipmapping and repeat modes.

Texture array: an API construction, completely avoids any problems
above.

Bindless textures: helps avoid state change cost, makes rendering faster.

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Textures Representation

Left: a texture atlas where nine smaller images have been composited
into a single large texture.
Right: a more modern approach is to set up the smaller images as an
array of textures, which is a concept found in most APIs.

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Textures Compression

By having the GPU decode compressed textures on the fly, a texture can
require less texture memory and so increase the effective cache size.

A non-compressed texture using 3 bytes per texel at 512*512 resolution
would occupy 768 kB. Using texture compression, with a compression
ratio of 6 : 1, a 1024*1024 texture would occupy only 512 kB.

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Texture compression formats

All of these compress blocks of 4×4 texels. The storage column show the number of bytes (B)
per block and the number of bits per texel (bpt). The notation for the reference colors is first
the channels and then the number of bits for each channel. For example, RGB565 means 5 bits
for red and blue while the green channel has 6 bits.

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

BC6H

• BC6H is for high dynamic range (HDR)

textures

• each texel initially has 16-bit floating point

value per R, G, and B channel.

• This mode uses 16 bytes, which results in 8

bpt.

• It has one mode for a single line and

another for two lines where each block can

select from a small set of partitions.

• Two reference colors can also be delta-

encoded for better precision and can also

have different accuracy depending on which

mode is being used.

• In BC7, each block can have between one

and three lines and stores 8 bpt.

• The target is high-quality texture compression

of 8-bit RGB and RGBA textures.

• It shares many properties with BC6H, but is a

format for LDR textures, while BC6H is for

HDR.

• Note that BC6H and BC7 are called BPTC

FLOAT and BPTC, respectively, in OpenGL.

These compression techniques can be applied

to cube or volume textures.

BC7

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

For OpenGL ES, another compression algorithm, called Ericsson
texture compression (ETC) was chosen for inclusion in the API.
This scheme has the same features as S3TC, namely, fast decoding,
random access, no indirect lookups, and fixed rate.

ETC encodes the color of a block of pixels and then modifies the luminance per pixel to create
the final texel color.

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

• The effect of using 16 bits per component versus 8 bits during texture compression.

• From left to right: original texture, DXT1 compressed from 8 bits per component, and DXT1

compressed from 16 bits per component with renormalization done in the shader.

• The texture has been rendered with strong lighting in order to more clearly show the effect.

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

• It is also possible to compress textures in a different color
space to speed up texture compression

• RGB→YCoCg and inverse transform:

• For textures that are dynamically created on the CPU, it may
be better to compress the textures on the CPU as well.

• When textures are created through rendering on the GPU, it
is usually best to compress the textures on the GPU as well.

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Procedural Texturing

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

• A surface or volume attribute can be:
– Calculated from a mathematical model
– Derived in a procedural algorithmic manner
• Procedural Texturing:
– Does not use intermediate parametric space
– Often referred to as “procedural shaders”
• Can be used to calculate:
– A color triplet
– A normalized set of coordinates
– A vector direction
– A scalar value

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

• Continuous input parameters and continuous output
• No magnification artifacts
• No distortion due to parametric mapping issues
• Map the entire input domain to the output domain

• Due to lack of local control (something that texture
images provide), we often combine procedural and image
texturing

Properties of Procedural Textures

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

• In nature there are materials and

surfaces with irregular patterns,

such as a rough wall, a patch of

sand, various minerals, stones etc.

• A procedurally generated noise

texture should:

– Act as a pseudo-number generator

– Have some controllable properties

– Ensure a consistent output

Noise Procedural Noise Properties

• Stateless

• Time-invariant

• Smooth

• Band-limited

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Common Procedurals

Check

er

Gradien

t

Wood Marble

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

• Two examples of real-time procedural texturing using a volume texture.

• The marble on the left is a semitransparent volume texture rendered using ray marching.

• On the right, the object is a synthetic image generated with a complex procedural wood

shader and composited atop a real-world environment.

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Material Mapping

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

• A common use of a texture is to modify a material property
affecting the shading equation

• Real-world objects usually have material properties that vary
over their surface.

• To simulate such objects, the pixel shader can read values
from textures and use them to modify the material
parameters before evaluating the shading equation.

• The parameter that is most often modified by a texture is the
surface color.

• Any parameter can be modified by a texture: replacing it,
multiplying it, or changing it in some other way.

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

albedo
texture

roughness
texture

heightfield
texture

Metallic bricks and mortar. On the right are the textures for surface color,
roughness (lighter is rougher), and bump map height (lighter is higher).
three different textures are applied to a surface, replacing the constant values

https://threejs.org/examples/#webgl_tonemapping

Online
Example

https://threejs.org/examples/#webgl_tonemapping

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Alpha Mapping

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

One way to implement decals. The framebuffer is first rendered with a scene, and then a
box is rendered and for all points that are inside the box, the decal texture is projected to
the framebuffer contents. The leftmost texel is fully transparent so it does not affect the
framebuffer. The yellow texel is not visible since it would be projected onto a hidden part
of the surface.

Decaling – one texture related effect

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

On the left, the bush texture map and the 1-bit alpha channel map below it.
On the right, the bush rendered on a single rectangle; by adding a second copy of the
rectangle rotated 90 degrees, we form an inexpensive three-dimensional bush.

+ =

Making cutouts by alpha mapping

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Looking at the “cross-tree” bush from a bit off ground level, then further up, where the
illusion breaks down.

To combat this, more cutouts can be added in different ways—
slices, branches, layers—to provide a more convincing model.

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

For mipmap level k, the coverage ck is defined as

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

alpha testing with
mipmapping without any
correction

alpha testing with alpha values
rescaled according to
coverage

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

On the top are the different mipmap levels for a leaf pattern with
blending, with the higher levels zoomed for visibility.
On the bottom the mipmap is displayed as it would be treated with
an alpha test of 0.5, showing how the object has fewer pixels as it
recedes

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Different rendering techniques of leaf textures with partial alpha
coverage for the edges. From left to right: alpha test, alpha blend,
alpha to coverage, and alpha to coverage with sharpened edges.

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Bump Mapping

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Bump Mapping
Detail on an object can be classified into three scales:
• Macro-features that cover many pixels. When creating a 3D

character, the limbs and head are typically modeled at a
macroscale.

• Micro-features that are substantially smaller than a pixel,
and are encapsulated in the shading model.

• Meso-features that describe everything between these two
scales. The wrinkles on a character’s face, musculature
details, and folds and seams in their clothing, are all
mesoscale.

• A family of methods collectively known as bump mapping
techniques are commonly used for mesoscale modeling.
These adjust the shading parameters at the pixel level

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Bump Mapping
Key idea: access a texture to modify the surface normal,
instead of using a texture to change a color component in the
illumination equation. (The geometric normal remains the
same; merely modify the normal used in the lighting equation.)
This matrix, sometimes abbreviated as TBN, transforms a light’s
direction (for the given vertex) from world space to tangent
space.

The tangent and bitangent vectors represent the axes of the
normal map itself in the object’s space

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

bb

b

b

b

n

t n

n

n

t

n

t

t

t

A spherical triangle is shown, with its tangent frame shown at each
corner. Shapes like a sphere and torus have a natural tangent-
space basis, as the latitude and longitude lines on the torus show.

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Bump Mapping
• Blinn’s Methods:

• Original: stores two signed values, bu and bv, at each texel
in a texture. correspond to the amount to vary the normal
along the u and v image axes.

• Another way: use a heightfield to modify the surface
normal’s direction. Each monochrome texture value
represents a height, so in the texture, white is a high area
and black a low one (or vice versa)

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

On the left, a normal vector n is modified in the u- and v-directions by the (bu,bv) values
taken from the bump texture, giving n′ (which is unnormalized).
On the right, a heightfield and its effect on shading normals is shown. These normals could
instead be interpolated between heights for a smoother look.

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

A wavy heightfield bump image and its use on a sphere.

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

• In bump mapping we implicitly find the diverted normal
due to the underlying elevation

• Normal mapping dispenses with the calculations by
directly replacing the local normal with a new normal
vector stored in a texture.

• The normal map encodes (x,y,z) mapped to [−1,1], e.g.,
for an 8-bit texturethe x-axis value 0 represents −1.0 and
255 represents 1.0.

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Bump mapping with a normal map. Each color channel is actually a surface normal
coordinate. The red channel is the x deviation; the more red, the more the normal points
to the right. Green is the y deviation, and blue is z. At the right is an image produced using
the normal map. Note the flattened look on the top of the cube.

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

▪ An example of normal map bump mapping used in a game-like scene. Top left: the two

normals maps to the right are not applied. Bottom left: normal maps applied. Right: the

normal maps.

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Parallax Mapping

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Why need Parallax Mapping?
• A problem with bump and normal mapping is that the

bumps never shift location with the view angle, nor ever
block each other.

• If you look along a real brick wall, for example, at some
angle you will not see the mortar between the bricks. A
bump map of the wall will never show this type of occlusion,
as it merely varies the normal.

• Parallax refers: the positions of objects move relative to
one another as the observer moves. As the viewer moves,
the bumps should appear to have heights.

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

• The key idea : take an educated guess of what should be
seen in a pixel by examining the height of what was found to
be visible.

• For parallax mapping, the bumps are stored in a heightfield
texture.

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

On the left is the goal: The actual position on the surface is found from
where the view vector pierces the heightfield. Parallax mapping does a
first-order approximation by taking the height at the location on the
rectangle and using it to find a new location padj

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

In parallax offset limiting, the offset moves at most the amount of the
height away from the original location, shown as a dashed circular arc.
The gray offset shows the original result, the black the limited result.
On the right is a wall rendered with the technique.

offset limiting: limit the amount of shifting
to never be larger than the retrieved
height

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

The green eye ray is projected onto the surface plane, which is
sampled at regular intervals (the violet dots) and the heights are
retrieved. The algorithm finds the first intersection of the eye ray with
the black line segments approximating the curved height field.

Parallax Occlusion Mapping

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Parallax mapping without ray marching (left) compared to with ray
marching (right). On the top of the cube there is flattening when ray
marching is not used. With ray marching, selfshadowing effects are also
generated

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Normal mapping and
relief mapping. No
self-occlusion occurs
with normal mapping.
Relief mapping has
p r o b l e m s w i t h
s i l h o u e t t e s f o r
repeating textures, as
the rectangle is more
of a view into the
heightfield than a true
boundary definition

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Parallax occlusion mapping, a.k.a. relief mapping, used on a path
to make the stones look more realistic. The ground is actually a
simple set of triangles with a heightfield applied.

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Texture Lights

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

• Textures can also be used to add visual richness to light sources
and allow for complex intensity distribution or spotlight
functions.

• For lights that have all their illumination limited to a cone or
frustum, projective textures can be used to modulate the light
intensity.

• For lights that are not limited to a frustum but illuminate in all
directions, a cube map can be used to modulate the intensity,
instead of a two-dimensional projective texture.

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Projective textured light. The texture is projected onto the
teapot and ground plane and used to modulate the light’s
contribution within the projection frustum (it is set to 0 outside
the frustum).

单击此处编辑母版标题样式CS230/CS238: Virtual Reality

Further Reading and Resources
• The book Advanced Graphics Programming Using OpenGL has

extensive coverage of various visualization techniques using
texturing algorithms

• For extensive coverage of three-dimensional procedural textures,
see Texturing and Modeling: A Procedural Approach .

• The book Advanced Game Development with Programmable
Graphics Hardware [1850] has many details about implementing
parallax occlusion mapping techniques.

• A website: Shadertoy , There are many worthwhile and fascinating
procedural texturing functions on display

