Data Representation

Continuous Data Sampled Data Discrete Datasets Cell Types •vertex, line, triangle, quad, tetrahedron, hexahedron Grid Types •Uniform, rectlinear, structured, Unstructured Attributes

•Scalar, Vector, Color, Tensor, Non-numerical

Continuous Data versus **Discrete** Data

•Continuous Data

- Most scientific quantities are continuous in nature
- Scientific Visualization, or *scivis*

• Discrete Data

- E.g., text, images and others that can not be interpolated or scaled
- •Information Visualization, or *infovis*

 Continuous data, when represented by computers, are always in discrete form

- •These are called "sampled data"
 - Originated from continuous data
 - Intended to approximate the continuous quantity
 - through visualization

Continuous Data

$$f(x), f'(x) = \frac{df(x)}{dx}, f''(x) = \frac{d^2 f(x)}{dx^2}$$

a: discontinuous function

b: first-order continuous function: first-order derivative is not continuous c: high-order continuous function

Continuous data can be modeled as:

$$f: D \to C$$
$$D \in \mathbb{R}^{d}$$
$$C \in \mathbb{R}^{c}$$
$$(y_{1}, y_{2}..., y_{c}) = f(x_{1}, x_{2}..., x_{d})$$

f is a d-dimension, c-valued functionD: function domainC: function co-domain

Cauchy criterion of continuity

 $\forall \varepsilon > 0, \exists \delta > 0$

such that if

$$\|\mathbf{x} - \mathbf{p}\| < \delta$$

then

$$\|f(x) - f(p)\| < \varepsilon$$

In words, small changes in the input result in small changes in the output

Graphically, a function is continuous if the graph of the function is a connected surface without "holes" or "jumps"

A function is continuous of order k if the function itself and all its derivative up to order k are also continuous

 $D_{c} = (D, C, f)$

D: Function domain
 C: Function co-domain
 f: Function itself

Geometric dimension: d

• the space into which the function domain D is embedded

• It is always 3 in the usual Euclidean space: d=3

•Topological dimension: s

- •The function domain D itself
- •A line or curve: s=1, d=3
- •A plane or curved surface: s=2, d=3

• Dataset dimension refers to the topological dimension

• Function values in the co-domain are called dataset attributes

•Attribute dimension: dimension of the function co-domain

Sampled data

- Sampling: from continuous dataset to Sampled data
- **Reconstruction:** lacksquare

from Sampled data to recover/approximate continuous dataset

Sampled Dataset

Sampled dataset

$$\boldsymbol{D}_{\boldsymbol{s}} = (\{p_i\}, \{C_i\}, \{f_i\}, \{\boldsymbol{\Phi}_i^k\})$$

- 1. p: sampling points
- 2. c: cells
- 3. f: sampled values
- 4. Φ: basis function or interpolation function

Continuous dataset

Sampling

Point, Cell, Grid

A signal domain is sampled in a grid that contains a set of cells defined by the sample points

Sampling

Point
$$p_i \in \mathbb{R}^d$$
,
Cell $ci = \{p_1, p_2, \dots, p_d\}$
 $c_i \cap c_j = 0, \forall i \neq j$
Grid $U_i c_i = D$

$\{f_i\}, i \in \{1, 2...\}$

where ϕ_i is called basis function

or interpolation function

Piecewise fitting: one cell one time

Basis function shall be orthonormal

 Orthogonal: only vertex points within the same cell have contribution to the interpolated value
 Normal: the sum of the basic functions of the vertices shall be unity.

Basis Function

Linear basis function

For 2-D quad

$$\Phi_1^1(r,s) = (1-r)(1-s)$$

$$\Phi_2^1(r,s) = r(1-s)$$

$$\Phi_3^1(r,s) = rs$$

$$\Phi_4^1(r,s) = (1-r)s$$

Sampled Dataset

Sampled dataset

$$D_s = (\{p_i\}, \{C_i\}, \{f_i\}, \{\Phi_i^k\})$$

p: sampling pointsc: cellsf: sampled valuesΦ: basis function or interpolation function

Continuous dataset

cell=(p1,p2,p3,p4) D: (x,y,z) cell=(v1,v2,v3,v4) D: (r,s,t) and t=0

Coordinate Transformation

- Basis function is defined in reference cell
- Reference cell: axis-aligned unit cell, e.g., unit square in
- 2-D, unit line in 1-D
- Data are sampled at actual (world) cells
- Mapping between actual cell and reference cell

$$(x, y, z) = T(r, s, t)$$

$$(r, s, t) = T^{-1}(x, y, z)$$

$$\phi(x, y, z) \Leftrightarrow \Phi(r, s, t) = \Phi(T^{-1}(x, y, z))$$

$$\widetilde{f}(x, y, z) = \sum_{i=1}^{N} f_i \Phi_i^1(T^{-1}(x, y, z))$$

Discrete Datasets

- A Grid = cells + sample points
- Sample Values at cell centers/vertices
- Basis functions

- Vertex
- Line
- Triangle
- Quad
- Rectangle
- Tetrahedron
- Hexahedron
- Parallelipiped
- Pyramid
- prism

Cell types

Vertex

d=0

$$c = \{v_1\}$$
$$\Phi_1^0(r,s) = 1$$

- Vertex
- Line
- Triangle
- Quad
- Rectangle
- Tetrahedron
- Hexahedron
- Parallelipiped
- Pyramid
- prism

Vertex

Triangle

Rectangle

Pyramid

prism

Tetrahedron

Hexahedron

Parallelipiped

Quad

igodot

 \bullet

igodol

 \bullet

Line

Line (cont.)

Actual line d=1

$$\vec{p}_1 = x_1, \vec{p}_2 = x_2, \vec{p} = x$$

$$r = \frac{x - x_1}{x_2 - x_1}$$

$$f = f_1 \frac{x_2 - x}{x_2 - x_1} + f_2 \frac{x - x_1}{x_2 - x_1}$$

Actual line d=2

$$\vec{p}_1 = (x_1, y_1), \, \vec{p}_2 = (x_2, y_2), \, \vec{p} = (x, y)$$

$$r = \frac{(x - x_1)(x_2 - x_1) + (y - y_1)(y_2 - y_1)}{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

- Vertex
- Line
- Triangle
- Quad
- Rectangle
- Tetrahedron
- Hexahedron
- Parallelipiped
- Pyramid
- prism

Triangle

d=2

$$c = \{v_1, v_2, v_3\}$$

$$\Phi_1^1(r, s) = 1 - r - s$$

$$\Phi_2^1(r, s) = r$$

$$\Phi_3^1(r, s) = s$$

$$T^{-1}(x, y, z) = (r, s)$$

$$r = \frac{(\vec{p} - \vec{p}_1) \cdot (\vec{p}_2 - \vec{p}_1)}{\|\vec{p}_2 - \vec{p}_1\|^2}$$

$$s = \frac{(\vec{p} - \vec{p}_1) \cdot (\vec{p}_3 - \vec{p}_1)}{\|\vec{p}_3 - \vec{p}_1\|^2}$$

- Vertex
- Line
- Triangle
- Quad
- Rectangle
- Tetrahedron
- Hexahedron
- Parallelipiped
- Pyramid
- prism

Quad

d=2

 $c = \{v_1, v_2, v_3, v_4\}$ $\Phi_1^1(r,s) = (1-r)(1-s)$ $\Phi_{2}^{1}(r,s) = r(1-s)$ $\Phi_3^1(r,s) = rs$ $\Phi_{4}^{1}(r,s) = (1-r)s$ $r = \frac{(\vec{p} - \vec{p}_1) \cdot (\vec{p}_2 - \vec{p}_1)}{\|\vec{p}_2 - \vec{p}_1\|^2}$ $(\vec{p} - \vec{p}_1) \cdot (\vec{p}_4 - \vec{p}_1)$ $\parallel \vec{p}_{\scriptscriptstyle A} - \vec{p}_{\scriptscriptstyle 1} \parallel^2$

- Vertex
- Line
- Triangle
- Quad
- Rectangle
- Tetrahedron
- Hexahedron
- Parallelipiped
- Pyramid
- prism

Tetrahedron

d=3

$$c = \{v_{1}, v_{2}, v_{3}, v_{4}\}$$

$$\Phi_{1}^{1}(r, s) = 1 - r - s - t$$

$$\Phi_{2}^{1}(r, s) = r$$

$$\Phi_{3}^{1}(r, s) = s$$

$$\Phi_{4}^{1}(r, s) = t$$

$$T^{-1}(x, y, z) = (r, s, t)$$

$$r = \frac{(\vec{p} - \vec{p}_{1}) \cdot (\vec{p}_{2} - \vec{p}_{1})}{\|\vec{p}_{2} - \vec{p}_{1}\|^{2}}$$

$$s = \frac{(\vec{p} - \vec{p}_{1}) \cdot (\vec{p}_{3} - \vec{p}_{1})}{\|\vec{p}_{3} - \vec{p}_{1}\|^{2}}$$

$$t = \frac{(\vec{p} - \vec{p}_{1}) \cdot (\vec{p}_{4} - \vec{p}_{1})}{\|\vec{p}_{4} - \vec{p}_{1}\|^{2}}$$

tetrahedrog

- Vertex
- Line
- Triangle
- Quad
- Rectangle
- Tetrahedron
- Hexahedron
- Parallelipiped
- Pyramid
- prism

Hexahedron

d=3

$$c = \{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8\}$$

$$\Phi_1^1(r, s) = (1 - r)(1 - s)(1 - t)$$

$$\Phi_2^1(r, s) = r(1 - s)(1 - t)$$

$$\Phi_2(r,s) = r(1-s)(1-t)$$

$$\Phi_3^1(r,s) = rs(1-t)$$

$$\Phi_4^1(r,s) = (1-r)(1-t)$$

$$\Phi_5^1(r,s) = (1-r)(1-s)t$$

$$\Phi_6^r(r,s) = r(1-s)t$$

$$\Phi_7^1(r,s) = rst$$
$$\Phi_7^1(r,s) = (1-r)s$$

$$r_{e}^{1}(r,s) = (1-r)st$$

hexahedron

- Vertex
- Line
- Triangle igodol
- Quad ullet
- Rectangle ightarrow
- Tetrahedron ullet
- Hexahedron ullet
- Parallelipiped ullet
- Pyramid
- prism

Hexahedron (cont.)

d=3

$$T^{-1}(x, y, z) = (r, s, t)$$

$$r = \frac{(\vec{p} - \vec{p}_1) \cdot (\vec{p}_2 - \vec{p}_1)}{\|\vec{p}_2 - \vec{p}_1\|^2}$$

$$s = \frac{(\vec{p} - \vec{p}_1) \cdot (\vec{p}_4 - \vec{p}_1)}{\|\vec{p}_4 - \vec{p}_1\|^2}$$

$$t = \frac{(\vec{p} - \vec{p}_1) \cdot (\vec{p}_8 - \vec{p}_1)}{\|\vec{p}_8 - \vec{p}_1\|^2}$$

hexahedron

- Vertex
- Line
- Triangle
- Quad
- Rectangle
- Tetrahedron
- Hexahedron
- Parallelipiped
- Pyramid
- prism

	Geometry:	Geometry:
	Constant	Linear
Lighting:	Staircase	Flat
Constant	shading	Shading
Lighting:		Smooth
Linear		(Gouraud)
		shading

Effect of Reconstruction

Staircase Shading

Flat Shading

Smooth Shading

Grid types

- Grid is the pattern of cells in the data domain
- Grid is also called mesh

- Uniform grid
- Rectilinear grid
- Structured grid
- Unstructured grid

Uniform Grid

3-D

2-D

Uniform Grid

•The simplest grid type

• Domain D is usually an axis-aligned box

- •Line segment for d=1
- Rectangle for d=2
- •parallelepiped for d=3
- •Sample points are equally distributed on every axis

•Structured coordinates: the position of the sample points in

- the data domain are simply indicated by d integer coordinates $(n_1, ... n_d)$
- •Simple to implement
- Efficient to run (storage, memory and CPU)

Uniform Grid

•Data points are simply stored in the increasing order of the indices, e.g, an 1-D array

•Lexicographic order

$$i = n_{1} + \sum_{k=2}^{d} (n_{k} \prod_{l=1}^{k-1} N_{l})$$

If d = 2,
 $i = n_{1} + n_{2}N_{1}$, or
 $n_{2} = i/N_{1}$
 $n_{1} = i \mod (n_{2}N_{1})$
If d = 3,
 $i = n_{1} + n_{2}N_{1} + n_{3}N_{1}N_{2}$

Rectilinear Grid

2-D

Rectilinear Grid

• Domain D is also an axis-aligned box However, the sampling step is not equal

 It is not as simple or as efficient as the uniform grid However, improving modeling power

Structured Grid

• Further relaxing the constraint, a structured grid can be seen as the free deformation of a uniform or rectilinear grid

- •The data domain can be non-rectangular
- It allows explicit placement of every sample points
- The matrix-like ordering of the sampling points are preserved
 - Topology is preserved
 - But, the geometry has changed

Structured Grid

Circular domain Curved Surface 3D volume

Unstructured Grid

• It is allowed to define both sample points and cells explicitly

- •The most general and flexible grid type
- However, it needs to store
 - •The coordinates of all sample points p_i

• For each cell, the set of vertex indices $ci=\{v_{i1},...,v_{iCi}\}$, and for all cells {c1,c2...}

Attributes

•Attribute data is the set of sample values of a sampled dataset

•Attribute = $\{f_i\}$

Sampled dataset

$$D_{s} = (\{p_{i}\}, \{C_{i}\}, \{f_{i}\}, \{\Phi_{i}^{k}\})$$

Attribute Types

•Scalar Attribute

$$C \in \mathbf{R}^c$$

 $c = 1$

• Vector Attribute
$$C \in \mathbb{R}^{c}$$

 $c = 2$, or $c = 3$

•Color Attribute: c=3

•Tensor Attributes

Non-Numerical Attributes

Scalar Attributes

$$f: \mathbf{R}^2 \to \mathbf{R}, \text{ or}$$
$$f: \mathbf{R}^3 \to \mathbf{R}$$

• E.g., temperature, density,

•Scalar, Vector, Color, Tensor, Non-numerical

Vector Attributes

$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
, or
 $f: \mathbb{R}^3 \to \mathbb{R}^3$

- •E.g.,
- Normal
- Force
- velocity

•A vector has a magnitude and orientation

•Scalar, Vector, Color, Tensor, Non-numerical

Tensor Attributes

• A high-dimensional generalization of vectors

Tensor	$\vec{\boldsymbol{V}} = \vec{\boldsymbol{V}}_{\boldsymbol{A}} \vec{\boldsymbol{V}}_{\boldsymbol{B}} = \begin{pmatrix} V_{Ax} V_{Bx}, V_{Ax} V_{By} \\ V_{Ay} V_{Bx}, V_{Ay} V_{By} \end{pmatrix}$
Vector	$\vec{V} = (Vx, Vy)$
Scalar	V = V

• A tensor describes physical quantities that depend on direction

Vector and scalar describes physical quantities that depend on position only

Scalar, Vector, Color, Tensor, Non-numerical

Tensor Attributes

Tensor

• E.g. curvature of a 2-D surface

• E.g., diffusivity, conductivity, stress •Scalar, Vector, Color, Tensor, Non-numerical

Non-numerical Attributes

- E.g. text, image, voice, and video
- Data can not be interpolated
- Therefore, the dataset has no basis function
- Domain of information of visualization (infovis)

Color Attributes

•A special type of vector attributes with dimension c=3

•RGB system: convenient for hardware and

implementation

- R: red
- G: green
- B: blue

- H: Hue
- S: Saturation
- V: Value

Scalar, Vector, Color, Tensor, Non-numerical

RGB System

• Every color is represented as a mix of "pure" red, green and blue colors in different amount

• Equal amounts of the three colors determines gray shades

•RGB cube's main diagonal line connecting the points (0,0,0) and (1,1,1) is the locus of all the grayscale value

HSV System

•Hue: distinguish between different colors of different wavelengths, from red to blue

•Saturation: represent the color of "purity", or how much hue is diluted with white

- S=1, pure, undiluted color
- S=0, white

• Value: represent the brightness, or luminance

- V=0, always dark
- V=1, brightest color for a given H and S

HSV System

HSV Color Cone

Color, Light, Electromagnetic Radiation

RGB to HSV

•All values are in [0,1]

max=max(R,G,B) min=min(R,G,B) diff=max-min

V = max
largest RGB component
S = diff/max
For hue H, different cases
H = (G-B)/diff if R=max
H =2+(B-R)/diff if G=max
H =4+(R-G)/diff if B=max
then H=H/6
H=H+1 if H < 0

•Exp: Full Green Color
•(R,G,B)=(0,1,0) →
•(H,S,V)=(1/3, 1,1)

Exp: Yellow Color
(R,G,B)=(1,1,0) →
(H,S,V)=(1/6, 1, 1)

HSV to RGB

huecase = {int} (h*6)
frac = 6*h - huecase

lx= v*(1-s)
ly= v*(1-s*frac)
lz= v*(1-s(1-frac))

huecase =6 (0<h<1/6): r=v, g=lz, b=lx
huecase =1 (1/6<h<2/6): r=ly, g=v, b=lx
huecase =2 (2/6<h<3/6): r=lx, g=v, b=lz
huecase =3 (3/6<h<4/6): r=lx, g=ly, b=v
huecase =4 (4/6<h<5/6): r=lz, g=lx, b=v
huecase =5 (5/6<h<1): r=v, g=lx, b=ly

Exp: Full Green Color
(H,S,V)=(1/3,1,1) →
(R,G,B)=(0,1,0)

Exp: Yellow Color
(H,S,V)=(1/6,1,1) →
(R,G,B)=(1,1,0)

Conclusion

• Fundamental issues involved in representing data for visualization applications

- A set of data cells
- Data attributes, several types: scalar vector color and tensor

 Basis function: constant and linear Simplicity of implementation and direct support in the graphics hardware
 Crid Types: uniform restilinger structured and

•Grid Types: uniform, rectilinear, structured and unstructured grids