o Friedman (2008) the "main goal of data bis to communicate information differenties of the communicate information difference of the communic to convey ideas effectively sophisticated to look active and in the section of t ance where the internation of th are dearly. The bog of we not meter communicate clearly, but stimulate ave suggested that an ideal visualization

Course Info.

http://cc.sjtu.edu.cn/visualization.html

• Bin SHENG

Hong Kong Applied Science and Technology Research Institute
Department of Computing Science and Engineering
Shanghai Jiaotong University
shengbin<at>cs.sjtu.edu.cn
021-34207642
SEIEE3-539

Books

- * Alexandru C. Telea, *Data Visualization Principles & Practice,* A K Peters, 2008.
- Markus Hadwiger et al., *Real-Time Volume Graphics*, A K Peters 2006.
- C.D. Hansen, C.R. Johnson (eds.), *The Visualization Handbook*, Academic Press, 2004.
- B. Lichtenbelt, B., R. Crane, S. Naqvi, *Introduction to Volume Rendering*, Prentice Hall PTR, Upper Saddle River, NJ, 1998.
- W.J. Schroeder, K. Martin, W. Lorensen, *The Visualization Toolkit - An Object-Oriented Approach to 3D Graphics*, Kitware Inc., 3rd. ed. 2003.
- R. Spence, Information Visualization, ACM Press /Addison Wesley, 2001.

Data Visualization

- **1. Basic Concept: Data Visualization**
- 2. Visualization pipeline
- 3. Data representations
- 4. Volume(scalar) visualization:
 - -- surface extraction, direct volume rendering
- 5. Vector field visualization
- 6. Information Visualization

Visualization

A Picture Is Worth a Thousand Words

Visualization

Visualization is a cognitive process performed by humans in forming a mental image of a domain space

Human Cognition

Visualization

Visualization is a visual representation of a domain space using graphics, images, animated sequences, and sound augmentation to present data, structure, and dynamic behavior of large, complex data set that represent systems, events, processes, objects, and concepts [Williams et al. 1995]

At Information Age

Related fields

- Computer Graphics
- Data analysis
- Data mining
- Database
- Human-computer interaction (HCI)
- Infographics

For Sciences

- Effective communication
- Provide scientific insights
- Make scientific discoveries

Examples: climatology

无 SIM 👳	20:32	@ 17% 🗔
		Seijing 位于 20:32
	100 C	1°
	RealFee 湿度 风速 能见度 日出 日落	1 公里 69% 0 1 公里/小时 1 公里 6:58 AM 5:58 PM
	AccuWeather.com	
最新天气情况	the second	Beijing
	Ulsanbaata	ar

Examples: biomedical visualization

Tree of life with genome size

Why we need visualization?

- Larger data production by acquisition and simulation → better data consumption needed
- medical imaging (CT etc)
- seismic/geological data (Petroleum Exp., Earthquake inv.)
- wind tunnel simulation (air dynamics, airspace indu.)
- meteorological data (weatherforecasting ...)

Scientific Big Data

Information Explosion

- The ability to take data—to be able to understand it, to process it, to extract value from it, to visualize it, to **communicate** it —that's going to be a hugely important skill in the next decades,... because now we really do have essentially free and ubiquitous data."
 - HalVarian, Google's Chief Economist The McKinsey Quarterly, Jan 2009

Why we need visualization?

- Visualization can
 - Help thinking
 - Use perception instead of cognition
 - Work as external auxiliary of working memory
 - Enhance cognitive abilities

 "Visualization is really about external cognition, that is, how resources outside the mind can be used to boost the cognitive capabilities of the mind."

Stuart Card

Which kind of information extracted?

- Quantitative message minimum/maximum values, ...
 Qualitative message certain features/pattern: oil in geological data; tumor in medical imaging ...
- Analysis/curiosity

--- ranging from precise to fully vague

These graphics are supposed to convey information more clearly and more effectively than text.

 Most are designed to inform, but some are also supposed to be persuasive. For this assignment, examine each of these graphics and answer the questions in your memo.

• Also Consider:

- Is the graphic an effective way of communicating information?
- What do you think is the main point made by each graphs?
- Do you have both an intellectual and an emotional response to these graphics? If so, what are they?

Data => Graphics / Images

9.5012929e-01 4.9655245e-01 1.2104711e-01 2.9740568e-01 2.3113851e-01 8.9976918e-01 4.5075394e-01 4.9162489e-02 6.0684258e-01 8.2162916e-01 7.1588295e-01 6.9318045e-01 4.8598247e-01 6.4491038e-01 8.9284161e-01 6.5010641e-01 8.9129897e-01 8.1797434e-01 2.7310247e-01 9.8298778e-01 7.6209683e-01 6.6022756e-01 2.5476930e-01 5.5267324e-01 4.5646767e-01 3.4197062e-01 8.6560348e-01 4.0007352e-01 1.8503643e-02 2.8972590e-01 2.3235037e-01 1.9878852e-01 8.2140716e-01 3.4119357e-01 8.0487174e-01 6.2520102e-01 4.4470336e-01 5.3407902e-01 9.0839754e-01 7.3336280e-01 6.1543235e-01 7.2711322e-01 2.3189432e-01 3.7588548e-01 7.9193704e-01 3.0929016e-01 2.3931256e-01 9.8764629e-03 9.2181297e-01 8.3849604e-01 4.9754484e-02 4.1985781e-01 1.7626614e-01 3.7041356e-01 6.4081541e-01 7.9387177e-01 4.0570621e-01 7.0273991e-01 1.9088657e-01 9.1995721e-01 9.3546970e-01 5.4657115e-01 8.4386950e-01 8.4472150e-01 9.1690444e-01 4.4488020e-01 1.7390025e-01 3.6775288e-01 4.1027021e-01 6.9456724e-01 1.7079281e-01 6.2080133e-01 8.9364953e-01 6.2131013e-01 9.9429549e-01 7.3127726e-01 5.7891305e-02 7.9482108e-01 4.3979086e-01 1.9389318e-01 3.5286813e-01 9.5684345e-01 3.4004795e-01 9.0481233e-01

Scientific goal?

 A visualization theory that helps guide the development of automatic visualization systems: transforming data to pictures.

Explain Gene Regulatory Network

Andrea Califano et al., Reverse Engineering of Regulatory Networks in Human B Cells, *Nature Genetics* **37, 382 - 390 (2005)**

[http://www.nature.com/ng/journal/v37/n4/a bs/ng1532.html]

Atom-by-atom movie of making the NINT Nano-Tip Explain World's Sharpest Object

Each white circle is a single Tungsten atom – all but the central one are controllably removed – the NINT single atom nano-tip results

Courtesy of Bob Wolkow, UofA/National Institute of Nano Technology

Explain Photo 51

Courtesy of Jay Ingram and the Canadian Museum of Nature, see also http://en.wikipedia.org/wiki/Rosalind_Franklin

Explain Hospital vs. Battlefield Mortality

F. Nightingale (1858), "Notes on Matters Affecting the Health, Efficiency, and Hospital Administration of the British Army."

A theory is Explanatory Predictive Extensible Evaluable Refutable

Visualization Theory Components

- A theory of visualization must provide at least the following:
 - An ability to define a mapping from a non-visual to a visual domain
 - An ability to specify constraints on the intended inferences in the visual domain
 - A framework to evaluate the quality of a visualization with respect to its intended inferential goals

Visualization Theory Components

- A theory of visualization must provide at least the following:
 - An ability to define a mapping from a non-visual to a visual domain
 - An ability to specify constraints on the intended inferences in the visual domain
 - A framework to evaluate the quality of a visualization with respect to its intended inferential goals

From Data to Picture

navigation visualizations (picture)

navigation compression models (abstraction vocabulary two)

session boundaries, content pages (abstraction vocabulary one)

Web logs (source data)

From Data to Picture

Humans with Machines

Humans	Machines
Adjusting	Maintaining
models	models
Adjusting	Generating
hypotheses	hypothesis
Designing	Conducting
Experiments	experiments

A spectrum of inference

Correct deductive Plausible/consistent/ambig uous Interesting Speculative inductive Wild-ass guess Implausible Wrong

A spectrum of inference

A spectrum of inference

Understanding comics

Exploiting the visual vocabulary of a graphics design/sequential art genre

http://en.wikipedia.org/wiki/Understanding_Comics

Visual Story Telling

 Refining the cognitive impact of picture-based story telling

http://www.mollybang.com/Pages/picture.html

Visual Story Telling

How can shapes, color, and composition make us feel the way things look?

E.g., "Tensioninducing" graphical composition

Napoleon's chart with map

Wei Shi, Yuzuru Tanaka, Meme Laboratory, Hokkaido University, September, 2010

From Data to Picture

Shi's hierarchical data model

Source relational data

Date	#soldiers	Direction	Long.	Lat.	
4/5/1812	64,464	34° NE	62.6	52.1	
5/5/1812	63,262	30° NE	60.2	51.9	

Napolean's Moscow campaign

http://www.edwardtufte.com/tufte/minard/

Extracted from Edward Tufte, *The Visual Display of Quantitative Information*, 1992

Charles Joseph Minard, 1869

Nate	#soldiers	Direction	Long.	Lat.	
4/5/18 2	64 464	34° NE	62.6	52.1	
5/5/181 2	63,262	30° NE	60.2	51.9	

Date	#soldiers	Direction	Long.	Lat.	
4/5/181 2	64,464	34° NE	62.6	52.1	
5/5/181 2	63,262	30° NE	60.2	51.9	

Date	#soldiers	Direction	Long.	Lat.	
4/5/181 2	64,464	34° NE	62.6	52.1	
5/5/181 2	47,444	30° NE	60.2	51.9	

Nate	#soldiers	Direction	Long.	Lat.	
4/5/181 2	64 464	34° NE	62.6	52.1	
5/5/181 2	47,444	30° NE	60.2	51.9	

Nate	#soldiers	Direction	Long.	Lat.	•••
4/5/18 2	64 464	34° NE	62.6	52.1 .	
5/5/181 2	?	30° NE	60.2	51.9 .	

How does change propagate?
Are changes monotonic or non-monotonic?
Can change be used to both validate a model, and to suggest experiments?

Date	#soldiers	Direction	Long.	Lat.	••••
4/5/181 2	64,464	34° NE	62.6	52.1	
5/5/181 2	63,262	30° NE	60.2	51.9	

Bilateral propagation structure

Veracity of visual inferences

Truth preserving	Consistent hypothesis	Unverified guess	Avoidable artifact	Artistic expression
Deduction	Ir	nduction	Careless design of visual vocabulary, or of rendering, or both	Aesthetic license with no explicit intention of veracity
Confirmable semantic symmetry	Abduction, belief revision	Syntactically driven induction	Disconnect between syntax and semantics	Individual creativity in connection between syntax and semantics

Decreasing precision in semantic symmetry

Escher's Waterfall

Maurits Cornelis Escher

	A 1929 Sell-portrait
Born	17 June 1898 Leeuwarden, The Netherlands
Died	27 March 1972 (aged 73) Laren, The Netherlands
Nationality	Dutch
Field	Drawing, Printmaking
Works	Relativity, Waterfall, Hand with Reflecting Sphere
Influenced by	Giovanni Battista Piranesi
Awards	Knighthood of the Order of Orange-Nassau

A theory is Explanatory Predictive Extensible Evaluable Refutable

One explanation of Escher's Waterfall

http://www.cs.technion.ac.il/~g ershon/EscherForReal/

Sugihara's "impossible" objects

http://home.mims.meiji.ac.jp/~sugihara/hobby/MagnetLikeSlopes.wmv

Abductive Reasoning

Abductive Reasoning

Summary & Conclusions

- Components of a visualization theory exist, but are not yet connected:
 - Mappings from sub-visual to visual, but not much the other way around
 - Typically only implicit constraints on semantics inferential intent
 - Only recently increasing emphasis on evaluation of alternative visualization methods with same inferential intent
- Semantic symmetry: one possible framework for both use and evaluation of visualization constraint manipulation.
 - Semantic symmetry operations require semantic conceptions of components of visualization data chain..
 - Formalizations of visual operations are required, to define propagation of changes through the visualization data lattice

Visualization Pipeline

Conceptual View of Visualization Process

Visualization Process

- Acquisition: data of interest into a discrete dataset;
- Mapping: dataset into graphics primitives;
- Rendering: generation of requested images.

Visualization Process

Visualization process: interaction

Classification

- Scientific visualization (scivis)
- Information visualization (infovis)
- Visual Analytics: a new subject

Scientific Visualization (ViSC: Visualization in Scientific Computing)

Numerical data from measurements (data acquisition devices), or from computer simulations

- scientific / engineering / biomedical
- numerical, physical
- clear reference frame
- goal: insight!

Scalar Visualization

Height plot and Isolines

Vector Visualization

Stream Tubes

Flow Visualization

Domain Modeling

Scattered Point Cloud and Surface Reconstruction

Volume(scalar) Visualization

surface extraction

direct volume rendering

Volume data in different applications

Medical data (human head, blood-vessels, ...)

seismic data ==>

= >

astronomy / astrophysics

Visible human

Information Visualization

- data and information from large data bases, networks, etc:
 - many sources
 - numerical, text,
 - images, multimedia, ...
 - discrete, heterogeneous

Information Visualization

Cone-tree Layout of File Hierarchy (P. 403)

Examples: 2D graphs and charts

geographic data visualization

Text visualization

Wordles

Hierarchical data visualization: Treemap

21% Gold					3.6% Ferrous waste a scrap	nd	077% 074% Fruit Tobero, nutsand raw edble plants presented 055% Wäters flavored 048%		19%Minealor demical/tellians, phosphetic 042% Hair	095% Diphosp- hous partaovi- de; prosphoric a- ot	
					11% Copper vesteard scap		Food preparations 046% Goopa povider, 053% Grusfiuit			081%Other nctarinfored	
5.9% Jewelry 4.9% of precious Dian metal		4.9% Diamo	nds	070% Worked manumental ar	053% Aluminum bars		043% Apples			platicplates, sheets, 07%Tubes, pipesand hoses	
							2.2% Printed books, brochure	<u>x</u> ,		1.7% Oth fumiture a parts the	er and eof
2.9% Electric generating sets and rotary converters 1.7% Electrical transformers	15% Refrigerators, freezers 14%Automatic data processing machines 13% Insulated wire; optical fiber cables		071% Spatkightion prozeting 042%		12% ando armo fighti vehic	anks ned g s	11% Toilet				
			Electrical				061% Vomers sitsrot krit			1.8% Cen	ent

Treemap

Interaction Techniques for Zoomable Treemaps

UIST 2006 Demonstration

Renaud Blanch & Éric Lecolinet, ENST (GET) http://www.infres.enst.fr/--elc/

Visual Analytics

Well known Journal & conf. on Visualization

- IEEE Visualization (annual conf.,USA, 22st in 2011)
 InfoVis (annual conf. with IEEE Vis, 17th in 2011)
 IEEE Virtual Reality (IEEE VR)
 IEEE Pacific Visualization (Annual conf. 4rd in 2011)
- IEEE Transactions on Visualization and Computer Graphics (TVCG)
- IEEE Computer Graphics & Applications (IEEE CG&A)
- ACM Trans. on Graphics