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Using Deep Learning for Pulmonary Nodule 
Detection & Diagnosis 

Abstract 
This study uses a revolutionary image recognition algorithm, deep learning, for detection of malignant 
pulmonary nodules.  Deep learning technique is based on deep neural network. We report results of the 
initial findings and performance of deep neural nets using a combination of various choice parameters.  
Classification accuracy, sensitivity and specificity of the network performance is assessed for various 
combinations of convolutional layers.     
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Introduction 
Lung cancer is one of the most aggressive cancers and is projected by the American Cancer Society to 
result in mortality of over 70% with approximately 225,000 Americans with newly diagnosed in 2016 [1]. 
It is responsible for roughly one quarter of all cancer deaths. The early identification of pulmonary 
nodules is an important task for the management of lung cancer; if detected early malignant nodules can 
be treated with a much higher success rate. The National Lung Screening Trial has demonstrated that 
frequent screening using low-dose Computed Tomography (CT) is effective at reducing mortality from 
lung cancer. 

However, reading of CT scans by radiologists for detecting the presence of pulmonary nodules and their 
malignancy is a tedious and time-consuming task. Due to the high stakes associated with false negatives, 
it is desirable to have CT scans read by multiple readers. In order to improve workflow and reduce 
workload for radiologists charged with detecting and diagnosing lung cancer, several computer-aided 
detection (CADe) and computer-aided diagnosis (CADx) tools have been developed by researchers in 
industry and academia.  

Several such CADe/x tools rely on using traditional analytics approaches such as segmentation-based 
techniques for the detection of pulmonary nodules.. Some of the more successful of these techniques have 
used k-means classifiers for localization and segmentation of images [2, 3], although good results have 
been documented with alternate methods of segmentation and classification [4] as well. These findings 
typically report having  sensitivity that ranges from 80% to 85% with between 3 to 5 false positives per 
scan on an average. Most recently, a study reported sensitivity of 94% but with a higher falese positive 
rate of 7 per scan.[5].  

We use a state-of-art framework and algorithm, Deep Learning, and apply it to improve the to improve 
the identification of pulmonary nodules.  Deep learning is based on using ‘deep’ neural networks 
comprised of a large number of hidden layers. This approach has emerged over the past several years as 
the preferred method for a variety of complex pattern recognition tasks. Research on using deep neural 
networks (DNNs) for CADe is in nascent stages. However, initial studies that have explored the efficacy of 
applying deep learning  have demonstrated a very low number of false positives when compared with 
typical results reported by deploying traditional segmentation techniques [6]. Furthermore, such studies 
have indicated that DNNs have great potential for application in a variety of CADe tasks involving 
volumetric medical data [6, 7]. A small number of these studies have explored their use for detection and 
diagnosis of pulmonary nodules [7-9]. The best results to date in this scope have been demonstrated using 
DNNs in ensemble methods [9]. 

This preliminary work examines the effectiveness of using DNNs to distinguish between large and small 
pulmonary nodules so that potentially malignant nodules (large nodules) could be autonomously 
identified. This study can be extended to various classification tasks such as parenchyma and non-
nodules) and can be used hierarchically with models trained to localize nodule candidates and quantify 
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nodules’ malignancy. A single system, utilizing these three such DNN models for CADe and CADx, has not 
yet been demonstrated. This study accomplishes the goal of integrating the thee DNN models..  

Background 
Deep learning more broadly describes a variety of computational models composed of multiple processing 
layers (i.e. a deep network of layers) used for learning representations of data with various levels of 
abstraction. Stemming from the seminal work of Krizhevsky et al. [10], subsequent half decade has seen a 
remarkable progress in general image classification tasks,. More specifically, Krizhevsky et al. used a deep 
convolutional neural network, which has since been the catalyst for the fundamental change in the study 
of computer vision and also becoming the foundation of a new branch of machine learning called deep 
learning. Convolutional neural networks have also long been known as highly effective for visual 
recognition tasks [11], however, due to computational costs associated with their use, theier adoption in 
mainstream science has remained somewhat limited to classification problems focused on grayscale 
images with very limited resolution. Krizhevsky et al. used multiple graphics processing units (GPUs) to 
apply deep convolutional neural networks to the 1000 classes identified in the over 1.2 million images 
comprising the ImageNet dataset. GPUs, designed for highly-parallel vectorized operations that is now 
typical for graphics rendering have since become a requirement for computer vision researchers [12, 13] 
and all researchers exploring large datasets with deep learning methods. 

The primary benefit that deep learning has brought to computer vision is in the domain of feature 
learning. With the powerful, feature extraction properties of DNNs, hand-tuned features painstakingly 
defined by experts are no longer required [14]. However, feature extraction and representation properties 
of DNNs only improve as the size of the training dataset increases. The benefits of deep learning are not, 
therefore, limited strictly to computer vision.  

The application of deep learning methods to medical images is still in nascent stages. Early studies using 
deep neural networks for applications in medical images successfully demonstrated improvements in 
segmentation tasks [15, 16]. 

Dataset 
The dataset used for training was obtained from the public Lung Image Database Consortium (LIDC) and 
Image Database Resource Initiative (IDRI) [17, 18]. This reference database is comprised entirely of CT 
scans containing pulmonary nodules. Datasets from the LIDC-IDRI have been widely used for studying 
nodule detection methods, including various studies of relevance to this work [5, 8, 9].  

The LIDC-IDRI database comprises of over 1000 CT scans, each of which is annotated by 4 different 
radiologists. Three types of objects are identified in the annotations of reading radiologists; nodules equal 
to or greater than 3mm (large nodules), nodules less than 3mm in diameter (small nodules), and non-
nodules. Small nodules are depicted in Figure 1.  
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Figure 1. CT scans containing pulmonary nodules. The nodules found in each of these slices 

are considered small nodules. 

In this study, large and small nodules were included only if they were identified unanimously by each of 
the four reading radiologists. The resulting dataset was comprised of 564 large nodules and 368 small 
nodules. Nodules not identified unanimously by each of the four readers were excluded for this study, 
however, some of these excluded cases will be included in future models. 

For each large nodule, expert radiologists who were annotating the data also assigned a malignancy value. 
Malignancy values were not assigned for small nodules, as these nodules are typically not reliable for 
diagnosis of lung cancer. Malignancy values and objects identified by the radiologists but were excluded 
here will be used for future work. Beyond the malignancy values, eight more metrics describing each large 
nodule was reported by each reading radiologist. For example, one of the metrics included is ‘sphericity,’ 
which is independently related to the probability of a nodule’s malignancy. Some of these further metrics 
could also be explored when developing the malignancy classification model for the proposed hierarchical 
CADe and CADx system. 

 
Figure 2. A localized volume around each nodule, comprised of 36 36x36 voxel slices, was 

extracted. 

Methods 
Initially, the 932 nodules were split into train and test datasets (80% and 20%, respectively). Typically, 
DNNs perform better with larger datasets. Due to the limited number of confirmed nodules for training, 
two methods were used to enlarge the dataset. Nodules for training were localized by readers, and 
localization of candidate nodules was assumed for the purposes of this preliminary study. Using the 
averaged centroid value from the readers’ notes, a 36x36x36 voxel cube was extracted from the 
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corresponding CT scan for each nodule. Assuming nodule morphometry independent of gravity, 48 
unique perspectives of each nodule were extracted from each voxel cube. Each of these perspectives was 
exported as a 6x6 sheet of 36x36 images. This technique increased the size of the training dataset from 
746 to 35,808. Random cropping of 36x36 image slices, uniformly for each slice in a sheet, into 34x34 
image slices further increased the training dataset to 465,504. 

Caffe [19], an open source deep neural network solver from Berkley Vision and Learning Center, was used 
in this study to model DNNs. Caffe is typically considered one of the fastest options for modeling DNNs, 
heavily utilizing GPUs. A high performance Nvidia GPU was used for all cases in this study, however, 
entry level gaming GPUs are capable of running cases for all of the network architectures reported. 

The neural network architectures examined were inspired by elements of two well known and well 
performing network architectures [10, 11]. Components of each of these architectures were incorporated 
due to their success in two significantly different visual classification tasks (i.e. handwritten character 
recognition and general image classification). Each of the four network architectures only in the neurons 
per layer and the number of convolution layers, thus, a detailed architecture description for each of the 
neural networks will not be given. All of the networks included three max pooling layers, two fully 
connected layers, and a softmax output. Two max pooling layers were always included following the first 
and second convolution layers while the third max pooling layer was always introduced following the last 
convolution layer. Rectified linear units were used as the activation function, a common practice in deep 
learning applications. Weights were initialized using Xavier initialization [20], more appropriate for the 
grayscale images used in training and testing the models. For all networks, the first fully connected layer 
contained 36 neurons while the second fully connected layer contained only six neurons. Dropout layers 
were included with the fully connected layers to reduce overfitting.  

 
Figure 3. The most accurate deep neural network architecture, containing five convolution 
layers, three max pooling layers, and two fully connected layers. 

Both a two-dimensional method and a limited three-dimensional approximation were used during 
training. The scope of the method and results reported and described in this study is limited strictly to the 
better performing three-dimensional approximation technique. This technique was inspired by 2.5D [21] 
and 3D [22] methods used to train DNNs with other volumetric medical data. In application data was 
loaded for each slice of a voxel cube as a separate channel on a single image. These channels were treated 
in the same fashion as color encoding channels (e.g. RGBA) when training with color images [10]. Only 
the closest five channels were included with kernels. Kernel size for the first two convolution layers, and 
for the final convolution layer, were constant for each of the four network architectures; a 5x5 kernel was 
used by the first convolution layer, a 4x4 kernel was used by the second convolution layer, and a 3x3 
kernel was used by the final convolution layer. Kernels for the max pooling layers in each of the network 
architectures were also constant; a 3x2 kernel for the first max pooling layer and 2x2 kernels for the 
following max pooling layers.  
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Proposed Hierarchical Models 

The method described and examined in this work is one of three models that makeup a proposed 
diagnostic tool for CADe and CADx of lung cancer. Figure 4 depicts the detection and diagnosis process of 
the proposed tool with a hierarchy of models. The first layer of this hierarchy functions to identify 
anomalous objects in 2D, transverse slices of each CT scan. These objects are localized by the model, and 
the locations with the highest probabilities are used to generate volumes of interest (VOIs) for processing 
by the model in the second layer. This model (an extended version of the model demonstrated in this 
study) will determine if the object within the volume of interest is a large nodule or any of a variety of 
benign objects.  After detection of the large nodules in a scan, the final layer will use a model trained to 
diagnose the likelihood of malignancy. 

 
Figure 4. The proposed image processing and deep neural network classifiers to be used 
for detection of pulmonary nodules and diagnosis of lung cancer. 

Results 
DNN architectures for each of the four convolution layer variations examined all demonstrated accuracy 
of greater than 81% for the binary classification task. The results for the best performing models identified 
for each of the convolution layer variations are reported in Table 1. The peak accuracy observed among the 
four variants ranged only 1.02%. The ranges of sensitivity and specificity among the variants were slightly 
more significant at 3.18% and 3.72%, respectively.  

The best performing architecture was comprised of five convolution layers. This model achieved an 
accuracy of 82.1% with a sensitivity of 78.2% and a specificity of 86.1%. Both the three and four layer 
networks performed very closely, as did the two five and six layer networks. Similarly, sensitivity and 
specificity for the same network pairs were observed to be much closer than with networks in the alternate 
pair.  

  
Table 1. A Comparison of Observed Maximum Accuracy Over a Range in the Number of 

Convolutional Layers 
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Discussion 
The 1.02% range of peak accuracy among the four reported neural network architecture variants, although 
small, is not an insignificant performance improvement. On the other hand, given the low magnitude of 
this range and the challenges posed by fine-tuning optimization parameters for the complex network 
architecture, it is relatively early to confirm any benefit from further increasing the convolution layers. 
However, it does appear that the gap between sensitivity and specificity is smaller for networks with five 
and six convolution layers. 

The performance of the deep learning network is highly dependent on the choice of various optimization 
parameters. Many combinations of parameters for different network are required for achieving maximal 
accuracy.. However, the benefit of added convolution layers ought to be deeper sensitivity analysis..  

Conclusion 
Results from this preliminary study were consistent with what was expected from the review of literature. 
This study provides initial validation and implementation of a novel analytics technique, Deep Learning, 
for application in the medical image recognition domain. This application has wide applicability in other 
areas of vision recognition, neuroscience, and brain studies.  Consequently, as the study expands, and 
methods grow more complex for each of the specialized models, current results are expected to further 
improve.  
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