
CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng©

Visible Surface Determination (VSD)
To render or not to render, that is the question…

Visible Surface Determination – 10/18/16 1 of 15

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng©

 Given a set of 3-D objects and a view specification (camera),
determine which edges or surfaces of the object are visible
 why might objects not be visible?

occlusion vs. clipping

 clipping works on the object level (clip against view volume)

 occlusion works on the scene level (compare depth of object/edges/pixels
against other objects/edges/pixels)

 Also called Hidden Surface Removal (HSR)

 We begin with some history of previously used VSD algorithms

What is it?

Visible Surface Determination – 10/18/16 2 of 15

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng©

Finally, clip against normalized view volume

(-1 < x < 1), (-1 < y < 1), (-1 < z < 0)

Hardware Polygon Scan Conversion: Clipping

Canonical perspective-transformed
view volume with cube

1

3

2
Perform backface culling

 If normal is facing in same
direction as LOS (line of
sight), it’s a back face:

 if 𝐿𝑂𝑆 ⋅ 𝑁𝑜𝑏𝑗 > 0, then
polygon is invisible –
discard

 if 𝐿𝑂𝑆 ⋅ 𝑁𝑜𝑏𝑗 < 0, then
polygon may be visible (if
not, occluded)

+z

+x

+y

(-1, 1, -1)

(1, -1, 0)

Visible Surface Determination – 10/18/16 3 of 15

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng©

 Create drawing order so each polygon overwrites the previous one. This guarantees correct

visibility at any pixel resolution

 Work back to front; find a way to sort polygons by depth (z), then draw them in that order

 do a rough sort of polygons by smallest (farthest) z-coordinate in each polygon

 scan-convert most distant polygon first, then work forward towards viewpoint (“painters’

algorithm”)

 Can this back-to-front strategy always be done?

 problem: two polygons partially occluding each other – need to split polygons, very messy

Painter’s Algorithm: occlusion

Visible Surface Determination – 10/18/16

Interlocking polygons can
cause the Painter’s
Algorithm to fail

4 of 15

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng©

 Determine object occlusion (point-by-point)
 How to determine which point is closest?

 i.e. 𝑃2 is closer than 𝑃1
 In perspective view volume, have to compute projector and

which point is closest along that projector – no projectors are parallel
 Perspective transformation causes all projectors to become parallel

 Simplifies depth comparison to z-comparison

 The Z-Buffer Algorithm:
 Z-buffer has scalar value for each screen pixel, initialized to far plane’s z (maximum)
 As each object is rendered, z value of each of its sample points is

compared to z value in the same (x, y) location in z-buffer
 If new point’s z value less than or equal to previous one (i.e., closer to eye), its z-value is placed in

the z-buffer and its color is placed in the frame buffer at the same (x, y); otherwise previous z value
and frame buffer color are unchanged

 Can store depth as integers or floats – z-compression a problem either way (see Viewing III - 38)
 Integer still used in OGL

Hardware Polygon Scan Conversion:Z-Buffer

Visible Surface Determination – 10/18/16 5 of 15

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng©

 Draw every polygon that we
can’t reject trivially (totally
outside view volume)

 If we find a piece (one or more
pixels) of a polygon that is closer
to the front, we paint over
whatever was behind it

 Use plane equation for polygon,
z = f(x, y)

 Note: use positive z here [0, 1]

 Applet:
http://debeissat.nicolas.free.fr/
zbuffer.php

Z-Buffer Algorithm void zBuffer() {
int x, y;
for (y = 0; y < YMAX; y++)
for (x = 0; x < XMAX; x++) {

WritePixel (x, y, BACKGROUND_VALUE);
WriteZ (x, y, 1);

}
for each polygon {

for each pixel in polygon’s projection {
//plane equation
double pz = Z-value at pixel (x, y);
if (pz <= ReadZ (x, y)) {

// New point is closer to front of view
WritePixel (x, y, color at pixel (x, y))
WriteZ (x, y, pz);

}
}

}
}

Visible Surface Determination – 10/18/16 6 of 15

http://debeissat.nicolas.free.fr/zbuffer.php

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng©

 Requires two “buffers”

 Intensity Buffer: our familiar RGB pixel buffer, initialized to background color

 Depth (“Z”) Buffer: depth of scene at each pixel, initialized to 255

 Polygons are scan-converted in arbitrary order. When pixels overlap, use Z-buffer to decide which
polygon “gets” that pixel

Hardware Scan Conversion: VSD (3/4)

integer Z-buffer with
near = 0, far = 255

255 255 255 255 255 255 255 255

255 255 255 255 255 255 255 255

255 255 255 255 255 255 255 255

255 255 255 255 255 255 255 255

255 255 255 255 255 255 255 255

255 255 255 255 255 255 255 255

255 255 255 255 255 255 255 255

255 255 255 255 255 255 255 255

64 64 64 64 64 64 64 255

64 64 64 64 64 64 255 255

64 64 64 64 64 255 255 255

64 64 64 64 255 255 255 255

64 64 64 255 255 255 255 255

64 64 255 255 255 255 255 255

64 255 255 255 255 255 255 255

255 255 255 255 255 255 255 255

64 64 64 64 64 64 64

64 64 64 64 64 64

64 64 64 64 64

64 64 64 64

64 64 64

64 64

64

+ =

64 64 64 64 64 64 64 255

64 64 64 64 64 64 255 255

64 64 64 64 64 255 255 255

64 64 64 64 255 255 255 255

64 64 64 255 255 255 255 255

64 64 127 255 255 255 255 255

64 127 127 127 255 255 255 255

127 127 127 127 127 255 255 255

127

127127

127127127

127127127127

127127127127127

+ =

64 64 64 64 64 64 64 255

64 64 64 64 64 64 255 255

64 64 64 64 64 255 255 255

64 64 64 64 255 255 255 255

64 64 64 255 255 255 255 255

64 64 255 255 255 255 255 255

64 255 255 255 255 255 255 255

255 255 255 255 255 255 255 255

Visible Surface Determination – 10/18/16 7 of 15

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng©

 After scene gets projected onto film plane we know depths only at locations in our depth buffer that our
vertices got mapped to

 So how do we efficiently fill in all the “in between” z-buffer information?

 Simple answer: incrementally!

 Remember scan conversion/polygon filling? As we move along Y-axis, track x position where each edge
intersects scan line

 Do the same for z coordinate with y-z slope instead of y-x slope

 Knowing z1, z2, and z3 we can calculate za and zb for each edge, and then incrementally calculate zp as we scan.

 Similar to interpolation to calculate color per pixel (Gouraud shading)

Hardware Scan Conversion: VSD (4/4)

Visible Surface Determination – 10/18/16 8 of 15

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng©

 Dirt-cheap and fast to implement in hardware, despite brute force
nature and potentially many passes over each pixel

 Requires no pre-processing, polygons can be treated in any order!

 Allows incremental additions to image – store both frame buffer and z-
buffer and scan-convert the new polygons

 Lost coherence/polygon id’s for each pixel, so can’t do incremental deletes of
obsolete information.

 Technique extends to other surface descriptions that have (relatively)
cheap z= f(x, y) computations (preferably incremental)

Advantages of Z-buffer

Visible Surface Determination – 10/18/16 9 of 15

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng©

 Perspective foreshortening

 Compression in z-axis in post-
perspective space

 Objects far away from camera
have z-values very close to each
other

 Depth information loses
precision rapidly

 Leads to z-ordering bugs called
z-fighting

Disadvantages of Z-Buffer

near far

z

x
Before

z

x

0 1

After

Visible Surface Determination – 10/18/16 10 of 15

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng©

 Z-fighting occurs when two primitives
have similar values in the z-buffer

 Coplanar polygons (two polygons that
occupy the same space)

 One is arbitrarily chosen over the other, but
z varies across the polygons and binning will
cause artifacts, as shown on next slide

 Behavior is deterministic: the same camera
position gives the same z-fighting pattern

Z-Fighting (1/4)

Two intersecting cubes

Visible Surface Determination – 10/18/16 11 of 15

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng©

Z-Fighting (2/4)
Red in front of blue Blue, which is drawn after

red, ends up in front of red 1

x axis of image (each column is a pixel)

z-
va

lu
e

b
in

s
Eye at origin,
Looking down Z axis

Here the red and blue lines
represent cross-sections of the
red and blue coplanar polygons
from the previous slide

Visible Surface Determination – 10/18/16

1 Overwrite if value in current z-value
≤ value in z-buffer

12 of 15

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng©

Z-Fighting (3/4)

Visible Surface Determination – 10/18/16

 What if overwrite only if z-value is < current value in
buffer?
 The same problem will occur if the red polygon is

drawn after the blue.

 What to do…

 To mitigate z-fighting, we can increase the precision of
the depth buffer, and decrease the ratio

𝑓𝑎𝑟

𝑛𝑒𝑎𝑟

push out

pull in

 Pull the far plane in, and the push near plane out

 Bound the relevant part of the scene as tightly as possible

 Don’t want near plane too close to the eye

 If the ratio is too large, then unhinging transformation more likely to map large z-values to the same bin

 Huge range has to be mapped to 0,−1 , further z-values in camera-space given very little of this range, squashed
severely

 Objects will small z-values are blown up, given a huge amount of this range (think of how distorted objects get when
placed next to your eye)

 Affects the homogenized z =
𝑐 −𝑧

𝑧+𝑧𝑐
after projection (c = -near/far), very close to -1 for large z

13 of 15

