
cs337 INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng© 10/11/2016

Viewing III

Projection in Practice

1 / 52

It looks like a matrix…
Sort of…

cs337 INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng© 10/11/2016

 Now that we have familiarity with terms we can
say that these view volumes/frusta can be specified
by placement and shape

 Placement:

 Position (a point)

 look and up vectors

 Shape:

 Horizontal and vertical view angles (for a perspective
view volume)

 Front and back clipping planes

 Note that camera coordinate system (u, v, w) is
defined in the world (x, y, z) coordinate system

2 / 52

Arbitrary 3D views

Arbitrary Parallel View Volume

cs337 INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng© 10/11/2016

 Want the u, v, w camera coordinate system
axes to have the following properties:

 Our arbitrary look vector will lie along the
negative w-axis

 The v-axis will be defined by the vector normal
to look in the plane defined by look and up

 The u-axis will be mutually perpendicular to the
v- and w-axes and will form a right-handed
coordinate system

 Plan of attack: first find w from look, then find v
from up and w, then find u as a normal to the
wv-plane

Finding u, v, and w from Position, Look, and Up (1/5)

3 / 52

cs337 INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng© 10/11/2016

 Finding w is easy. look in the canonical volume lies on –w, so w is a
normalized vector pointing in the direction opposite to look

w
look

look

Finding u, v, and w from Position, Look, and Up (2/5)

4 / 52

cs337 INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng© 10/11/2016

 Finding v

 Problem: find a unit vector v perpendicular to the unit vector w in the
look-up plane

 Solution: subtract the w component of the up vector to get v’ and
normalize. To get w component w’ of up, scale w by projection of up on w:

up w'v'

Finding u, v, and w from Position, Look, and Up (3/5)

5 / 52

w’

v’
Up

Looking directly at wv-plane

v' up (upw)w

v =
v'

v'

cs337 INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng© 10/11/2016

Look
Up

w

v

u

 Finding u

 We can use the cross-product, but which? Both w × v and v × w are perpendicular
to the plane, but they go in opposite directions.

 Answer: cross-products are “right-handed,” so use v × w to create a right-handed
coordinate frame

 As a reminder, the cross product of two vectors a and b is:

u=v´w

a1

a2

a3

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

´

b1

b2

b3

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

=

a2b3 - a3b2

a3b1 - a1b3

a1b2 - a2b1

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

Finding u, v, and w from Position, Look, and Up (4/5)

6 / 52

cs337 INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng© 10/11/2016

 To Summarize:

 Now that we have defined our camera coordinate system, how do we
calculate projection?

7 / 52

w
look

look

v
up (up w)w

up (up w)w

u=v´w

Finding u, v, and w from Position, Look, and Up (5/5)

cs337 INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng© 10/11/2016

 How to take contents of an arbitrary view volume and
project them to a 2D surface?

 arbitrary view volume is too complex…

 Reduce it to a simpler problem! The canonical view volume!

 Easiest case: parallel view volume (aka standard view volume)

 Specific orientation, position, height and width that simplify
clipping, VSD (visible surface determination) and projecting

 Transform complex view volume and all objects in volume to
the canonical volume (normalizing transformation) and
then project contents onto normalized film plane

 This maintains geometric relationships between camera and
objects, but computationally, we only transform objects

 Don’t confuse with animation where camera may move
relative to objects! Normalization applies to an arbitrary
camera view at a given instant

8 / 52

The Canonical View Volume

Image credit:
http://www.codeguru.com/cpp/misc/misc/math/article.php/c10123__2/

http://www.codeguru.com/cpp/misc/misc/math/article.php/c10123__2/

cs337 INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng© 10/11/2016 9 / 52

The Canonical Parallel View Volume

Z

Up Sits at the origin:

 Center of near clipping plane = (0,0,0)

 Looks along negative z-axis (corresponds to scene

behind the “looking glass”)

 look vector = (0,0,-1)

 Oriented upright (along y-axis):

 up vector = (0,1,0)

 Viewing window bounds normalized:

 -1 to 1 in x and y directions

 Near and far clipping planes:

 Near at z = 0 plane (‘front’ in diagram)

 Far at z = -1 plane (‘back’ in diagram)

 Note: making our film plane bounds -1 to 1 makes the
arithmetic easier

cs337 INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng© 10/11/2016

 Goal: transform arbitrary view and scene to canonical view volume, maintaining relationship between view volume
and scene, then render

 For a parallel view volume, need only translation to the origin, rotation to align u, v, w with x, y, z, and scaling to size

 The composite transformation is a 4x4 homogeneous matrix called the normalizing transformation (the inverse is
called the viewing transformation and turns a canonical view volume into an arbitrary one)

 Note: the scene resulting from normalization will not appear any different from the original – every vertex is
transformed in the same way. The goal is to simplify calculations on our view volume, not change what we see.

 Normalizing demo: http://cs.brown.edu/courses/cs123/demos/camera/

10 / 52

The Normalizing Transformation

z

Up

Remember our camera
is just an abstract model;
The normalizing matrix
needs to be applied to every
vertex in our scene to
simulate this transformation.

P0

Pn

http://cs.brown.edu/courses/cs123/demos/camera/

cs337 INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng© 10/11/2016 11 / 52

View Volume Translation

 Our goal is to send the u, v, w axes of camera’s coordinate system to coincide
with the x, y, z axes of the world coordinate system

 Start by moving camera so the center of the near clipping plane is at the origin

 Given camera position P0 defining the origin of the uvw-coordinate system, w axis,
and the distances to the near and far clipping planes, the center of the near
clipping plane is located at Pn = P0 - near*w

 This matrix will translate all world points and camera
so that Pn is at the origin

1 0 0 -Pnx

0 1 0 -Pny

0 0 1 -Pnz

0 0 0 1

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

cs337 INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng© 10/11/2016 12 / 52

View Volume Rotation (1/3)
 Rotating the camera/scene can’t be done easily by inspection

 Our camera is now at the origin; we need to align the u, v, w axes with the x, y, z axes

 This can be done by separate rotations about principle axes (as discussed in the Transformations
lecture), but we are going to use a more direct (and simpler) approach

 Let’s leave out the homogeneous coordinate for now

 Consider the standard unit vectors for the XYZ world coordinate system:

 We need to rotate u into e1 and v into e2 and w into e3

 Need to find some composite matrix Rrot such that:

 Rrotu = e1 Rrotv = e2 Rrotw = e3

e1 =

1

0

0

é

ë

ê
ê
ê

ù

û

ú
ú
ú

, e2 =

0

1

0

é

ë

ê
ê
ê

ù

û

ú
ú
ú

, e3 =

0

0

1

é

ë

ê
ê
ê

ù

û

ú
ú
ú

cs337 INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng© 10/11/2016

 How do we find Rrot? Let’s manipulate the equations to make the problem easier
and first find Rrot

-1. After multiplying on both sides by Rrot
-1, we get:

 u = Rrot
-1e1

 v = Rrot
-1e2

 w = Rrot
-1e3

 Recall that this means exactly that u is the first column of Rrot
-1, v is the second

column, and w is the third column

 Therefore, we have

13 / 52

View Volume Rotation (2/3)

Rrot
-1 =

ux vx wx

uy vy wy

uz vz wz

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

cs337 INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng© 10/11/2016

 Now we just need to invert Rrot
-1

 We know that the axes u, v, and w are orthogonal, and since they are unit
vectors, they are also orthonormal

 This makes Rrot
-1 an orthonormal matrix (its columns are orthonormal

vectors). This means that its inverse is just its transpose (we proved this in
the Transformations lecture!)

 Therefore, in non-homogeneous coordinates:

14 / 52

View Volume Rotation (3/3)

Rrot =

ux uy uz

vx vy vz

wx wy wz

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

Rrot =

ux uy uz 0

vx vy vz 0

wx wy wz 0

0 0 0 1

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

homogeneous

cs337 INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng© 10/11/2016

 Now we have a view volume sitting at the origin, oriented upright with look pointing down the –z axis

 But the size of our volume has not met our specifications yet

 We want the (x, y) bounds to be at -1 and 1 and we want the far clipping plane to be at z = -1

 Given width, height, and far clipping plane distance, far, of a parallel view volume, our scaling matrix
Sxyz is:

 Now all vertices post-clipping are bounded in between planes x = (-1, 1), y = (-1, 1), z = (0, -1)

15 / 52

Scaling the View Volume

2

width
0 0 0

0
2

height
0 0

0 0
1

far
0

0 0 0 1

é

ë

ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú

cs337 INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng© 10/11/2016

2 /width 0 0 0

0 2 / height 0 0

0 0 1/ far 0

0 0 0 1

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

ux uy uz 0

vx vy vz 0

wx wy wz 0

0 0 0 1

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

1 0 0 -Pnx

0 1 0 -Pny

0 0 1 -Pnz

0 0 0 1

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

16 / 52

The Normalizing Transformation (parallel) and Re-Homogenization
 Now have a complete transformation from an arbitrary parallel view volume to canonical parallel

view volume

 First translate Pn (center of near plane) to origin using translation matrix Ttrans

 Then align u, v, w axes with x, y, z axes using rotation matrix Rrot

 Finally, scale view volume using scaling matrix Sxyz

 Composite normalizing transformation is simply SxyzRrotTtrans

 Since each individual transformation results in w = 1, no division by w to re-homogenize is necessary!

cs337 INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng© 10/11/2016 17 / 52

Notation
 The book groups all of these three transformations together into one transformation

matrix

 For the parallel case, we will call it Morthogonal

 For the perspective case, which we will get to next, it is called Mperspective

 For ease of understanding, we split all three up but they can be represented more
compactly by the following, where N is the 3x3 matrix representing rotations and scaling:

Morthogonal =

-Pnx

N -Pny

-Pnz

0 0 0 1

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

N =

2 /width 0 0

0 2 / height 0

0 0 1/ far

é

ë

ê
ê
ê

ù

û

ú
ú
ú

ux uy uz

vx vy vz

wx wy wz

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

cs337 INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng© 10/11/2016 18 / 52

Clipping Against the Parallel View Volume

Note: Clipping edges that intersect
the boundaries of view volume
is another step explored in clipping lecture

 Before returning to original goal of projecting scene onto
film plane, how do we clip?

 With arbitrary view volume, the testing to decide
whether a vertex is in or out is done by solving
simultaneous equations

 With canonical view volume, clipping is much easier:
after applying normalizing transformation to all vertices
in scene, anything that falls outside the bounds of the
planes x = (-1, 1), y = (-1, 1), and z = (0, -1) is clipped

 Primitives that intersect the view volume must be
partially clipped

 Most graphics packages, such as OpenGL, will do this
step for you

cs337 INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng© 10/11/2016 19 / 52

Projecting in the Normalized View Volume
 So how do we project the scene in this normalized view volume onto the (x, y)

plane, where the film plane is now located? (film plane can be anywhere, having
it at origin makes arithmetic easy

 To project a point (x, y, z) onto the (x, y) plane, just get rid of the z coordinate!
We can use the following matrix:

 Most graphics packages will also handle this step for you

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

x

y

z

1

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

=

x

y

0

1

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

cs337 INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng© 10/11/2016

 Need to find a transformation to turn an arbitrary perspective view
volume into a canonical (unit) perspective view volume

Canonical view volume (frustum):

20 / 52

Next: The Perspective View Volume

𝒛

𝒚

𝒙

(-1,1,-1)

Near clipping plane

Far clipping plane

(1,-1,-1)

z = -1

cs337 INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng© 10/11/2016 21 / 52

Properties of the Canonical Perspective View Volume

𝒛

𝒚

𝒙

(-1,1,-1)

Near clipping plane

Far clipping plane

(1,-1,-1)

 Sits at origin:

 Position = (0, 0, 0)

 Looks along negative z-axis:

 look vector = (0, 0, -1)

 Oriented upright

 up vector = (0, 1, 0)

 Near and far clipping planes

 Near plane at z = c = -near/far (we’ll explain this)

 Far plane at z = -1

 Far clipping plane bounds:

 (x, y) from -1 to 1

 Note: the perspective canonical view volume is just like the parallel one except that the
“film/projection” plane is more ambiguous here; we’ll finesse the question by transforming the
normalized frustum into the normalized parallel view volume before clipping and projection!

z = -1

cs337 INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng© 10/11/2016

 For our normalizing transformation, the first two steps are the same

 The translation matrix Ttrans is even easier to calculate this time, since we are given
the point P0 to translate to origin. We use the same matrix Rrot to align camera axes:

 Our current situation:

22 / 52

Translation and Rotation

Ttrans =

1 0 0 -P0x

0 1 0 -P0y

0 0 1 -P0z

0 0 0 1

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

Rrot =

ux uy uz 0

vx vy vz 0

wx wy wz 0

0 0 0 1

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

x

y

z

cs337 INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng© 10/11/2016 23 / 52

Scaling
 For perspective view volumes, scaling is more complicated and requires some trigonometry

 Easy to scale parallel view volume if we know width and height

 Our definition of frustum, however, doesn’t give these two values, only θw and θh

 We need a scaling transformation Sxyz that:

 Finds width and height of far clipping plane based on width angle θw , height angle θh ,
and distance far to the far clipping plane

 Scales frustum based on these dimensions to move far clipping plane to z = -1 and to
make corners of its cross section move to ±1 in both x and y

 Scaling position of far clipping plane to z = -1 remains same as parallel case, since we are
still given far; however, unlike parallel case, near plane not mapped to z = 0

cs337 INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng© 10/11/2016

FF’

24 / 52

Scaling the Perspective View Volume (1/4)
 Top-down view of the perspective view volume with arbitrary

rectangular cross-section:

 Goal: scale the original volume so the solid arrows are transformed
to the dotted arrows and the far plane’s cross-section is squared up,
with corner vertices at (±1, ±1, -1)

 i.e., scale the original (solid) far plane cross-section F so it lines up with
the canonical (dotted) far plane cross-section F’ at z = -1

 First, scale along z direction

 Want to scale so far plane lies at z = -1

 Far plane originally lies at z = -far

 Multiply by 1/far, since –far/far = -1

 So, Scalez = 1/far

z = -1

cs337 INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng© 10/11/2016

 Next, scale along x direction

 Use the same trick: divide by size of volume along the x-axis

 How long is the (far) side of the volume along x? Find out using trig…

 Start with the original volume

25 / 52

Scaling the Perspective View Volume (2/4)

 Cut angle in half along the z-axis

θw

cs337 INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng© 10/11/2016 26 / 52

Scaling the Perspective View Volume (3/4)
 Consider just the top triangle

 Note that L equals the x-coordinate of a corner of
the perspective view volume’s cross-section at far.
Ultimately want to scale by 1/L to make L --> 1

 Thus

2
tan

2
tan ww farL

far

L

Scalex =
1

far tan
qw
2

æ

è
ç

ö

ø
÷

cs337 INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng© 10/11/2016 27 / 52

Scaling the Perspective View Volume (4/4)
 Finally, scale along y direction

 Use the same trig as in x direction, but use the height angle instead of the width angle:

 Together with the x- and z-scale factors, we have:

Scaley =
1

far tan
qh
2

æ

è
ç

ö

ø
÷

Sxyz =

1/ far tan qw / 2() 0 0 0

0 1/ far tan qh / 2() 0 0

0 0 1/ far 0

0 0 0 1

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

cs337 INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng© 10/11/2016 28 / 52

The Normalizing Transformation (perspective)
 Our current perspective transformation takes on the same form as the parallel case:

 Takes the camera’s position and moves it to the world origin

 Takes the look and up vectors and orients the camera to look down the –z axis

 Scales the view volume so that the far clipping plane lies on z=-1 plane, with corners are at (±1, ±1, -1)

 Multiplying any point P by this matrix, the resulting point P’ will be the normalized version

 The projected scene will still look the same as if we had projected it using the arbitrary frustum, since
same composite is applied to all objects in the scene, leaving the camera-scene relationship invariant.

SxyzRrotTtrans =

1/ far tan qw / 2() 0 0 0

0 1/ far tan qh / 2() 0 0

0 0 1/ far 0

0 0 0 1

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

ux uy uz 0

vx vy vz 0

wx wy wz 0

0 0 0 1

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

1 0 0 -P0x

0 1 0 -P0y

0 0 1 -P0z

0 0 0 1

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

cs337 INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng© 10/11/2016 29 / 52

Notation
 We can represent this composite matrix as Mperspective by the following:

 Here, N is the 3x3 matrix representing rotations and scaling

Mperspective =

-P0x

N -P0y

-P0z

0 0 0 1

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

N =

1/ far tan qw / 2() 0 0

0 1/ far tan qh / 2() 0

0 0 1/ far

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

ux uy uz

vx vy vz

wx wy wz

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

cs337 INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng© 10/11/2016 30 / 52

Perspective and Projection
 Now we have our canonical perspective view volume

 However, projecting a perspective view volume onto a 2D
plane is more difficult than it was in the parallel case

 Again: reduce it to a simpler problem!

 The final step of our normalizing transformation –
transforming the perspective view volume into a parallel
one – will preserve relative depth, which is crucial for Visible
Surface Determination, i.e, the occlusion problem

 Simplifies not only projection (just leave off z component),
but also clipping and visible surface determination – only
have to compare z-values (z-buffer algorithm)

 Performs crucial perspective foreshortening step

 Think of this perspective-to-parallel transformation pp as
the unhinging transformation, represented by matrix Mpp

cs337 INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng© 10/11/2016

 Previously we transformed perspective view volume to canonical position, orientation,
and size

 We’ll see in a few slides that Mpp leaves the far clip plane at z=-1, and its cross-section
undistorted, with corners at ±1; all other cross-sections will be “perspectivized”

 Let’s first look how Mperspective maps a particular point on the original near clipping plane
lying on look (we denote the normalized look vector by look’):

 It gets moved to a new location:

 On the negative z-axis, say:

31 / 52

Effect of Perspective Transformation on Near Plane (1/2)

Pn ' = 0 0 c()

Pn ' = SxyzRrotTtransPn

Pn P0 near* look'

cs337 INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng© 10/11/2016 32 / 52

Effect of Perspective Transformation on Near Plane (2/2)

 What is the value of c? Let’s trace
through the steps.

 P0 first gets moved to the origin

 The point Pn is then distortion-free
(rigid-body) rotated to –near*z

 The xy scaling has no effect, and the
far scaling moves Pn to (-near/far)*z,
so c= -near/far

cs337 INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng© 10/11/2016 33 / 52

Unhinging Canonical Frustum to Be a Parallel View Volume(1/4)

-
z

 Note from figure that far clipping plane cross-section is already in right position
with right size

 Near clipping plane at –near/far should transform to the plane z=0

z = -near/far

z = -1

cs337 INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng© 10/11/2016

 The derivation of our unhinging transformation is complex. Instead, we will
give you the matrix and show that it works by example (“proof by vigorous
assertion/demonstration")

 Our unhinging transformation perspective to parallel matrix, Mpp

 Remember, c = -near/far

34 / 52

Unhinging Canonical Frustum to Be a Parallel View Volume (2/4)

Mpp =

1 0 0 0

0 1 0 0

0 0
1

1+ c

-c

1+ c

0 0 -1 0

é

ë

ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú

cs337 INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng© 10/11/2016

 Our perspective transformation does the following:
 Sends all points on the z = -1 far clipping plane to themselves

 We’ll check top-left (-1, 1, -1, 1) and bottom-right (1, -1, -1, 1) corners

 Sends all points on the z = c near clipping plane onto the z = 0 plane

 Note that the corners of the square cross section of the near clipping plane in the frustum
are (±c,±c,c,1) because it is a rectangular (square) pyramid w/ 45° planes

 We’ll check to see that top-left corner (c,-c,c,1) gets sent to (-1, 1, 0, 1) and that top-right
corner (-c,c,c,1) gets sent to (1, -1, 0, 1)

 Let’s try c = -1/2

35 / 52

Unhinging View Volume to Become a Parallel View Volume(3/4)

1 0 0 0

0 1 0 0

0 0
1

1+ c

-c

1+ c

0 0 -1 0

é

ë

ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú

=

1 0 0 0

0 1 0 0

0 0 2 1

0 0 -1 0

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

cs337 INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng© 10/11/2016 36 / 52

Unhinging View Volume to Become a Parallel View Volume(4/4)

Don’t forget to
homogenize!

1 0 0 0

0 1 0 0

0 0 2 1

0 0 -1 0

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

-1

1

-1

1

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

=

-1

1

-1

1

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

1 0 0 0

0 1 0 0

0 0 2 1

0 0 -1 0

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

1

-1

-1

1

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

=

1

-1

-1

1

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

1 0 0 0

0 1 0 0

0 0 2 1

0 0 -1 0

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

-1/ 2

1/ 2

-1/ 2

1

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

=

-1/ 2

1/ 2

0

1/ 2

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

hom.
¾ ®¾¾

-1

1

0

1

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

1 0 0 0

0 1 0 0

0 0 2 1

0 0 -1 0

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

1/ 2

-1/ 2

-1/ 2

1

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

=

1/ 2

-1/ 2

0

1/ 2

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

hom.
¾ ®¾¾

1

-1

0

1

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

z

y

x

(c,-c, c) = (-1/2, 1/2, -1/2)

(-c,c,c)
(1,-1,-1)

(-1,1,-1)

(1,-1,-1)

(-1,1,-1)

(1,-1,0)

(-1,1,0)

Note: Diagram appears distorted
because of parallel projection in
illustration, but center of front
clipping plane is at origin

cs337 INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng© 10/11/2016

 The closer a z value is to 0 (the CoP/eye/camera), the larger the x and y
values scale up
 This is pre-clipping – if x and y exceed 1, they’ll be clipped, hence the utility of

the near plane which prevents such unnecessary clipping and obscuration of
rest of scene

 We’ll look at the effects on z (z-compression) on slide 44-46

37 / 52

Perspective Foreshortening Affects x, y, and z Values

M pp

x

y

z

1

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

=

1 0 0 0

0 1 0 0

0 0
1

1+ c

-c

1+ c

0 0 -1 0

é

ë

ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú

x

y

z

1

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

=

x

y

z- c

1+ c

-z

é

ë

ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú

hom.
¾ ®¾¾

-x / z

-y / z

c- z

z+ zc

1

é

ë

ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú

cs337 INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng© 10/11/2016

 Cross-sections inside view volume are scaled up the closer
they are to near plane to produce perspective
foreshortening, and z values decrease, but relative z-
distances and therefore order are preserved

 Depth testing using a z-buffer (aka depth-buffer) that stores
normalized z-values of points compares a point on a
polygon being rendered to one already stored at the
corresponding pixel location – only relative distance matters

 z-buffer uses alternate form of Mpp that does the same
unhinging as the original but negates the z-term to make
the volume point down the positive z-axis (use this one in
camtrans lab, since we use a z-buffer)

 The post-clipping range for these z-values is [0.0,1.0], where
0.0 corresponds to the near plane, and 1.0 to far

38 / 52

Practical Considerations: z-buffer for Visible Surface Determination

1 0 0 0

0 1 0 0

0 0 -1 0

0 0 0 1

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

1 0 0 0

0 1 0 0

0 0
1

1+ c

-c

1+ c

0 0 -1 0

é

ë

ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú

=

1 0 0 0

0 1 0 0

0 0
-1

1+ c

c

1+ c

0 0 -1 0

é

ë

ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú

cs337 INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng© 10/11/2016

 Take an intuitive approach to see this

 The closer the object is to the near clipping
plane, the more it is enlarged during the
unhinging step

 Thus, closer objects are larger and farther
away objects are smaller, as expected

 Another way to see it is to use parallel
lines

 Draw parallel lines in a perspective volume

 When unhinge volume, lines fan out at
near clipping plane

 Result is converging lines, e.g., railroad
track coinciding at vanishing point

39 / 52

Why Perspective Transformation Works (1/2)

(0,0)

cs337 INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng© 10/11/2016

 Yet another way to demonstrate how this
works is to use occlusion (when elements in
scene are blocked by other elements)

 Looking at top view of frustum, see a square

 Draw a line from eye point to left corner of
square - points behind this corner are
obscured by square

 Now unhinge perspective and draw a line
again to left corner - all points obscured
before are still obscured and all points that
were visible before are still visible

40 / 52

Why Perspective Transformation Works(2/2)

cs337 INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng© 10/11/2016

 We now have our final normalizing transformation; call it to convert an arbitrary perspective
view volume into a canonical parallel view volume

 Remember to homogenize points after you apply this transformation – does the perspective!

 Clipping and depth testing have both been simplified by transformation (use simpler bounds
checking and trivial z-value comparisons resp.)

 Additionally, can now project points to viewing window easily since we’re using a parallel view
volume: just omit z-coordinate! Avoids having to pick a film/projection plane

 Then map contents to viewport using window-to-viewport mapping (windowing transformation)

41 / 52

The Normalizing Transformation (perspective)

1 0 0 0

0 1 0 0

0 0
1

1+ c

-c

1+ c

0 0 -1 0

é

ë

ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú

1/ far tan qw / 2() 0 0 0

0 1/ far tan qh / 2() 0 0

0 0 1/ far 0

0 0 0 1

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

ux uy uz 0

vx vy vz 0

wx wy wz 0

0 0 0 1

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

1 0 0 -P0x

0 1 0 -P0y

0 0 1 -P0z

0 0 0 1

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

cs337 INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng© 10/11/2016 42 / 52

The Windowing Transformation (1/2)

Mwind =

width 0 0 0

0 height 0 0

0 0 1 0

0 0 0 1

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

1/ 2 0 0 1/ 2

0 1/ 2 0 1/ 2

0 0 1 0

0 0 0 1

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

 The last step in our rendering process after projecting is to resize our clip rectangle
on the view plane, i.e., the cross-section of the view volume, to match the
dimensions of the viewport

 To do this, we want to have a viewing/clipping window with its lower left corner at
(0,0) and with width and height equal to those of the viewport

 This can be done using the windowing transformation – derived on next slide

cs337 INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng© 10/11/2016

 First translate viewing window by 1 in both the x and y
directions to align with origin and then scale uniformly by
½ to get proper unit size:

 Then scale viewing window by width and height of
viewport to get our desired result

 Finally, translate the viewing window to be located at the
origin of the viewport (any part of the screen)

 Can confirm this matches more general windowing
transformation in Transformations lecture -- handled by
most graphics packages

43 / 52

The Windowing Transformation (2/2)

(−1,−1)

(1, 1)

(𝑤, ℎ)

1/ 2 0 0 0

0 1/ 2 0 0

0 0 1 0

0 0 0 1

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

1 0 0 1

0 1 0 1

0 0 1 0

0 0 0 1

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

=

1/ 2 0 0 1/ 2

0 1/ 2 0 1/ 2

0 0 1 0

0 0 0 1

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

width 0 0 0

0 height 0 0

0 0 1 0

0 0 0 1

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

cs337 INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng© 10/11/2016

 Points are compressed towards the far clipping plane

 Let’s look at the general case of transforming a point by the unhinging transformation:

 First, note that x and y are both shrunk for z > 1 (perspective foreshortening increasing with
increasing z) – corresponds to what we first saw with similar triangles explanation of perspective

 Now focus on new z-term, called z’. This represents new depth of point along z-axis after
normalization and homogenization

 z’ = (c-z)/(z+zc), now let’s hold c constant and plug in some values for z

 Let’s have near = 0.1, far = 1, so c = -0.1

 The following slide shows a graph of z’ dependent on z

44 / 52

Perspective Transform Causes z-Compression (1/3)

M pp

x

y

z

1

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

=

1 0 0 0

0 1 0 0

0 0
1

1+ c

-c

1+ c

0 0 -1 0

é

ë

ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú

x

y

z

1

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

=

x

y

z- c

1+ c

-z

é

ë

ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú

hom.
¾ ®¾¾

-x / z

-y / z

c- z

z+ zc

1

é

ë

ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú

cs337 INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng© 10/11/2016 45 / 52

Perspective Transform Causes z-Compression (2/3)

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0

z’

z

 We can see that the z-values of points are being compressed towards z = -1 in our canonical view
volume -- this compression is more noticeable for points originally closer to the far clipping plane

 Play around with near and far clipping planes: observe that as you bring the near clipping plane closer
to z=0, or extend the far clipping plane out more, the z-compression becomes more severe

 Caution: if z-compression is too severe, z-buffer depth testing becomes inaccurate near the back of
the view volume and rounding errors can cause objects to be rendered out of order, i.e., “bleeding
through” of pixels occurs (upcoming VSD lecture)

cs337 INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng© 10/11/2016 46 / 52

Perspective Transform Causes Z-Compression (3/3)

 It might seem tempting to place the near clipping plane at z = 0 or place the
far clipping plane very far away (maybe at z = ∞)

 First note that the value of c = -near/far approaches 0 as either near
approaches 0 or as far approaches ∞

 Applying this to our value of z’ = (c-z)/(z+zc), we substitute 0 for c to get
z’ = -z/z = -1

 From this, we can see that points will cluster at z = -1 (the far clipping plane
of our canonical view volume) and depth-buffering essentially fails

cs337 INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng© 10/11/2016

 This converging of points at the far clipping plane also poses problems when trying to interpolate values,
such as the color between points

 Say for example we color the midpoint M between two vertices, A and B, in a scene as the average of the
two colors of A and B (assume we’re looking at a polygon edge-on or just an edge of a tilted polygon)

 Note that if we were just using a parallel view volume, it would be safe to just set the midpoint to the
average and be done

47 / 52

Aside: Projection and Interpolation(1/3)

 Unfortunately, we can’t do this for
perspective transformations since the
point that was originally the midpoint
gets compressed towards the far clipping
plane. It isn’t the actual midpoint
anymore.

 Another way to say this is that the color
G does not interpolate between the
points linearly anymore. We can’t just
assign the new midpoint the average
color.

(3/5,-4/5)

cs337 INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng© 10/11/2016

 However, while G does not interpolate linearly, G/w does, where w is the
homogenous coordinate after being multiplied by our normalizing
transformation, but before being homogenized

 In our case w will always be -z

 Knowing this, how can we find the color at this new midpoint?

 When we transform A and B, we get two w values, wA and wB

 We also know the values of GA and GB

 If we interpolate linearly between GA / wA and GB / wB (which in this case is just
taking the average), we will know the value for the new midpoint GM / wM

 We can also find the average of 1 / wA and 1 / wB and to get 1 / wM by itself

 Dividing by GM / wM by 1 / wM , we can get our new value of GM

48 / 52

Aside: Projection and Interpolation(2/3)

cs337 INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng© 10/11/2016

 Let’s make this slightly more general

 Say we have a function f that represents a property of a point (we used color in
our example)

 The point P between points A and B to which we want to apply the function is

(1-t)A + tB for some 0 ≤ t ≤ 1. The scalar t represents the fraction of the way
from point A to point B your point of interest is (in our example, t = 0.5)

 Goal: Compute f(P). We know

 1 / wt = (1-t) / wa + t / wb

 f(P) / wt = (1-t)f(A) / wa + tf(B) / wb

 So to find the value of our function at the point specified by t we compute:

 f(P) = (f(P) / wt) / (1 / wt)

49 / 52

Aside: Projection and Interpolation(3/3)

cs337 INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng© 10/11/2016

 Let’s revisit the setup from this image:

 Say we want f(A) = 0, f(B) = 1, and thus f(M) = 0.5

 After unhinging transformation, the new
midpoint, is 4/5 of the way from A’ to B’, which
can be found with some algebra:

 M’y = (1-t)A’y + tB’y
 t = (M’y – A’y) / (B’y – A’y) = 4/5

 Like f(M), f(M’) should be 0.5. We check this
below:

 wa = 0.25 and wb = 1

 1/wt = (1-0.8)*(1/0.25) + 0.8*(1/1) = 1.6

 f(P)/wt = (1-0.8)*(0/0.25) + 0.8*1/1 = 0.8

 f(M’) = (f(P)/wt) / (1/wt) = 0.5

50 / 52

Proof by Example

(3/5,-4/5)

