
CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng © 10/6/2016

Viewing

Part II (The Synthetic Camera)

Brownie camera courtesy of
http://www.geh.org/fm/brownie2/htmlsrc/mE13000034_ful.html 1/31

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng © 10/6/2016

 What does a camera do?

 Takes in a 3D scene

 Places (i.e., projects) the scene onto a 2D medium such as a roll of film or a digital
pixel array

 The synthetic camera is a programmer’s model for specifying how a 3D scene is
projected onto the screen

The Camera and the Scene

Contour map courtesy of
http://www.princeton.edu/~oa/manual/mapcompass.shtml 2/31

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng © 10/6/2016

 General synthetic camera: each package has its own but they are all (nearly)
equivalent, with the following parameters/degrees of freedom:

 Camera position

 Orientation

 Field of view (angle of view, e.g., wide, narrow/telephoto, normal...)

 Depth of field/focal distance (near distance, far distance)

 Tilt of view/ film plane (if not perpendicular to viewing direction, produces oblique
projections)

 Perspective or parallel projection (camera in scene with objects or infinite distance
away, resp.)

 CS123 uses a simpler, slightly less powerful model than the one used in the book

 Omit tilt of view/film plane (i.e., no oblique projections), focal distance (blurring)

3D Viewing: The Synthetic Camera

3/31

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng © 10/6/2016

 We will detail coordinate systems for camera, i.e., view volume
specification, projecting onto film plane, and transforming into viewport

 Let’s first define viewport and view volume

Cameras in Rendering Process

4/31

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng © 10/6/2016

 Our camera is related to a pinhole. Look through the pinhole and see a volume of
space. Rays of light reflect off objects and converge to the pinhole to let you see the
scene on a film plane or wall behind the pinhole. The scene will be inverted.

 The pinhole is where our camera position will be (“center of projection”), and the
volume we see will be our “view volume”

 In our camera, projectors intersect a plane,
usually in between scene and pinhole,
projecting the scene onto that plane

 Lastly, in synthetic camera, projection
is mapped to some form of viewing medium
(e.g., screen)

 For practical rendering, also have front
and back clipping planes

The Pinhole Model for Perspective Projection

Pinhole Camera

Synthetic Camera

Object

Object

Pinhole

Pinhole

Image

Image

5/31

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng © 10/6/2016

 A view volume contains everything the
camera sees

 Conical – Approximates what eyes see,
expensive math when clipping objects
against cone’s surface (simultaneous
linear and quadratics)

 Can approximate this using a rectangular
frustum view volume
 Simultaneous linear equations for easy

clipping of objects against sides (stay tuned
for clipping lecture)

 Also parallel view volumes, e.g., for
orthographic projections. These don’t
simulate eye or camera

Conical perspective
view volume (eye’s
is much wider, e.g.,
≥180 degrees, esp.
for motion!)

eye

Frustum: approximation to
conical view volume

synthetic
camera

View Volumes (focus of today’s lecture)

View volume

(Parallel view)

6/31

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng © 10/6/2016

 Given our view volume, need to start thinking about how
to project scene contained in volume to film plane

 Projectors: Lines that essentially map points in scene to
points on film plane

 Parallel Volumes: Parallel projectors, no matter how far
away an object is, as long as it is in the view volume it
will appear as same size (using our simple camera model,
these projectors are also parallel to the look vector, the
direction in which the camera is looking)

 Perspective Volumes: Projectors emanate from eye
point = center of projection, inverse of rays of light
converging to your eye (see Dürer woodcut)

View Volumes and Projectors

Parallel volume projectors

Perspective volume projectors

7/31

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng © 10/6/2016

 Film plane is a plane in world space – 3D scene is projected onto a rectangle (the
film) on that plane using some projection transformation and from there onto the
viewport on screen

 Film for our camera model will be perpendicular to and centered around the
camera’s look vector and will match dimensions of our view volume

 Actual location of film plane along look vector doesn’t matter as long as it is between
eye/COP and scene

The Film Plane

Film Plane

Look Vector

Film
Plane

Look Vector

8/31

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng © 10/6/2016

The Viewport
 Viewport is the rectangular area of screen where

a scene is rendered

 Corresponds to Window Manager’s client
area

 Note: window (aka Imaging Rectangle) in
computer graphics means a 2D clip rectangle
on a 2D world coordinate drawing, and
viewport is a 2D integer coordinate region of
screen space to which clipped window
contents are mapped – it is the client area of
a Window Manager’s window

 Pixel coordinates for viewport are most
commonly referred to using a (u,v) coordinate
system

 Unfortunately, that (u,v) nomenclature is
also used for texture coordinates

9/31

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng © 10/6/2016

 We need to know six parameters about our synthetic camera model in
order to take a picture using our perspective view frustum:

Constructing the View Volume (1/2)

10/31

1) Position of the camera (from where it’s looking) – it is the
center of projection, behind the film plane

2) Look vector specifying direction camera is pointing. Note: look
is not explicitly named or specified in OpenGL, but is derived
using ‘eye’ and ‘center’ camera parameters (as in
glm::lookAt()), which are the camera’s position and the point
it’s looking at, respectively

3) Camera’s orientation determined by look and angle by which
the camera is rotated about that vector, i.e., the direction of
the up vector in world coordinate system (WCS)

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng © 10/6/2016

3) Position of the camera (from where it’s looking) – it is
the center of projection, behind the film plane

4) Aspect ratio of the electronic “film”: ratio of width to
height

5) Height angle: determines how much of the scene we
will fit into our view volume; larger height angles fit
more of the scene into the view volume (width angle
determined by height angle and aspect ratio)
 the greater the angle, the greater the amount of perspective

distortion

6) Front and back clipping planes: limit extent of camera’s
view by rendering (parts of) objects lying between
them and clipping everything outside of them – avoids
problem of having far-away details map onto same
pixel, i.e., “sampling error” (much more in image
processing lecture)

(Optional) Focal length: objects at focal length are sharp,
objects closer/farther are blurry

Constructing the View Volume (2/2)

Front clipping
plane

Back clipping
plane

Width angle

Height
angle

11/31

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng © 10/6/2016

1) Position (1/1)

Courtesy of
http://viz.aset.psu.edu/gho/sem_notes/3d_fundamentals/gifs/left_right_hand.gif

 Where is the camera located with
respect to the origin, in the world
coordinate system?

 For our camera in 3D space we use a
right-handed coordinate system

 Open your right hand, align your palm
and thumb with the +x axis, point
index finger up along the +y axis, and
point your middle finger towards the
+z axis

 If you’re looking at a screen, the z
axis will be positive coming towards
you

12/31

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng © 10/6/2016

 Orientation is specified by a direction to look in (equivalently, a point in 3D space to look at) and
a vector defining the rotation of the camera about this direction

 These correspond to the look and up vectors

 Note: glm::lookAt() sets up our viewing space by taking three values: vectors of an eye position, a point to
look at, and an up vector

 In diagram below, camera is positioned at origin of WCS , but that isn’t typical

2 & 3) Orientation: Look and Up vectors (1/2)

Up vector

Look vector

point to look at
(x’, y’, z’)

camera
Position

-z

z

y

x

13/31

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng ©

 Look Vector
 Direction the camera is pointing

 Three degrees of freedom; can be any vector in 3-
space

 Up Vector

 Determines how camera is rotated about look
 For example, holding camera in portrait or

landscape mode

 up must not be co-linear to look but it doesn’t have
to be perpendicular– actual orientation will be
defined by the unit vector v perpendicular to look
in the plane defined by look and up
 easier to spec an arbitrary (non-collinear) vector than one

perpendicular to look

2 & 3) Orientation: Look and Up vectors (2/2)

Up vector
Look vector

Position

Projection of
Up vector

14/31

Any of v, v1, v2, v3 could
be the Up vector

10/6/2016

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng © 10/6/2016

The Camera Coordinate Space (1/2)
 The equivalent of x, y and z WCS axes

in camera space are unit vectors u, v
and w (not to be confused with
homogenous coordinate, w)
 Also a right handed coordinate

system

 w is a unit vector in the opposite
direction of look (i.e. look lies along
the –w axis)

 v is the component of the up vector
perpendicular to look, normalized to
unit length

 u is the unit vector perpendicular to
both v and w

15/31

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng © 10/6/2016

The Camera Coordinate Space (2/2)

Roll, Yaw, Pitch image courtesy of
http://3.bp.blogspot.com/_dbbuwCxZzCE/TQuhLBALxJI/AAAAAAAAAAo/oV8D5B4Yij
Q/s1600/pry.png

 Three common rotation transformations
that use camera space axes, with camera in
same position

 Roll:
 Rotating your camera around w

 Yaw:
 Rotating your camera around v

 Pitch:
 Rotating your camera around u

 To do these, send camera to WCS origin
and rotate to align its axes with the WCS
axes, then use our rotation matrices to
perform specified transformations, then
un-rotate, and un-translate

16/31

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng © 10/6/2016

 There are different ways we can model a camera

 In the generalized model we have a camera and a scene where both the camera and objects in the
scene are free to be transformed independently

 In a more restricted model we have a camera that remains fixed in one position and orientation

 To “transform the camera” we actually apply inverse transformation to objects in scene

 This is the model OpenGL uses; note however that this concept is abstracted away from the
programmer with glm::lookAt(), in which a viewing matrix is created from up, camera position,
and point it’s looking at

Aside: The Camera as a Model

Field of view in OpenGL can
be thought of as the view
from the camera looking
down –z axis at the origin

Translate “camera”
to the right

Object moves to
left to simulate
a camera moving to right

17/31

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng © 10/6/2016

 Analogous to dimensions of film in camera
 Ratio of width to height of viewing window
 Viewport’s aspect ratio usually defined by device

being used
 Square viewing window has a ratio of 1:1
 NTSC TV is 4:3, HDTV is 16:9 or 16:10

 Aspect ratio of viewing window defines
dimensions of the image that gets projected to
film plane, after which it is mapped to viewport
 Typically it’s a good idea to have same aspect ratio

for both viewing window and viewport, to avoid
distortions/stretching

 Note: the black strips on the 16:9 image is a
technique called letter boxing. It preserves the aspect
ratio of the image when the screen can’t
accommodate it. This is in contrast to simply
stretching the image which distorts the images (most
notably, faces)

4) Aspect Ratio (1/1)
1:1

16:9

Courtesy of
http://www3.flickr.com/photos/z
erogrizzly/4037144257/

18/31

Courtesy of
http://forum.vi
deohelp.com/t
hreads/23653
6-720-vs-704

4:3

Courtesy of
http://en.wikipedia.org/
wiki/File:Aspect_ratio_4_
3_example.jpg

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng © 10/6/2016

 Determines amount of perspective distortion in picture, from none
(parallel projection) to a lot (wide-angle lens)

 In a frustum, two viewing angles: width and height angles

 Usually width angle is specified using height angle and aspect ratio

 Choosing view angle is analogous to photographer choosing a specific
type of lens (e.g., a wide-angle or telephoto lens)

5) View Angle (1/2)

Width
angle

Height
angle

19/31

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng © 10/6/2016

 Telephoto lenses made for distance shots often have a nearly parallel
viewing angle and cause little perspective distortion, though they
foreshorten depth

 Wide-angle lenses cause a lot of perspective distortion

5) Viewing Angle (2/2)

Resulting picture

20/31

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng © 10/6/2016

 With what we have so far we can define four rays extending to infinity. These define
the edges of our current view volume

 Now we need to bound front and back to make a finite volume – can do this using the
near and far clipping planes, defined by distances along look (also note that look and
clipping planes are perpendicular)

6) Near and Far Clipping Planes (1/3)

 This volume (the frustum)
defines what we can see in
the scene

 Objects outside are
discarded

 Objects intersecting faces of
the volume are “clipped”

21/31

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng © 10/6/2016

 Reasons for front (near) clipping plane:

 Usually don’t want to draw things too close to camera
 Would block view of rest of scene

 Objects would be quite distorted

 Don’t want to draw things behind camera
 Wouldn’t expect to see things behind camera

 In the case of perspective camera, if we were to draw things
behind camera, they would appear upside-down and inside-out
because of perspective transformation

6) Near and Far Clipping Planes (2/3)

22/31

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng © 10/6/2016

 Reasons for back (far) clipping plane:
 Don’t want to draw objects too far away from camera

 Distant objects may appear too small to be visually significant, but
still take long time to render; different parts of an object may map
onto same pixel (sampling error)

 By discarding them we lose a small amount of detail but reclaim a
lot of rendering time

 Helps to declutter a scene

 These planes need to be properly placed, not too close to
the camera, not too far (mathematical justification in
Viewing III)

6) Near and Far Clipping Planes (3/3)

23/31

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng © 10/6/2016

 Sometimes in a game you can position the camera in the right spot that the front of an object gets
clipped, letting you see inside of it.

 Video games use various techniques to avoid this glitch. One technique is to have objects that are very
close to the near clip plane fade out before they get cut off, as can be seen below

 This technique gives a clean look while solving the near clipping problem (the wooden fence fades out
as the camera gets too close to it, allowing you to see the wolf behind it).

Games and Clipping Planes (1/2)

Screenshots from the game, Okami

Fence is
opaque

Fence is
partially
transparent

24/31

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng © 10/6/2016

 Ever played a video game and all of a sudden some object pops up in the background (e.g., a tree
in a racing game)? That’s an object coming inside the far clip plane.

 Old solution: add fog in the distance. A classic example, Turok: Dinosaur Hunter

 Modern solution (e.g. Stone Giant), dynamic level of detail: mesh detail increases when closer

 Thanks to fast hardware and level of detail algorithms, we can push the far plane back now and
fog is much less prevalent

Games and Clipping Planes (2/2)

Courtesy of
http://www.ato
micgamer.com/s
creenshots/gam
e-1552/10965-
800.jpg

Courtesy of
http://image
s.tweaktown.
com/news/1
/4/14981_07
.jpg

25/31

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng © 10/6/2016

 Some camera models take a focal length

 Focal length is a measure of ideal
focusing range; approximates behavior
of real camera lens

 Objects at distance equal to focal length
from camera are rendered in focus;
objects closer or farther away than focal
length get blurred

 Focal length used in conjunction with
clipping planes
 Only objects within view volume are

rendered, whether blurred or not. Objects
outside of view volume still get discarded

Focal Length

Courtesy of http://3d-pic.3ddl.net/uploads/allimg/110617/13-11061G05J20-L.jpg

26/31

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng © 10/6/2016

 Up until now the specifications for a perspective view volume

 Also need parallel view volumes (e.g., for measurement in CAD, architecture)

 What do we need to know this time?

 Everything we wanted for a perspective view volume except for width and height
angles, replaced by just a width and height (also the width and height of our film
on our film plane)

 A parallel view volume is a parallelepiped/cuboid (all opposite edges parallel)

The Parallel View Volume (1/2)

Rectangular
parallelepiped

27/31

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng © 10/6/2016

 Objects appear same size no matter how far
away since projectors are all parallel: uniform
foreshortening based on angle of film plane to
projectors, not depth-dependent perspective
(non-uniform) foreshortening

 Benefits of parallel view volume

 Easier clipping because of simpler plane equations

 Easier depth comparison for Visible Surface
Determination (solving the obscuration problem)

 Really easy to project a 3D scene to 2D
projection/film plane because no perspective
foreshortening

The Parallel View Volume (2/2)

28/31

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng © 10/6/2016

 In a more generalized camera the viewing window doesn’t have to be centered about
the position of the camera and look (look direction is d in diagram)

 Nor does it have to be perpendicular to look

 This allows us to use a more flexible view as well as enable the use of more view types

 Using an uncentered film we can essentially choose which part of our original
perspective projection to view

Capabilities of the Generalized Camera (1/2)

29/31

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng © 10/6/2016

 We can do oblique projections (cavalier, cabinet parallel; perspective
oblique) where look/projectors and film plane aren’t perpendicular:

 Our model of a camera is not all-encompassing

 There are some capabilities that we have omitted for the sake of
simplicity, e.g., focus, oblique projections

 Our film is centered around the camera position and always
perpendicular to look

Capabilities of the Generalized Camera (2/2)

Non-oblique view volume: Oblique view volume:

look is
perpendicular
to film plane

view camera: look vector
(tilt of lens) is at an angle
to the film plane, which
remains parallel to face of
interest, preserving its
proportions

30/31

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin Sheng © 10/6/2016

 We have now seen how to construct a perspective and parallel view
volume and we mentioned how a scene is projected in these volumes
onto the film plane

 But these view volumes can be located anywhere and positioned in any
way depending on how our camera is specified

 How can we transition from knowing what the view volume looks like to
actually rendering an image to the screen?

 Next, describe canonical view volume and how we can use it for
rendering

 P.S.: Get ready to use our linear algebra transformations!

Next Task…

31/31

