CS337 INTRODUCTION TO COMPUTER GRAPHICS

Geometric Transformations

2D and 3D

Bin SHENG ¢ 9/15/16 1/46

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

How do we use Geometric Transformations? (1/2)

» Objects in a scene at the lowest level are a collection of vertices...

» These objects have location, orientation, size
» Correspond to transformations: Translation (T), Rotation (R), and Scaling (S)

Bin SHENG © 9/15/16 2/46

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

How do we use Geometric Transformations? (2/2)
» A scene has a camera/view point from which the scene is viewed

» The camera has some locationand some orientation in 3-space ...

» These correspond to Translation and Rotation transformations

» Need other types of viewing transformations as well - learn about them shortly

Bin SHENG © 9/15/16 3/46

CS337 | INTRODUCTION TO COMPUTER GRAPHICS
Some Linear Algebra Concepts...

3D coordinate geometry

Vectors in 2 space and 3 space

Dot product and cross product - definitions and uses
Vector and matrix notation and algebra

Identity matrix

v Vv Vv Vv Vv VY

Multiplicative associativity

» E.g. A(BC) = (AB)C
» Matrix transpose and inverse — definition, use, and calculation
» Homogeneous coordinates (x, y, z, w)

You will need to understand these concepts!

Bin SHENG © 9/15/16

4/46

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

LLinear Transformations (1/3)

» We represent vectors as bold-italic
letters (v) and scalars as italic letters (c)

» Recall that a basis for a vector space is a b
set of vectors with the following
properties: y=a+h

1. The vectors in the set are linearly
independent

2. Any vector in the vector space can be
expressed as a linear combination of the
basis vectors: V=c,V, + ¢,V,

» Multiplying a vector by a scalar changes the
vector’s magnitude

Bin SHENG © 9/15/16 5/46

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Linear Transformations (2/3)
» Definition of a linear function f:

» flv+w) =f(v) + f(w) for all vand w in the domain of f

» fl(cv) = cf(v) for all scalars c and elements v in the domain
» Both properties must be satisfied for the function fto be linear
» Example: f{X) = f(x;, x,) := (3x,+2x,, -3x;+4x,)
» Now let vand w be two elements in the domain of f e

» fviw) = fvitwy, vytwy)
= (B(vi+w)+2(v+w,) , -3(vi+w) +4(v,+w,))
= (3v,+2v,, -3v,+4v,) + (3w, +2w,, -3w+4w,) €z
=fv) + filw)

» We can check the second property the same way

» Properties:
» Leaves origin invariant fey)
» Maps parallelograms to (possibly distorted) parallelograms

» If Misinvertible, there is a sequence of rotations, scales and shears that performs the
mapping

Bin SHENG © 9/15/16 6/46

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

LLinear Transformations (3/3)

» Graphical use: transformations of points
around the origin (leaves the origin
invariant)

» These include Scaling and Rotations

» Translation is not a linear function (moves
the origin)

» Any linear transformation of a point will
result in another point in the same
coordinate system, transformed about the
origin

» Aside: How do we know the origin is
invariant from the definition of linearity?

2X Scale
1,1)

2,2)

(-1,1)

.

(1,1)

Bin SHENG © 9/15/16

7/46

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

[Linear Transformations as Matrices (1/2)

» Linear transformations can be represented as invertible (non-singular)
matrices

» Let's start with 2D transformations. These can be represented by 2x2

matrices: éa bu
r=¢ 1
éc dl
Xl
» A transformation of an arbitrary column vector x = y has the form:
2

T X, a b x ax, +bx,
X, c dj x, Ccx, + dx,

Bin SHENG © 9/15/16 8/46

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

[Linear Transformations as Matrices (2/2)

4
4

Let e; and e, be the standard basis vectors: é 1 ﬂ e g 0 ﬂ
Al 2 A
Now substitute each basis vector for x to get: ¢ 00 e 14
1| |a b|1| |a T O
O] |c dj0] |c 1

Notice that the columns of the matrix representation of our transformation matrix T are
precisely T applied to e, and e;:

¢ ¢)
T(el) é ¢ U’ T(ez) l;]
g ¢ e u

This gives us a strategy for deriving transformation matrices!

We can derive the columns of a transformation matrix one by one by considering how our
desired transformation affects each of the standard unit vectors.

Bin SHENG © 9/15/16 9/46

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Scaling in 2D (1/2)
» Scalexby3,yby2(S,=3 §,=2)

r

X\ X' '
» v= y (original vertex); v’ = y (new vertex) 6 |

» v =S8y a1

» Derive § by determining how e; and e, should be 3 |
transformed

Side effect: House shifts
position relative to origin

1] s, 1 1
y &= 0] — 5 Ye = 0 (scalein X by S,) !
0] [0 _
» e, = | — 5, %e, = S (scalein Y by S))
[°y |
s, O
» Thus we obtain = 0 s
y
Bin SHENG © 9/15/16

10/46

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Scaling in 2D (2/2)

» Sis adiagonal matrix; we can quickly » Properties of scaling to look out for:

check using matrix multiplication that » Does not preserve angles between lines
our derivation is correct: in the plane (except when scaling is
uniform, i.e.s, = s
s, O x S, X X' : y,) .
Sy = — = » If the object doesn’t start at the origin,
0 Sy LY SyY y scaling will move it closer to or farther

from the origin (often not desired)
» 8§ multiplies each coordinate of v by
the appropriate scaling factor, as
expected

» In general, the i entry of Dv, where D
is diagonal, is (D[ii] * v[i])

Bin SHENG © 9/15/16 11/46

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Rotation in 2D (1/2) Y4
» Rotate by 6 about the origin s

» v'=Ryv, where

X
> V:M (original vertex)

> v’:{ﬂ (new vertex)

2 6 7 3] 10 X
A (0’1)
» Derive R, by determining how e, and e, (cosO, sing) (sinG, cost)
should be transformed:
S
_| 1 Cosq S (1,0)

y G _{ 0 }_{ sing } (first column of R) @ =

e : U

I _sing bR =a C0Sq -sing

y € —{ 1 }_{ cosg }second column of R) q g sing cosq H

Bin SHENG © 9/15/16 12/46

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Rotation in 2D (2/2)

» Let’s try matrix-vector multiplication
cosd —sin@ || x XCcos@—ysiné X'

) Rev = . = . = ' = v'
sind cosé |y Xsin 6+ ycosé y

» x'=xC0sqg - ysing
> y'=xsing+ycosq

» Other properties of rotation:
» Preserves lengths in objects and angles between parts of objects (rigid-body rotation)

» For objects not centered at the origin, an unwanted translation might be introduced
(rotation is always about the origin)

Bin SHENG © 9/15/16 13/46

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

What about translation?

>

Translation is not a linear
transformation (the origin is not
invariant)

Therefore, it can’t be represented as a
2x2 invertible matrix

Question: Is there another solution?

Answer: Yes, v =v + t, where t = BX}
y

However, using vector addition is not
consistent with our method of treating
transformations as matrices

» If we could treat all transformations
in a consistent manner, i.e., with
matrix representation, then could
combine transformations by
composing their matrices

» Let’s try using a matrix again

» How? Homogeneous Coordinates:
add an additional dimension, the w-
axis, and an extra coordinate, the w-
component

» Thus 2D -> 3D (effectively the
hyperspace for embedding 2D space)

Bin SHENG ©

9/15/16

14/46

CS337 ‘ INTRODUCTION TO COMPUTER GRAPHICS
Homogeneous Coordinates (1/3)

» Allow expression of all three 2D
transformations as 3x3 matrices

P, (wx,wy,w)

» We start with the point P,, on the xy plane
and apply a mapping to bring it to the w-

plane in the hyperspace / 1 ‘{D (xyf)/
» P,y(xy) 2 P (wx, wy, w), wz0 -
Y

» The resulting (x,y’) coordinates in our new
point P, are different from the original
(xy), since X’ =wx, y’' = wy

» Px;y,w),wz0

L

Bin SHENG © 9/15/16 15/46

CS337 ‘ INTRODUCTION TO COMPUTER GRAPHICS
Homogeneous Coordinates (2/3)

» Once we have this point, we can apply a
homogenized version of our T, R and §
transformation matrices (next slides) to
get a new point in the hyperspace

» Finally, we want to obtain the / 1 4 » /
corresponding point in 2D-space, so - 20 1%,

perform the inverse of the previous

1'3'h (wx, wy,w)

mapping (divide all entries by w) Y
» The vertexvs | is now represented as
y
- | X
V= X
y
1

Bin SHENG © 9/15/16 16/46

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Homogeneous Coordinates (3/3)

» The transformations we use will always map points in the hyperplane defined
by w = 1 to other such points. (That way, we don’t have to divide by w to get

our equivalent point in 2D) «

» In other words, we want our transformations T to map points v= |y| to

) ;| X 1
pointsv'=|
y
1

» How do we achieve this with the matrices we have already derived?

» For linear transformations (i.e. scaling and rotation), embed the existing

matrix in the upper-left of a new 3x3 matrix:
a b 0

c d O
0 0 1

Bin SHENG © 9/15/16 17/46

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Back to Translation

» Our translation matrix (T) can now be represented by embedding the
translation vector in the right column:

(1 0 dx|
T=|0 1 dy
0 0 1|

» To verify that this is the right matrix, multiply it by our homogenized point:
(1 0 dx[x] [x+dx]
Tv={0 1 dy|y|=|y+dy|=v'
00 1)1 1

» Coordinates have been translated, and v’is still homogeneous

Bin SHENG © 9/15/16 18/46

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Transformations Homogenized

» Let’'s homogenize our all matrices! Doesn’t affect linearity of scaling and rotation

» Our new transformation matrices look like this...

Transformation Matrix

Scaling (s 0 0}
§ 0 s, 0 1
S0 0 1§
Rotation ¢ cosg -sing 0 !
g sing cosqg 0 g
¢ 0 0 1§
Translation gl 0 dx !
§0 0 1

» Note: These transformations are called affine transformations, which means they
preserve ratios of distances between points on a straight line

Bin SHENG © 9/15/16 19/46

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Examples

» Scaling: Scale by 15 in the x direction, 17 in the y

15 0 0
0 17 0

0O 0 1
» Rotation: Rotate by 123°

cos(123) -sin(123) O
sin(123) cos(123) O
0 0 1

» Translation: Translate by -16 in the x direction, +18 in the y

7

D

€1 0 458
2 0 1 18
60 0 1 §

(D¢D> (D> (D

Bin SHENG © 9/15/16 20/46

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Before we continue! Vectors vs. Points

» Up until now, we've only used the notion of a point in our 2D space
» We now present a distinction between points and vectors

’ b

» We used homogeneous coordinates to more conveniently represent translation;
hence points are represented as (x, y, 1)7

» A vector can be rotated/scaled, but not translated (can think of it as always starting
at origin), so don’t use the homogeneous coordinate: (x, y, 0)7

» That way, the translation matrix won'’t have any affect on our vectors.
» For now, let’s focus on just our points (typically vertices)

Bin SHENG © 9/15/16 21/46

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Inverses
» When we want to undo a transformation, we’ll need to find the matrix’s inverse.

» Thanks to homogenization, they are all invertible!

Transformation Matrix Inverse Does it make sense?

S Callng 1/Sx 0 0 If you scale something by factor a, the
0 1 / sy 0 inverse is scaling by 1/a
0 0 1
: cosf@ sin@ O Inverse of rotation by 8 is rotation by
ROtatIOD o -0. The properties sin(-8) = -sin(6) and
sin@ cosf O o ;
cos(-0) = cos(0) give this matrix. Also,
0 0 1 the matrix is orthonormal, so inverse is
just the transpose (see next slide).
. 1 0 —dx If you translate by x, the inverse is
TranSlatlon 0 1 —dy translation by -x
0 O 1

Bin SHENG © 9/15/16 22/46

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

A moment of appreciation for linear algebra

» The inverse of a rotation matrix M is just its transpose MT! That’s really
convenient, so let’s understand how it works using orthonormal matrices

» Take a rotation matrix M = [v, v, v,] (where each v;is a vector)
» First note some properties of M

» The columns are orthogonal to each other:v;ev,=0 (i#j)
» Columns have unit length: [/v,/[=1

» Let’s see what multiplying M and M produces:

Vi Viy o Vi | Vi Voo Vs, VieVv, Viev, VeV,
Vo Vo Vo, |V Vo, Vg || Vo0V, V0V, VeV,
Vay V3y V3, (V1 V2, Vg VyoV, VyeV, VjeV,

» Using the properties above, we see that this is the identity matrix, so MT = M1

Bin SHENG © 9/15/16 23/46

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

More with Homogeneous Coordinates

Some uses we’ll see later:

» Placing sub-objects in parent’s coordinate system to construct hierarchical
scene graph

» Transforming primitives in their own coordinate systems
» View volume normalization

» Mapping arbitrary view volume into canonical view volume along z-axis
» Parallel (orthographic, oblique) and perspective projections

» Perspective transformation (turn viewing pyramid into a cuboid to turn
perspective projection into parallel projection) after perspective foreshortening

Bin SHENG © 9/15/16 24/46

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Composition of Transformations (2D) (1/2)

» We now have a number of tools at our disposal; we can combine them!

» An object in a scene uses many transformations in sequence. How do we
represent this in terms of functions?

» Transformation is a function; by associativity, we can compose functions:
» (fog)(i)

» This is the same as first applying g, then applying f:
» flgli))

» Consider our functions fand g as matrices (M; and M,) and our input as a
vector v

» Our composition is equivalent to M;M,v

Bin SHENG © 9/15/16 25/46

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Composition of Transformations (2D) (2/2)

4

We can now form compositions of transformation matrices to form a more complex
transformation
For example, TRSv, which scales a point, then rotates it, then translates it:

1 0 dxj|cosd -sind Ofs, O Ofx

0 1 dy|sind <cosd OO0 s, Ofy

y

00 1) O 0 1)0 0 1|1

Note that we apply the matrices in sequence right to left. We can use associativity to compose
them first; it is often useful to be able to apply a single matrix if, for example, we want to use it to
transform many points at once.

Important: order matters! Matrix multiplication is NOT commutative.

Be sure to check out the Transformation Game at
http://www.cs.brown.edu/exploratories/freeSoftware/repository/edu/brown/cs/exploratories/

applets/transformationGame/transformation game guide.html

Let’s see an example...

Bin SHENG © 9/15/16 26/46

http://www.cs.brown.edu/exploratories/freeSoftware/repository/edu/brown/cs/exploratories/applets/transformationGame/transformation_game_guide.html

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Not commutative

Translate by “T

x=6,y=0,then |

rotate by 45°
Y 4

Rotate by 45°, |

then translate T
byx=6,y=0 2

Bin SHENG © 9/15/16 27/46

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Composition (an example) (2D) (1/2) Rotate 90°
» Start: Goal: -Uniform scale 4x
Y .t Y o1 -Both around object’s
s | s - center, not the origin
i AN +
S B B S A 123 s s e 75 s w0y

» Important concept: make the problem simpler
» Translate object to origin first, scale, rotate, and translate back:
gl 0 3ggcosgo ~sin90 0324 0 oggl 0 -33
T'RST=a0 1 3 4asin90 cos0 030 4 03O0 1 -3
QOOlﬂg 0 0 1HgDDngDDlH
» Apply to all vertices

Bin SHENG © 9/15/16 28/46

CS337 ‘ INTRODUCTION TO COMPUTER GRAPHICS
Composition (an example) (2D) (2/2)
» TIRST Yoot

5
4

3

>
4
N y

» But what if we mixed up the

order? Let’s try RTIST: o i L
cos90 —-sin90 0|1 0 3|4 0 01 -3
sin90 cos90 0|0 1 3|0 4 O -3
0 0 140 0 140 0 1 1
Ys__
» Oops! We scaled properly, but - |
when we rotated the object, it’s T A
center was not at the origin, so its |
position was shifted. Order I
matters! P e T s e e x

Bin SHENG © 9/15/16 29/46

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Y
Aside: Skewing/shearing i
» “Skew” an object to the side, like shearing a card] s
deck by displacing each card relative to the | z / P
previous one - \g A ? .
» What physical situations mirror this behavior? "1 2 2 4 5 5 1 8 9 W
1 1
. Skew, =1 ™ tane
» Squares become parallelograms; x-coordinates 0o 1

skew to right, y stays the same 2D non-homogeneous

_) _
1 —— O
» Notice that the base of the house (at y = 1) sk —| o ta?e .
remains horizontal but shifts right. Why? e, = 0 o 1

2D homogeneous

Bin SHENG © 9/15/16 30/46

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Inverses Revisited

» What is the inverse of a sequence of transformations?
» (MM,.M)1=M-"M, 1. .M

» Inverse of a sequence of transformations is the composition of the inverses of
each transformation in reverse order (why?)

» Say we want to do the opposite transformation of the example on slide 27.

What will our sequence look like?

» (TRST)! = TISIRIT

» We still translate to the origin first, then translate back at the end!

(1/3

(1 0 3]
T'S'R'T=(0 1 3

0 0 1]

0
0

0 O]
1/3 0
0 1

[c0s90 sin90 0
—sin90 cos90 O

0 0 1

10
01

0 0

_3]

-3
1

Bin SHENG © 9/15/16

31/46

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Aside: Windowing Transformations (CG terminology)

» Windowing transformation maps contents of 2D clip rectangle (“window”) to a
“viewport” rectangle on the screen, e.g., interior canvas (“client area”) of a window
manager’s window; also called window-to-viewport transformation

» Sends rectangle with bounding coordinates (u,, v;), (u,, v,) to (x;,), (X5, V,)

X (=, v2) A A

{11, v1) (12, 1) (72, 12)

(:Tl‘ yl] {:1.2‘ yl]

Y Y

(Xf_&)Kuz_uD 0 (MUZ_XWD/wz_UJ

A

A
Y

» The transformation matrix here is: { 0 Vs = V) IV, =) (Yo, = Y,v,) /v, —,)
0 0 1

Bin SHENG © 9/15/16 32/46

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Aside: Transforming Coordinate Axes

» We understand linear transformations as changing the position of vertices
relative to the standard axes

» Can also think of transforming the coordinate axes themselves

Rotation Scaling Translation

» Just as in matrix composition, be careful of which order you modify your
coordinate system

Bin SHENG © 9/15/16 33/46

CS337 | INTRODUCTION TO COMPUTER GRAPHICS
Dimension++ (3D!)

» How should we treat geometric transformations in 3D?
» Just add one more coordinate/axis!

X
» A pointis represented as

YA
» A matrix for a linear transformation T can be represented as

[T(el) T(e,) T(e3)]

where e; is the standard basis vector along the z-axis,

1
» But remember to use homogeneous coordinates! Embed scale and rotation

matrices as upper left submatrices and translation vectors as upper right
subvectors of the right column

Bin SHENG © 9/15/16 34/46

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Transformations in 3D

Transformation Matrix Comments

Scaling H O 00 Looks just like the 2D version.
0 s, 00 We just added an s, term.
0 0 s, O
0 0 0 1
Rotation (see next slide) In 2D, only one axis of
rotation; now there are
infinitely many! Must take all
into account. See next slide...
Translation 100 dx Similar to the 2D version, just
0 1 0 dy with one more entry dz,
0 0 1 dz representing change in the z-
0 0 0 1] direction.

Bin SHENG © 9/15/16 35/46

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Rodrigues’ s Formula---

» Rotation by angle 6 around vector u = [u, u, u,]"
» Note: this is an arbitrary unit vector u in xyz-space
» Here’s a not so friendly rotation matrix

cos & +u’(1—cos) u,u,(1-coséd)—u,sind uu,(-cosd)+u,sin 0]
u,u,(1-cosé)+u,sing c056’+u§(1—c059) u,u,(l-cosd)—u,sing
u,u,(-cos@)—u,sind uu,(l-cosd)+u,sind cosd +u’(1-cosf)

» This is called the coordinate form of Rodrigues’s formula
» Let’s try a different approach...

Bin SHENG © 9/15/16 36/46

CS337 | INTRODUCTION TO COMPUTER GRAPHICS
Rotating axis by axis (1/2)
» Every rotation can be represented as the composition of 3 different angles of counter-clockwise
rotation around 3 axes, namely

» X axis in the yz plane by y; y axis in the xz plane by 6; z axis in the xy plane by ¢

» Also known as Euler angles, make problem of rotation much easier

R,,(1): rotation about R, (6): rotation about R,,(¢): rotation about

X axis by Y y axis by 0 Z axis by ¢

g 1 0 0 0 E g cosg 0 sing O 3 g cosf -sinf 0 O 3
g 0 cosy -siny 0 & 0 1 0 0y é sinf cosf 0 0
g 0 siny cosy O ﬂ ¢ -sing 0 cosg O £ 0 0 104
50 0 0 14§ § 0 0 0 14§ 8 0 0 0 1§

» Note these differ only in how the 3x3 submatrix is embedded in the homogeneous matrix, but the
row-column order is different for R,

» You can compose these matrices to form a composite rotation matrix

Bin SHENG © 9/15/16 37/46

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Rotating axis by axis (2/2))eu
e

» It would still be difficult to find the 3 angles to
rotate by, given arbitrary axis u and specified angle ¥

» Solution? Make the problem easier by Yo
mapping u to one of the principal axes S)i
u
» Step 1: Find a 6 to rotate around y axis :
to put u in the xy plane b oV
» Step 2: Then find a ¢ to rotate around 7

the z axis to align u with the x axis
Now that u is in a convenient alignment, we can do our transformation rotation for vertex v:
» Step 3: Rotate v by ¥ around x axis (which is coincident with u axis)
» Step 4: Finally, undo the alignment rotations (inverse).
The only rotation we’ve preserved is the one around axis u by 5, which was our goal
» Rotation matrix: M = R, 1(6)R,; 1 (¢)R,,(Y)R,, ()R, (6)

Bin SHENG © 9/15/16 38/46

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Inverses and Composition in 3D!
» Inverses are once again parallel to their 2D versions...

Transformation Inverse Matrix

Scaling

0o 0 0 1
Rotation R, () R,1(0) R, (¢)

1 0 0 O0f||lcos@ O -sind O|| cosp sing 0 O
0 cosy siny O 0 1 0 0||-sing cosgp O O
0 —siny cosy Of|sind 0 cosd Of O 0 10
0 0 0 1 0 0 0 1 0 0 01
Translation 100 —dx
0 1 0 —dy
0 01 —dz
000 1

» Composition works exactly the same way...

Bin SHENG © 9/15/16 39/46

o O O -

CS337 | INTRODUCTION TO COMPUTER GRAPHICS
Example in 3D!

» Let’s take some 3D object, say a cube centered at (2,2,2)
» Rotate clockwise in object’s space by 30° around x axis, 60° around y, and 90°
around z

» Scale in object space by 1 in the x, 2 in the y, 3 in the z

» Translate by (2,2,4) in world space

» Transformation sequence: TT, 'S, R, R, R, T, where T, translates to (0,0):
0 022 0 0 2J1 0 0 0] cos90 sin90 0 Ofcos60 0 —-sin60 0L O 0 0f1 0 0
10 2(0 10 2f0 2 0 0f-sin9 cos90 0 Of O 1 0O O[O0 cos30 sin30 0|0 1 0
01 4/0012(0030| O 0 1 0fsin60 0 cos60 00 -sin30 cos30 00 0 1
0 010 00 1/0 0 0 1] O o 01 o o o0 1J0 O 0 1J0 0 O
T T0-1 Sxy ny sz Ryz T0
Bin SHENG © 9/15/16 40/46

CS337 | INTRODUCTION TO COMPUTER GRAPHICS
Transformations and the scene graph (1/5gmeGran
» Objects are typically composites:

upper body

I#l + + Ee stanchion ~ base
head trunk arm

ROBOT

lower body

» 3D scenes are often stored in a directed acyclic graph (DAG) called a scene graph

»
4
4
4

WPF (Windows Presentation Foundation)
Open Scene Graph (used in the Cave)

X3D ™ (VRML ™ was a precursor to X3D)
most game engines

» Typical scene graph format:

»

»
4
4

objects (cubes, sphere, cone, polyhedra etc.):

stored as nodes (default: unit size at origin)

attributes (color, texture map, etc.): stored as separate nodes
Transformations: also nodes

Head Middie

Bottom

S

Example scenegraph from a game engine

Bin SHENG © 9/15/16

41/46

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Transformations and the scene graph (2/5)

» For your assignments use simplified format:

» Attributes stored as a components of each object node (no separate attribute
node)

» A transform node affects its subtree
» Only leaf nodes are graphical objects.
» All internal nodes that are not transform nodes are object group nodes

Bin SHENG © 9/15/16 42/46

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Transformations and the scene graph (3/5)

» Step 1: Various transformations are applied to each of the leaves
(object primitives—head, base, etc.)

» Step 2: Transformations are then applied to groups of objects (form
upper and lower body, etc...)

I Representsa ROBOT

This format means that instead of

transformation R designing new primitives for
every single shape we need, we
upper bodx lower body can just apply transformations to
a smaller set of primitives to form
complex composite 3D shapes.

C ﬁﬁg}i 5

Together the above hierarchy of transformations forms the “robot” scene as a whole

Bin SHENG © 9/15/16 43/46

CS337 ‘ INTRODUCTION TO COMPUTER GRAPHICS
Transformations and the scene graph (4/5)

» A cumulative transformation matrix (CTM)
builds as you move up the tree.

ol

» Note that higher level transformation matrices
are appended to the front of the sequence

» Example:
» For object1 (01), CTM =M,
» Foro2, CTM=M,M,
» Foro3, CTM =M,M M.

» For avertex vin 03, position in world coordinate system
is CTM v = (M,M,M,) v

object nodes (geometry)
ik transformation nodes

@ group nodes

Bin SHENG © 9/15/16 44/46

CS337 | INTRODUCTION TO COMPUTER GRAPHICS
Transformations and the scene graph (5/5)

» You can easily reuse groups of
objects (sub-trees in the scene
graph) if they have been defined
already

» This might occur if you have multiple
similar components to your scene.
For example, the robot’s 2 arms objd

» Here, group 3 has been used twice.

» Transformations defined within
group 3 itself do not change; there
are different CTMs for each use of
group 3 as a whole

» TyT,vs.T,T,T,

Bin SHENG © 9/15/16 45/46

