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 Objects in a scene at the lowest level are a collection of vertices…

 These objects have location, orientation, size

 Correspond to transformations: Translation (T), Rotation (R), and Scaling (S)
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How do we use Geometric Transformations? (1/2)
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 A scene has a camera/view point from which the scene is viewed

 The camera has some location and some orientation in 3-space …

 These correspond to Translation and Rotation transformations

 Need other types of viewing transformations as well - learn about them shortly
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How do we use Geometric Transformations? (2/2)
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Some Linear Algebra Concepts...

 3D coordinate geometry

 Vectors in 2 space and 3 space

 Dot product and cross product – definitions and uses

 Vector and matrix notation and algebra

 Identity matrix

 Multiplicative associativity

 E.g. A(BC) = (AB)C

 Matrix transpose and inverse – definition, use, and calculation

 Homogeneous coordinates (x, y, z, w)

You will need to understand these concepts!
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Linear Transformations (1/3)

 We represent vectors as bold-italic
letters (v) and scalars as italic letters (c)

 Recall that a basis for a vector space is a 
set of vectors with the following 
properties:

1. The vectors in the set are linearly 
independent

2. Any vector in the vector space can be 
expressed as a linear combination of the 
basis vectors: V = c1V1 + c2V2

 Multiplying a vector by a scalar changes the 
vector’s magnitude

v = a + bv

b

a
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Linear Transformations (2/3)
 Definition of a linear function f:

 f(v+w) = f(v) + f(w) for all v and w in the domain of f

 f(cv) = cf(v) for all scalars c and elements v in the domain

 Both properties must be satisfied for the function f to be linear
 Example: f(x) = f(x1 , x2) := (3x1+2x2 , -3x1+4x2)

 Now let v and w be two elements in the domain of f
 f(v+w) = f(v1+w1 , v2+w2) 

= (3(v1+w1)+2(v2+w2) , -3(v1+w1)+4(v2+w2))

= (3v1+2v2 , -3v1+4v2) + (3w1+2w2 , -3w1+4w2)

= f(v) + f(w)

 We can check the second property the same way

 Properties:

 Leaves origin invariant
 Maps parallelograms to (possibly distorted) parallelograms

 If M is invertible, there is a sequence of rotations, scales and shears that performs the 
mapping

e1

e2

f(e1)

f(e2)
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 Graphical use: transformations of points 
around the origin (leaves the origin 
invariant)

 These include Scaling and Rotations

 Translation is not a linear function (moves 
the origin)

 Any linear transformation of a point will 
result in another point in the same 
coordinate system, transformed about the 
origin

 Aside: How do we know the origin is 
invariant from the definition of linearity?

9/15/16 7/46

Linear Transformations (3/3)
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Linear Transformations as Matrices (1/2)
 Linear transformations can be represented as invertible (non-singular) 

matrices

 Let’s start with 2D transformations. These can be represented by 2x2 
matrices:

 A transformation of an arbitrary column vector x = has the form:

T =
a b

c d
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Linear Transformations as Matrices (2/2)

 Let e1 and e2 be the standard basis vectors:

 Now substitute each basis vector for x to get:

 Notice that the columns of the matrix representation of our transformation matrix T are 
precisely T applied to e1 and e2:

 This gives us a strategy for deriving transformation matrices!

 We can derive the columns of a transformation matrix one by one by considering how our 
desired transformation affects each of the standard unit vectors. 
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Scaling in 2D (1/2)
Side effect: House shifts 
position relative to origin

 Scale x by 3, y by 2 (Sx = 3,  Sy = 2)

 v = (original vertex); v’ =   (new vertex)

 v’ = Sv

 Derive S by determining how e1 and e2 should be 
transformed

 (scale in X by Sx)

 (scale in Y by Sy)

 Thus we obtain
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Scaling in 2D (2/2)

 S is a diagonal matrix; we can quickly 
check using matrix multiplication that 
our derivation is correct:

 S multiplies each coordinate of v by 
the appropriate scaling factor, as 
expected 

 In general, the ith entry of Dv, where D
is diagonal, is (D[i,i] * v[i])
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 Properties of scaling to look out for:

 Does not preserve angles between lines  
in the plane (except when scaling is 
uniform, i.e. sx = sy)

 If the object doesn’t start at the origin, 
scaling will move it closer to or farther 
from the origin (often not desired)
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Rotation in 2D (1/2)
 Rotate by θ about the origin

 v’ = Rθv, where

 v =         (original vertex)

 v’ = (new vertex)

 Derive Rθ by determining how e1 and e2

should be transformed:

 (first column of Rθ)

 (second column of Rθ)
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Rotation in 2D (2/2)

 Let’s try matrix-vector multiplication

 Rθv =





 Other properties of rotation:

 Preserves lengths in objects and angles between parts of objects (rigid-body rotation)

 For objects not centered at the origin, an unwanted translation might be introduced 
(rotation is always about the origin)
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y'= xsinq + ycosq
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What about translation?

 If we could treat all transformations 
in a consistent manner, i.e., with 
matrix representation, then could 
combine transformations by 
composing their matrices

 Let’s try using a matrix again

 How? Homogeneous Coordinates: 
add an additional dimension, the w-
axis, and an extra coordinate, the w-
component

 Thus 2D -> 3D (effectively the 
hyperspace for embedding 2D space)

 Translation is not a linear 
transformation (the origin is not 
invariant)

 Therefore, it can’t be represented as a 
2x2 invertible matrix

 Question: Is there another solution?

 Answer: Yes, v’ = v + t, where t =

 However, using vector addition is not 
consistent with our method of treating 
transformations as matrices
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Homogeneous Coordinates (1/3)

 Allow expression of all three 2D 
transformations as 3x3 matrices

 We start with the point P2d on the xy plane 
and apply a mapping to bring it to the w-
plane in the hyperspace

 P2d(x,y)   Ph(wx, wy, w), w≠0

 The resulting (x’,y’) coordinates in our new 
point Ph are different from the original 
(x,y), since x’ = wx, y’ = wy

 Ph(x’, y’, w), w ≠ 0
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Homogeneous Coordinates (2/3)

 Once we have this point, we can apply a 
homogenized version of our T, R and S 
transformation matrices (next slides) to 
get a new point in the hyperspace

 Finally, we want to obtain the 
corresponding point in 2D-space, so 
perform the inverse of the previous 
mapping (divide all entries by w)

 The vertex v =       is now represented as 

v =
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Homogeneous Coordinates (3/3)

 The transformations we use will always map points in the hyperplane defined 
by w = 1 to other such points. (That way, we don’t have to divide by w to get 
our equivalent point in 2D)

 In other words, we want our transformations T to map points  v =         to 

points v’ = 

 How do we achieve this with the matrices we have already derived?

 For linear transformations (i.e. scaling and rotation), embed the existing 
matrix in the upper-left of a new 3x3 matrix:
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Back to Translation

 Our translation matrix (T) can now be represented by embedding the 
translation vector in the right column:

 To verify that this is the right matrix, multiply it by our homogenized point:

 Coordinates have been translated, and v’ is still homogeneous
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 Let’s homogenize our all matrices! Doesn’t affect linearity of scaling and rotation

 Our new transformation matrices look like this…

 Note: These transformations are called affine transformations, which means they 
preserve ratios of distances between points on a straight line
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Transformations Homogenized

Transformation Matrix

Scaling

Rotation

Translation
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Examples

 Scaling: Scale by 15 in the x direction, 17 in the y

 Rotation: Rotate by 123o

 Translation: Translate by -16 in the x direction, +18 in the y
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 Up until now, we’ve only used the notion of a point in our 2D space

 We now present a distinction between points and vectors

 We used homogeneous coordinates to more conveniently represent translation; 
hence points are represented as (x, y, 1)T

 A vector can be rotated/scaled, but not translated (can think of it as always starting 
at origin), so don’t use the homogeneous coordinate: (x, y, 0)T

 That way, the translation matrix won’t have any affect on our vectors.

 For now, let’s focus on just our points (typically vertices)
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Before we continue! Vectors vs. Points
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 When we want to undo a transformation, we’ll need to find the matrix’s inverse.

 Thanks to homogenization, they are all invertible!

9/15/16 22/46

Inverses

Transformation Matrix Inverse Does it make sense?

Scaling If you scale something by factor a, the
inverse is scaling by 1/a

Rotation Inverse of rotation by θ is rotation by   
–θ. The properties sin(-θ) = -sin(θ) and 
cos(-θ) = cos(θ) give this matrix. Also, 
the matrix is orthonormal, so inverse is 
just the transpose (see next slide).

Translation If you translate by x, the inverse is
translation by -x
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A moment of appreciation for linear algebra 

 The inverse of a rotation matrix M is just its transpose MT! That’s really 
convenient, so let’s understand how it works using orthonormal matrices

 Take a rotation matrix M = [v1 v2 v3]  (where each vi is a vector)

 First note some properties of M

 The columns are orthogonal to each other: vi • vj = 0   (i ≠ j)

 Columns have unit length: ||vi|| = 1

 Let’s see what multiplying MT and M produces:

 Using the properties above, we see that this is the identity matrix, so MT = M-1
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More with Homogeneous Coordinates

Some uses we’ll see later:

 Placing sub-objects in parent’s coordinate system to construct hierarchical 
scene graph

 Transforming primitives in their own coordinate systems

 View volume normalization

 Mapping arbitrary view volume into canonical view volume along z-axis

 Parallel (orthographic, oblique) and perspective projections

 Perspective transformation (turn viewing pyramid into a cuboid to turn 
perspective projection into parallel projection) after perspective foreshortening
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Composition of Transformations (2D) (1/2)

 We now have a number of tools at our disposal; we can combine them!

 An object in a scene uses many transformations in sequence. How do we 
represent this in terms of functions?

 Transformation is a function; by associativity, we can compose functions:

 (f o g)( i )

 This is the same as first applying g, then applying f:

 f( g( i ) )

 Consider our functions f and g as matrices (M1 and M2) and our input as a 
vector v

 Our composition is equivalent to M1M2v
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Composition of Transformations (2D) (2/2)
 We can now form compositions of transformation matrices to form a more complex 

transformation

 For example, TRSv, which scales a point, then rotates it, then translates it:

 Note that we apply the matrices in sequence right to left. We can use associativity to compose 
them first; it is often useful to be able to apply a single matrix if, for example, we want to use it to 
transform many points at once.

 Important: order matters! Matrix multiplication is NOT commutative.

 Be sure to check out the Transformation Game at 
http://www.cs.brown.edu/exploratories/freeSoftware/repository/edu/brown/cs/exploratories/
applets/transformationGame/transformation_game_guide.html

 Let’s see an example…
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Not commutative

0
1

1

2

2

3 4 5 6 7 8 9 10

3

4

5

6

Y

X
0

1

1

2

2

3 4 5 6 7 8 9 10

3

4

5

6

Translate by
x = 6, y = 0, then
rotate by 45o

Rotate by 45o,
then translate
by x = 6, y = 0
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 Start:                                                              Goal:

 Important concept: make the problem simpler

 Translate object to origin first, scale, rotate, and translate back:

 Apply to all vertices
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Composition (an example) (2D) (1/2)

T -1RST =

1 0 3

0 1 3

0 0 1
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-Rotate 90o

-Uniform scale 4x
-Both around object’s
center, not the origin



CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin SHENG © 9/15/16 29/46

Composition (an example) (2D) (2/2)
 T-1RST

 But what if we mixed up the 
order? Let’s try RT-1ST:

 Oops! We scaled properly, but 
when we rotated the object, it’s 
center was not at the origin, so its 
position was shifted. Order 
matters!



































































 

100

310

301

100

040

004

100

310

301

100

090cos90sin

090sin90cos



CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin SHENG © 9/15/16 30/46

Aside: Skewing/shearing
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 “Skew” an object to the side, like shearing a card 
deck by displacing each card relative to the 
previous one

 What physical situations mirror this behavior?

 Squares become parallelograms; x-coordinates 
skew to right, y stays the same

 Notice that the base of the house (at  y = 1) 
remains horizontal but shifts right. Why?
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Inverses Revisited
 What is the inverse of a sequence of transformations?

 (M1M2…Mn)-1 = Mn
-1Mn-1

-1…M1
-1

 Inverse of a sequence of transformations is the composition of the inverses of 
each transformation in reverse order (why?)

 Say we want to do the opposite transformation of the example on slide 27. 
What will our sequence look like?

 (T-1RST)-1 = T-1S-1R-1T

 We still translate to the origin first, then translate back at the end! 
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 Windowing transformation maps contents of 2D clip rectangle (“window”) to a 
“viewport” rectangle on the screen, e.g., interior canvas (“client area”) of a window 
manager’s window; also called window-to-viewport transformation

 Sends rectangle with bounding coordinates (u1 , vi), (u2 , v2) to (x1 , y1), (x2 , y2)

 The transformation matrix here is: 
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Aside: Windowing Transformations (CG terminology)
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 We understand linear transformations as changing the position of vertices 
relative to the standard axes

 Can also think of transforming the coordinate axes themselves

 Just as in matrix composition, be careful of which order you modify your 
coordinate system
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Aside: Transforming Coordinate Axes

Rotation Scaling Translation
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Dimension++ (3D!)
 How should we treat geometric transformations in 3D?

 Just add one more coordinate/axis!

 A point is represented as

 A matrix for a linear transformation T can be represented as                     

where e3 is the standard basis vector along the z-axis,

 But remember to use homogeneous coordinates! Embed scale and rotation 
matrices as upper left submatrices and translation vectors as upper right 
subvectors of the right column

  

T(e1) T(e2) T(e3)[ ]
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Transformations in 3D
Transformation Matrix Comments

Scaling Looks just like the 2D version. 
We just added an sz term.

Rotation (see next slide) In 2D, only one axis of 
rotation; now there are 
infinitely many! Must take all 
into account. See next slide...

Translation Similar to the 2D version, just 
with one more entry dz, 
representing change in the z-
direction.
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Rodrigues’s Formula…

 Rotation by angle θ around vector u = [ux uy uz]
T

 Note: this is an arbitrary unit vector u in xyz-space

 Here’s a not so friendly rotation matrix

 This is called the coordinate form of Rodrigues’s formula

 Let’s try a different approach…
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 Every rotation can be represented as the composition of 3 different angles of counter-clockwise
rotation around 3 axes, namely

 x axis in the yz plane by ψ;         y axis in the xz plane by θ;          z axis in the xy plane by ϕ

 Also known as Euler angles, make problem of rotation much easier

 Note these differ only in how the 3x3 submatrix is embedded in the homogeneous matrix, but the 
row-column order is different for Rzx

 You can compose these matrices to form a composite rotation matrix
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Rotating axis by axis (1/2)

Ryz(ψ): rotation about 
x axis by ψ

Rzx(θ): rotation about
y axis by θ

Rxy(ϕ): rotation about 
z axis by ϕ
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Rotating axis by axis (2/2)

 It would still be difficult to find the 3 angles to 

rotate by, given arbitrary axis u and specified angle ψ

 Solution? Make the problem easier by 

mapping u to one of the principal axes

 Step 1: Find a θ to rotate around y axis 

to put u in the xy plane

 Step 2: Then find a ϕ to rotate around 

the z axis to align u with the x axis
Now that u is in a convenient alignment, we can do our transformation rotation for vertex v:

 Step 3: Rotate v by ψ around x axis (which is coincident with u axis)

 Step 4: Finally, undo the alignment rotations (inverse). 
The only rotation we’ve preserved is the one around axis u by ψ, which was our goal

 Rotation matrix: M = Rzx
-1(θ)Rxy

-1(ϕ)Ryz(ψ)Rxy(ϕ)Rzx(θ)

x

y

z

θ

ϕ

u

u

v
ψ

v

v
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 Inverses are once again parallel to their 2D versions…

 Composition works exactly the same way…
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Inverses and Composition in 3D!

Transformation Inverse Matrix

Scaling

Rotation Ryz
-1 (ψ) Rzx

-1(θ)                      Rxy
-1(ϕ)

Translation
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Example in 3D!
 Let’s take some 3D object, say a cube centered at (2,2,2)

 Rotate clockwise in object’s space by 30o around x axis, 60o around y, and 90o

around z

 Scale in object space by 1 in the x, 2 in the y, 3 in the z

 Translate by (2,2,4) in world space

 Transformation sequence: TT0
-1SxyRxyRzxRyzTo, where T0 translates to (0,0):
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 Objects are typically composites:

 3D scenes are often stored in a directed acyclic graph (DAG) called a scene graph
 WPF (Windows Presentation Foundation)
 Open Scene Graph (used in the Cave)
 X3D ™ (VRML ™ was a precursor to X3D)
 most game engines

 Typical scene graph format:
 objects (cubes, sphere, cone, polyhedra etc.): 
 stored as nodes (default: unit size at origin)
 attributes (color, texture map, etc.): stored as separate nodes
 Transformations: also nodes
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Transformations and the scene graph (1/5)
ROBOT

upper body lower body

head

base

Scene Graph

stanchion
trunk arm

arm

Example scenegraph from a game engine
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 For your assignments use simplified format:

 Attributes stored as a components of each object node (no separate attribute 
node)

 A transform node affects its subtree

 Only leaf nodes are graphical objects.

 All internal nodes that are not transform nodes are object group nodes
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Transformations and the scene graph (2/5)
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Transformations and the scene graph (3/5)

Represents a 
transformation

 Step 1:  Various transformations are applied to each of the leaves 
(object primitives—head, base, etc.)

 Step 2:  Transformations are then applied to groups of objects (form 
upper and lower body, etc…)

This format means that instead of 
designing new primitives for 
every single shape we need, we 
can just apply transformations to 
a smaller set of primitives to form 
complex composite 3D shapes. 

Together the above hierarchy of transformations forms the “robot” scene as a whole
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Transformations and the scene graph (4/5)

object nodes (geometry)

transformation nodes

group nodes

 A cumulative transformation matrix (CTM) 
builds as you move up the tree.

 Note that higher level transformation matrices 
are appended to the front of the sequence

 Example:
 For object 1 (o1), CTM = M1

 For o2, CTM = M2M3

 For o3, CTM = M2M4M5

 For a vertex v in o3, position in world coordinate system 
is CTM v = (M2M4M5) v

M1 M2

M3 M4

M5
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Transformations and the scene graph (5/5)

group3

obj3 obj4

root

group1

obj1 group3
group2

group3obj2

 You can easily reuse groups of 
objects (sub-trees in the scene 
graph) if they have been defined 
already

 This might occur if you have multiple 
similar components to your scene. 
For example, the robot’s 2 arms

 Here, group 3 has been used twice. 

 Transformations defined within 
group 3 itself do not change; there 
are different CTMs for each use of 
group 3 as a whole

 T0T1 vs. T0T2T4

T0

T1
T2

T3 T4

T5 T6


