
CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin SHENG ©

Geometric Transformations

2D and 3D

9/15/16 1/46

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin SHENG ©

 Objects in a scene at the lowest level are a collection of vertices…

 These objects have location, orientation, size

 Correspond to transformations: Translation (T), Rotation (R), and Scaling (S)

9/15/16 2/46

How do we use Geometric Transformations? (1/2)

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin SHENG ©

 A scene has a camera/view point from which the scene is viewed

 The camera has some location and some orientation in 3-space …

 These correspond to Translation and Rotation transformations

 Need other types of viewing transformations as well - learn about them shortly

9/15/16 3/46

How do we use Geometric Transformations? (2/2)

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin SHENG © 9/15/16 4/46

Some Linear Algebra Concepts...

 3D coordinate geometry

 Vectors in 2 space and 3 space

 Dot product and cross product – definitions and uses

 Vector and matrix notation and algebra

 Identity matrix

 Multiplicative associativity

 E.g. A(BC) = (AB)C

 Matrix transpose and inverse – definition, use, and calculation

 Homogeneous coordinates (x, y, z, w)

You will need to understand these concepts!

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin SHENG © 9/15/16 5/46

Linear Transformations (1/3)

 We represent vectors as bold-italic
letters (v) and scalars as italic letters (c)

 Recall that a basis for a vector space is a
set of vectors with the following
properties:

1. The vectors in the set are linearly
independent

2. Any vector in the vector space can be
expressed as a linear combination of the
basis vectors: V = c1V1 + c2V2

 Multiplying a vector by a scalar changes the
vector’s magnitude

v = a + bv

b

a

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin SHENG © 9/15/16 6/46

Linear Transformations (2/3)
 Definition of a linear function f:

 f(v+w) = f(v) + f(w) for all v and w in the domain of f

 f(cv) = cf(v) for all scalars c and elements v in the domain

 Both properties must be satisfied for the function f to be linear
 Example: f(x) = f(x1 , x2) := (3x1+2x2 , -3x1+4x2)

 Now let v and w be two elements in the domain of f
 f(v+w) = f(v1+w1 , v2+w2)

= (3(v1+w1)+2(v2+w2) , -3(v1+w1)+4(v2+w2))

= (3v1+2v2 , -3v1+4v2) + (3w1+2w2 , -3w1+4w2)

= f(v) + f(w)

 We can check the second property the same way

 Properties:

 Leaves origin invariant
 Maps parallelograms to (possibly distorted) parallelograms

 If M is invertible, there is a sequence of rotations, scales and shears that performs the
mapping

e1

e2

f(e1)

f(e2)

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin SHENG ©

 Graphical use: transformations of points
around the origin (leaves the origin
invariant)

 These include Scaling and Rotations

 Translation is not a linear function (moves
the origin)

 Any linear transformation of a point will
result in another point in the same
coordinate system, transformed about the
origin

 Aside: How do we know the origin is
invariant from the definition of linearity?

9/15/16 7/46

Linear Transformations (3/3)

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin SHENG © 9/15/16 8/46

Linear Transformations as Matrices (1/2)
 Linear transformations can be represented as invertible (non-singular)

matrices

 Let’s start with 2D transformations. These can be represented by 2x2
matrices:

 A transformation of an arbitrary column vector x = has the form:

T =
a b

c d

é

ë
ê

ù

û
ú

2

1

x

x

21

21

2

1

2

1

dxcx

bxax

x

x

dc

ba

x

x
T

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin SHENG © 9/15/16 9/46

Linear Transformations as Matrices (2/2)

 Let e1 and e2 be the standard basis vectors:

 Now substitute each basis vector for x to get:

 Notice that the columns of the matrix representation of our transformation matrix T are
precisely T applied to e1 and e2:

 This gives us a strategy for deriving transformation matrices!

 We can derive the columns of a transformation matrix one by one by considering how our
desired transformation affects each of the standard unit vectors.

c

a

dc

ba
T

0

1

0

1

d

b

dc

ba
T

1

0

1

0

e1 =
1

0

é

ë
ê

ù

û
ú, e2 =

0

1

é

ë
ê

ù

û
ú

T(e1) =
a

c

é

ë
ê

ù

û
ú, T(e2) =

b

d

é

ë
ê

ù

û
ú

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin SHENG ©

•

9/15/16 10/46

Scaling in 2D (1/2)
Side effect: House shifts
position relative to origin

 Scale x by 3, y by 2 (Sx = 3, Sy = 2)

 v = (original vertex); v’ = (new vertex)

 v’ = Sv

 Derive S by determining how e1 and e2 should be
transformed

 (scale in X by Sx)

 (scale in Y by Sy)

 Thus we obtain

y

x

'

'

y

x

y

x

s

s
S

0

0

1

3

2

6

2

9

•
2

1

é

ë
ê

ù

û
ú

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin SHENG © 9/15/16 11/46

Scaling in 2D (2/2)

 S is a diagonal matrix; we can quickly
check using matrix multiplication that
our derivation is correct:

 S multiplies each coordinate of v by
the appropriate scaling factor, as
expected

 In general, the ith entry of Dv, where D
is diagonal, is (D[i,i] * v[i])

'

'

0

0

y

x

ys

xs

y

x

s

s

y

x

y

x
Sv

 Properties of scaling to look out for:

 Does not preserve angles between lines
in the plane (except when scaling is
uniform, i.e. sx = sy)

 If the object doesn’t start at the origin,
scaling will move it closer to or farther
from the origin (often not desired)

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin SHENG © 9/15/16 12/46

Rotation in 2D (1/2)
 Rotate by θ about the origin

 v’ = Rθv, where

 v = (original vertex)

 v’ = (new vertex)

 Derive Rθ by determining how e1 and e2

should be transformed:

 (first column of Rθ)

 (second column of Rθ)

e1 =
1

0

é

ë
ê

ù

û
ú®

cosq

sinq

é

ë
ê

ù

û
ú

e2 =
0

1

é

ë
ê

ù

û
ú®

-sinq

cosq

é

ë
ê

ù

û
ú

y

x

'

'

y

x

Þ Rq =
cosq -sinq

sinq cosq

é

ë
ê

ù

û
ú

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin SHENG © 9/15/16 13/46

Rotation in 2D (2/2)

 Let’s try matrix-vector multiplication

 Rθv =

 Other properties of rotation:

 Preserves lengths in objects and angles between parts of objects (rigid-body rotation)

 For objects not centered at the origin, an unwanted translation might be introduced
(rotation is always about the origin)

v'

'

'

cossin

sincos

cossin

sincos

y

x

yx

yx

y

x

x'= xcosq - ysinq

y'= xsinq + ycosq

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin SHENG © 9/15/16 14/46

What about translation?

 If we could treat all transformations
in a consistent manner, i.e., with
matrix representation, then could
combine transformations by
composing their matrices

 Let’s try using a matrix again

 How? Homogeneous Coordinates:
add an additional dimension, the w-
axis, and an extra coordinate, the w-
component

 Thus 2D -> 3D (effectively the
hyperspace for embedding 2D space)

 Translation is not a linear
transformation (the origin is not
invariant)

 Therefore, it can’t be represented as a
2x2 invertible matrix

 Question: Is there another solution?

 Answer: Yes, v’ = v + t, where t =

 However, using vector addition is not
consistent with our method of treating
transformations as matrices

dy

dx

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin SHENG © 9/15/16 15/46

Homogeneous Coordinates (1/3)

 Allow expression of all three 2D
transformations as 3x3 matrices

 We start with the point P2d on the xy plane
and apply a mapping to bring it to the w-
plane in the hyperspace

 P2d(x,y) Ph(wx, wy, w), w≠0

 The resulting (x’,y’) coordinates in our new
point Ph are different from the original
(x,y), since x’ = wx, y’ = wy

 Ph(x’, y’, w), w ≠ 0

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin SHENG © 9/15/16 16/46

Homogeneous Coordinates (2/3)

 Once we have this point, we can apply a
homogenized version of our T, R and S
transformation matrices (next slides) to
get a new point in the hyperspace

 Finally, we want to obtain the
corresponding point in 2D-space, so
perform the inverse of the previous
mapping (divide all entries by w)

 The vertex v = is now represented as

v =

y

x

1

y

x

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin SHENG © 9/15/16 17/46

Homogeneous Coordinates (3/3)

 The transformations we use will always map points in the hyperplane defined
by w = 1 to other such points. (That way, we don’t have to divide by w to get
our equivalent point in 2D)

 In other words, we want our transformations T to map points v = to

points v’ =

 How do we achieve this with the matrices we have already derived?

 For linear transformations (i.e. scaling and rotation), embed the existing
matrix in the upper-left of a new 3x3 matrix:

1

y

x

1

'

'

y

x

100

0

0

dc

ba

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin SHENG © 9/15/16 18/46

Back to Translation

 Our translation matrix (T) can now be represented by embedding the
translation vector in the right column:

 To verify that this is the right matrix, multiply it by our homogenized point:

 Coordinates have been translated, and v’ is still homogeneous

100

10

01

dy

dx

T

v'Tv

11100

10

01

dyy

dxx

y

x

dy

dx

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin SHENG ©

 Let’s homogenize our all matrices! Doesn’t affect linearity of scaling and rotation

 Our new transformation matrices look like this…

 Note: These transformations are called affine transformations, which means they
preserve ratios of distances between points on a straight line

9/15/16 19/46

Transformations Homogenized

Transformation Matrix

Scaling

Rotation

Translation

sx 0 0

0 sy 0

0 0 1

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

cosq -sinq 0

sinq cosq 0

0 0 1

é

ë

ê
ê
ê

ù

û

ú
ú
ú

1 0 dx

0 1 dy

0 0 1

é

ë

ê
ê
ê

ù

û

ú
ú
ú

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin SHENG © 9/15/16 20/46

Examples

 Scaling: Scale by 15 in the x direction, 17 in the y

 Rotation: Rotate by 123o

 Translation: Translate by -16 in the x direction, +18 in the y

100

0)123cos()123sin(

0)123sin()123cos(

100

0170

0015

1 0 -16

0 1 18

0 0 1

é

ë

ê
ê
ê

ù

û

ú
ú
ú

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin SHENG ©

 Up until now, we’ve only used the notion of a point in our 2D space

 We now present a distinction between points and vectors

 We used homogeneous coordinates to more conveniently represent translation;
hence points are represented as (x, y, 1)T

 A vector can be rotated/scaled, but not translated (can think of it as always starting
at origin), so don’t use the homogeneous coordinate: (x, y, 0)T

 That way, the translation matrix won’t have any affect on our vectors.

 For now, let’s focus on just our points (typically vertices)

9/15/16 21/46

Before we continue! Vectors vs. Points

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin SHENG ©

 When we want to undo a transformation, we’ll need to find the matrix’s inverse.

 Thanks to homogenization, they are all invertible!

9/15/16 22/46

Inverses

Transformation Matrix Inverse Does it make sense?

Scaling If you scale something by factor a, the
inverse is scaling by 1/a

Rotation Inverse of rotation by θ is rotation by
–θ. The properties sin(-θ) = -sin(θ) and
cos(-θ) = cos(θ) give this matrix. Also,
the matrix is orthonormal, so inverse is
just the transpose (see next slide).

Translation If you translate by x, the inverse is
translation by -x

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin SHENG © 9/15/16 23/46

A moment of appreciation for linear algebra

 The inverse of a rotation matrix M is just its transpose MT! That’s really
convenient, so let’s understand how it works using orthonormal matrices

 Take a rotation matrix M = [v1 v2 v3] (where each vi is a vector)

 First note some properties of M

 The columns are orthogonal to each other: vi • vj = 0 (i ≠ j)

 Columns have unit length: ||vi|| = 1

 Let’s see what multiplying MT and M produces:

 Using the properties above, we see that this is the identity matrix, so MT = M-1

332313

322212

312111

321

321

321

333

222

111

vvvvvv

vvvvvv

vvvvvv

vvv

vvv

vvv

vvv

vvv

vvv

zzz

yyy

xxx

zyx

zyx

zyx

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin SHENG © 9/15/16 24/46

More with Homogeneous Coordinates

Some uses we’ll see later:

 Placing sub-objects in parent’s coordinate system to construct hierarchical
scene graph

 Transforming primitives in their own coordinate systems

 View volume normalization

 Mapping arbitrary view volume into canonical view volume along z-axis

 Parallel (orthographic, oblique) and perspective projections

 Perspective transformation (turn viewing pyramid into a cuboid to turn
perspective projection into parallel projection) after perspective foreshortening

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin SHENG © 9/15/16 25/46

Composition of Transformations (2D) (1/2)

 We now have a number of tools at our disposal; we can combine them!

 An object in a scene uses many transformations in sequence. How do we
represent this in terms of functions?

 Transformation is a function; by associativity, we can compose functions:

 (f o g)(i)

 This is the same as first applying g, then applying f:

 f(g(i))

 Consider our functions f and g as matrices (M1 and M2) and our input as a
vector v

 Our composition is equivalent to M1M2v

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin SHENG © 9/15/16 26/46

Composition of Transformations (2D) (2/2)
 We can now form compositions of transformation matrices to form a more complex

transformation

 For example, TRSv, which scales a point, then rotates it, then translates it:

 Note that we apply the matrices in sequence right to left. We can use associativity to compose
them first; it is often useful to be able to apply a single matrix if, for example, we want to use it to
transform many points at once.

 Important: order matters! Matrix multiplication is NOT commutative.

 Be sure to check out the Transformation Game at
http://www.cs.brown.edu/exploratories/freeSoftware/repository/edu/brown/cs/exploratories/
applets/transformationGame/transformation_game_guide.html

 Let’s see an example…

1100

00

00

100

0cossin

0sincos

100

10

01

y

x

s

s

dy

dx

y

x

http://www.cs.brown.edu/exploratories/freeSoftware/repository/edu/brown/cs/exploratories/applets/transformationGame/transformation_game_guide.html

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin SHENG © 9/15/16 27/46

Not commutative

0
1

1

2

2

3 4 5 6 7 8 9 10

3

4

5

6

Y

X
0

1

1

2

2

3 4 5 6 7 8 9 10

3

4

5

6

Translate by
x = 6, y = 0, then
rotate by 45o

Rotate by 45o,
then translate
by x = 6, y = 0

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin SHENG ©

 Start: Goal:

 Important concept: make the problem simpler

 Translate object to origin first, scale, rotate, and translate back:

 Apply to all vertices

9/15/16 28/46

Composition (an example) (2D) (1/2)

T -1RST =

1 0 3

0 1 3

0 0 1

é

ë

ê
ê
ê

ù

û

ú
ú
ú

cos90 -sin90 0

sin90 cos90 0

0 0 1

é

ë

ê
ê
ê

ù

û

ú
ú
ú

4 0 0

0 4 0

0 0 1

é

ë

ê
ê
ê

ù

û

ú
ú
ú

1 0 -3

0 1 -3

0 0 1

é

ë

ê
ê
ê

ù

û

ú
ú
ú

-Rotate 90o

-Uniform scale 4x
-Both around object’s
center, not the origin

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin SHENG © 9/15/16 29/46

Composition (an example) (2D) (2/2)
 T-1RST

 But what if we mixed up the
order? Let’s try RT-1ST:

 Oops! We scaled properly, but
when we rotated the object, it’s
center was not at the origin, so its
position was shifted. Order
matters!

100

310

301

100

040

004

100

310

301

100

090cos90sin

090sin90cos

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin SHENG © 9/15/16 30/46

Aside: Skewing/shearing
Y

X0
1

1

2

2

3 4 5 6 7 8 9 10

3

4

5

6

4

10
tan

1
1

Skew

2D non-homogeneous

100

010

0
tan

1
1

Skew

2D homogeneous

 “Skew” an object to the side, like shearing a card
deck by displacing each card relative to the
previous one

 What physical situations mirror this behavior?

 Squares become parallelograms; x-coordinates
skew to right, y stays the same

 Notice that the base of the house (at y = 1)
remains horizontal but shifts right. Why?

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin SHENG © 9/15/16 31/46

Inverses Revisited
 What is the inverse of a sequence of transformations?

 (M1M2…Mn)-1 = Mn
-1Mn-1

-1…M1
-1

 Inverse of a sequence of transformations is the composition of the inverses of
each transformation in reverse order (why?)

 Say we want to do the opposite transformation of the example on slide 27.
What will our sequence look like?

 (T-1RST)-1 = T-1S-1R-1T

 We still translate to the origin first, then translate back at the end!

100

310

301

100

090cos90sin

090sin90cos

100

03/10

003/1

100

310

301

TRST
1-1-1-

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin SHENG ©

 Windowing transformation maps contents of 2D clip rectangle (“window”) to a
“viewport” rectangle on the screen, e.g., interior canvas (“client area”) of a window
manager’s window; also called window-to-viewport transformation

 Sends rectangle with bounding coordinates (u1 , vi), (u2 , v2) to (x1 , y1), (x2 , y2)

 The transformation matrix here is:

9/15/16 32/46

Aside: Windowing Transformations (CG terminology)

100

)/()()/()(0

)/()(0)/()(

1212211212

1212211212

vvvyvyvvyy

uuuxuxuuxx

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin SHENG ©

 We understand linear transformations as changing the position of vertices
relative to the standard axes

 Can also think of transforming the coordinate axes themselves

 Just as in matrix composition, be careful of which order you modify your
coordinate system

9/15/16 33/46

Aside: Transforming Coordinate Axes

Rotation Scaling Translation

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin SHENG © 9/15/16 34/46

Dimension++ (3D!)
 How should we treat geometric transformations in 3D?

 Just add one more coordinate/axis!

 A point is represented as

 A matrix for a linear transformation T can be represented as

where e3 is the standard basis vector along the z-axis,

 But remember to use homogeneous coordinates! Embed scale and rotation
matrices as upper left submatrices and translation vectors as upper right
subvectors of the right column

T(e1) T(e2) T(e3)[]

z

y

x

1

0

0

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin SHENG © 9/15/16 35/46

Transformations in 3D
Transformation Matrix Comments

Scaling Looks just like the 2D version.
We just added an sz term.

Rotation (see next slide) In 2D, only one axis of
rotation; now there are
infinitely many! Must take all
into account. See next slide...

Translation Similar to the 2D version, just
with one more entry dz,
representing change in the z-
direction.

1000

000

000

000

z

y

x

s

s

s

1000

100

010

001

dz

dy

dx

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin SHENG © 9/15/16 36/46

Rodrigues’s Formula…

 Rotation by angle θ around vector u = [ux uy uz]
T

 Note: this is an arbitrary unit vector u in xyz-space

 Here’s a not so friendly rotation matrix

 This is called the coordinate form of Rodrigues’s formula

 Let’s try a different approach…

)cos1(cossin)cos1(sin)cos1(

sin)cos1()cos1(cossin)cos1(

sin)cos1(sin)cos1()cos1(cos

2

2

2

zxzyyzx

xzyyzyx

yzxzyxx

uuuuuuu

uuuuuuu

uuuuuuu

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin SHENG ©

 Every rotation can be represented as the composition of 3 different angles of counter-clockwise
rotation around 3 axes, namely

 x axis in the yz plane by ψ; y axis in the xz plane by θ; z axis in the xy plane by ϕ

 Also known as Euler angles, make problem of rotation much easier

 Note these differ only in how the 3x3 submatrix is embedded in the homogeneous matrix, but the
row-column order is different for Rzx

 You can compose these matrices to form a composite rotation matrix

9/15/16 37/46

Rotating axis by axis (1/2)

Ryz(ψ): rotation about
x axis by ψ

Rzx(θ): rotation about
y axis by θ

Rxy(ϕ): rotation about
z axis by ϕ

cosf -sinf 0 0

sinf cosf 0 0

0 0 1 0

0 0 0 1

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

1 0 0 0

0 cosy -siny 0

0 siny cosy 0

0 0 0 1

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

cosq 0 sinq 0

0 1 0 0

-sinq 0 cosq 0

0 0 0 1

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin SHENG © 9/15/16 38/46

Rotating axis by axis (2/2)

 It would still be difficult to find the 3 angles to

rotate by, given arbitrary axis u and specified angle ψ

 Solution? Make the problem easier by

mapping u to one of the principal axes

 Step 1: Find a θ to rotate around y axis

to put u in the xy plane

 Step 2: Then find a ϕ to rotate around

the z axis to align u with the x axis
Now that u is in a convenient alignment, we can do our transformation rotation for vertex v:

 Step 3: Rotate v by ψ around x axis (which is coincident with u axis)

 Step 4: Finally, undo the alignment rotations (inverse).
The only rotation we’ve preserved is the one around axis u by ψ, which was our goal

 Rotation matrix: M = Rzx
-1(θ)Rxy

-1(ϕ)Ryz(ψ)Rxy(ϕ)Rzx(θ)

x

y

z

θ

ϕ

u

u

v
ψ

v

v

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin SHENG ©

 Inverses are once again parallel to their 2D versions…

 Composition works exactly the same way…

9/15/16 39/46

Inverses and Composition in 3D!

Transformation Inverse Matrix

Scaling

Rotation Ryz
-1 (ψ) Rzx

-1(θ) Rxy
-1(ϕ)

Translation

1000

0/100

00/10

000/1

z

y

x

s

s

s

1000

100

010

001

dz

dy

dx

1000

0100

00cossin

00sincos

,

1000

0cos0sin

0010

0sin0cos

,

1000

0cossin0

0sincos0

0001

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin SHENG © 9/15/16 40/46

Example in 3D!
 Let’s take some 3D object, say a cube centered at (2,2,2)

 Rotate clockwise in object’s space by 30o around x axis, 60o around y, and 90o

around z

 Scale in object space by 1 in the x, 2 in the y, 3 in the z

 Translate by (2,2,4) in world space

 Transformation sequence: TT0
-1SxyRxyRzxRyzTo, where T0 translates to (0,0):

1000

2100

2010

2001

1000

030cos30sin0

030sin30cos0

0001

1000

060cos060sin

0010

060sin060cos

1000

0100

0090cos90sin

0090sin90cos

1000

0300

0020

0001

1000

2100

2010

2001

1000

4100

2010

2001

T T0
-1 Sxy Rxy Rzx Ryz T0

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin SHENG ©

 Objects are typically composites:

 3D scenes are often stored in a directed acyclic graph (DAG) called a scene graph
 WPF (Windows Presentation Foundation)
 Open Scene Graph (used in the Cave)
 X3D ™ (VRML ™ was a precursor to X3D)
 most game engines

 Typical scene graph format:
 objects (cubes, sphere, cone, polyhedra etc.):
 stored as nodes (default: unit size at origin)
 attributes (color, texture map, etc.): stored as separate nodes
 Transformations: also nodes

9/15/16 41/46

Transformations and the scene graph (1/5)
ROBOT

upper body lower body

head

base

Scene Graph

stanchion
trunk arm

arm

Example scenegraph from a game engine

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin SHENG ©

 For your assignments use simplified format:

 Attributes stored as a components of each object node (no separate attribute
node)

 A transform node affects its subtree

 Only leaf nodes are graphical objects.

 All internal nodes that are not transform nodes are object group nodes

9/15/16 42/46

Transformations and the scene graph (2/5)

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin SHENG © 9/15/16 43/46

Transformations and the scene graph (3/5)

Represents a
transformation

 Step 1: Various transformations are applied to each of the leaves
(object primitives—head, base, etc.)

 Step 2: Transformations are then applied to groups of objects (form
upper and lower body, etc…)

This format means that instead of
designing new primitives for
every single shape we need, we
can just apply transformations to
a smaller set of primitives to form
complex composite 3D shapes.

Together the above hierarchy of transformations forms the “robot” scene as a whole

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin SHENG © 9/15/16 44/46

Transformations and the scene graph (4/5)

object nodes (geometry)

transformation nodes

group nodes

 A cumulative transformation matrix (CTM)
builds as you move up the tree.

 Note that higher level transformation matrices
are appended to the front of the sequence

 Example:
 For object 1 (o1), CTM = M1

 For o2, CTM = M2M3

 For o3, CTM = M2M4M5

 For a vertex v in o3, position in world coordinate system
is CTM v = (M2M4M5) v

M1 M2

M3 M4

M5

CS337 | INTRODUCTION TO COMPUTER GRAPHICS

Bin SHENG © 9/15/16 45/46

Transformations and the scene graph (5/5)

group3

obj3 obj4

root

group1

obj1 group3
group2

group3obj2

 You can easily reuse groups of
objects (sub-trees in the scene
graph) if they have been defined
already

 This might occur if you have multiple
similar components to your scene.
For example, the robot’s 2 arms

 Here, group 3 has been used twice.

 Transformations defined within
group 3 itself do not change; there
are different CTMs for each use of
group 3 as a whole

 T0T1 vs. T0T2T4

T0

T1
T2

T3 T4

T5 T6

