
CS337 | INTRODUCTION TO COMPUTER GRAPHICS AND VIRTUAL REALITY

Bin SHENG © 1/46

Introduction to 3D Graphics
Using OpenGL 3D

3D Graphics using OpenGL – 9/13/2016

CS337 | INTRODUCTION TO COMPUTER GRAPHICS AND VIRTUAL REALITY

Bin SHENG © 2/46

 Mesh objects with 3D polygons (triangles or quads usually)

 Apply material properties to each object (for reflectance computation)

 Texture-map (i.e., superimpose an image on) polygons as needed

 Light scene

 Place camera

 Render (for each object/shape, for each polygon)

 Enjoy the view (map it to the display)

Classical Polygon Graphics (H/W) Pipeline

3D Graphics using OpenGL – 9/13/2016

CS337 | INTRODUCTION TO COMPUTER GRAPHICS AND VIRTUAL REALITY

Bin SHENG © 3/46

 Widely used in industry and academia for interactive or real-
time 3D graphics

 Old fixed-function API (OpenGL 1.x) assisted rapid prototyping of
simple 3D scenes with “classical” lighting effects
 Experiment with simple ideas quickly

 Modern programmable API allows for more flexibility and
control
 TAs will initially provide shaders for projects/labs; you will write

your own in Labs 2 and 3

Why OpenGL for 3D?

3D Graphics using OpenGL – 9/13/2016

CS337 | INTRODUCTION TO COMPUTER GRAPHICS AND VIRTUAL REALITY

Bin SHENG © 4/46

 Material specification
 Describes the light reflecting properties

of the polygon
 Color, shininess, reflectiveness, etc.

 Provided as input to shader
 Provide values as uniforms to apply to entire shapes
 Provide values as attributes to apply to individual vertices

 Specify yellow color of triangle as (1.0, 1.0, 0.3), an RGB triple
 Alpha (translucency) can be specified as an additional parameter, or defaulted to 1.0

3D Polygons (1/2)

3D Graphics using OpenGL – 9/13/2016

CS337 | INTRODUCTION TO COMPUTER GRAPHICS AND VIRTUAL REALITY

Bin SHENG © 5/46

 OpenGL defaults to a right-handed coordinate system
 Polygons are defined in a single array of vertices:

GLfloat vertexData[] = {
 0, 75, 0, // Vertex 1
 -50, 0, 50, // Vertex 2
 50, 0, 50, // Vertex 3
 };

 This defines one triangle
 A 3D shape would have multiple triangles in one array

 Coordinate values are arbitrary - can set virtual camera up to
capture any size scene, so use convenient values

 Remember counter-clockwise winding order!
 Surface normal uses right-hand rule: E1 x E2 is normal to plane defined by edges E1, E2

3D Polygons (2/2)

3D Graphics using OpenGL – 9/13/2016

CS337 | INTRODUCTION TO COMPUTER GRAPHICS AND VIRTUAL REALITY

Bin SHENG © 6/46

 Intensity and direction of all light that strikes a point on object's surface, whether directly from light
source or after multiple bounces from other objects (global illumination, inter-object reflection)

 How an object's surface appears to us as it reflects, absorbs, and diffracts
light (“material properties”)

 Location of eye/camera relative to scene
 Distribution of intensity per wavelength of incident light
 Human visual system (HVS) and its

differential, highly non-linear response to light stimuli
 Lights may have geometry themselves

 Modern lighting/illumination models address these complexities (except for HVS)

Complexities of Light Reflection from Surfaces – Need to Know

3D Graphics using OpenGL – 9/13/2016

CS337 | INTRODUCTION TO COMPUTER GRAPHICS AND VIRTUAL REALITY

Bin SHENG © 7/46

 Classic lighting models (also called illumination or reflection models, not to be confused with shading models
discussed later) developed at the dawn of raster graphics in early 70s.

 Epicenter at University of Utah in SLC where Ivan Sutherland worked with David Evans, a Mormon

 Spawned the Evans & Sutherland flight simulator (with graphics) business

 Other pioneers:

 Henri Gouraud (shading model – filling in interior pixels from colors at vertices of a triangle)

 Bui Tuong Phong (lighting and shading models)

 Martin Newell (the Utah teapot (SIGGRAPH icon), meshing algorithms)

 James Clark (geometry engine, Silicon Graphics, Netscape)

 John Warnock (Hidden Surface Elimination, Adobe)

 Ed Catmull (splines, Pixar, Disney)

 Alvy Ray Smith (SuperPaint, HSV color space, partnered with Catmull on LucasFilm -> Pixar)

 etc...

An Imperfect World – Model via Approximations

3D Graphics using OpenGL – 9/13/2016

CS337 | INTRODUCTION TO COMPUTER GRAPHICS AND VIRTUAL REALITY

Bin SHENG © 8/46

 Back then:

 CPUs > 6 orders of magnitude less powerful, no GPU to speak of, just plot
pixels

 memory limited (measured in KB!)

 Even on today's machines, a physically accurate light simulation
requires computational power beyond the capabilities of
supercomputers!

An Imperfect World

3D Graphics using OpenGL – 9/13/2016

CS337 | INTRODUCTION TO COMPUTER GRAPHICS AND VIRTUAL REALITY

Bin SHENG © 9/46

 Color of point on surface dependent on
lighting of scene and surface material

 First approximation: model diffuse
reflection from a matte surface (light
reflected equally in all directions, viewer-
independent) based only on angle of
surface normal to light source

 Modeling light "drop-off“ with angle to light
 Lambert's diffuse-reflection cosine law

 models reflected light intensity I

Simple Lighting (Illumination) Models (1/2)

In between: Some fraction of light reflected

θcosdirII =

Note: Idir and other quantities are fractions in [0, 1].
These units are convenient BUT completely arbitrary
and not physically-based!

Facing light source:
Maximum reflection to light source:

No reflection
⊥

3D Graphics using OpenGL – 9/13/2016

Idir = measure of intensity of directional light (all
rays parallel) at point of contact with surface,
like rays from “infinitely far away” sun

θ = angle between surface normal (n) and vector
from light source ()

CS337 | INTRODUCTION TO COMPUTER GRAPHICS AND VIRTUAL REALITY

Bin SHENG © 10/46

 Lambert light attenuation based on surface's angle to light source
 Visualization of Lambert's law in 2D

Simple Lighting (Illumination) Models (2/2)

θcosdirII =
• Note: crudely approximate

intrinsic material properties
of object with RGB values. For
example, the greater the R,
the more reddish the object
will appear under white light.

• In reality, need surface
(micro)geometry and
wavelength-dependent
reflectivity, not just RGB

3D Graphics using OpenGL – 9/13/2016

CS337 | INTRODUCTION TO COMPUTER GRAPHICS AND VIRTUAL REALITY

Bin SHENG © 11/46

 Goal: finding color at each pixel,
preferably w/o having to evaluate a full
lighting model at each pixel

 First approach: Lambert's cosine law
(flat/constant shading for whole facet)
 faceted appearance, perfect for this

rectangular pyramid.

 What if we want to approximate

a rounded object?
 Lambert-shaded, faceted;

appearance is no longer ideal

Shading Rule (1/6)

http://math.hws.edu/graphicsbook/demos/c4/smooth-vs-flat.html
 3D Graphics using OpenGL – 9/13/2016

http://math.hws.edu/graphicsbook/demos/c4/smooth-vs-flat.html
http://math.hws.edu/graphicsbook/demos/c4/smooth-vs-flat.html
http://math.hws.edu/graphicsbook/demos/c4/smooth-vs-flat.html
http://math.hws.edu/graphicsbook/demos/c4/smooth-vs-flat.html
http://math.hws.edu/graphicsbook/demos/c4/smooth-vs-flat.html

CS337 | INTRODUCTION TO COMPUTER GRAPHICS AND VIRTUAL REALITY

Bin SHENG © 12/46

 First solution: increase the number of polygons
 Better shape approximation, more expensive to render
 Ultimately, still faceted when rendered (higher poly count => less faceted)
 Adaptive meshing is an improvement - more polygons in areas of high curvature

Shading Rule (2/6)

“Utah Teapot” by Martin Newell

3D Graphics using OpenGL – 9/13/2016

CS337 | INTRODUCTION TO COMPUTER GRAPHICS AND VIRTUAL REALITY

Bin SHENG © 13/46

 Get this:

 Want this:

Shading Rule (3/6)

faceted shading

smooth shading

3D Graphics using OpenGL – 9/13/2016

CS337 | INTRODUCTION TO COMPUTER GRAPHICS AND VIRTUAL REALITY

Bin SHENG © 14/46

 Gouraud smooth shading
 compute lighting equation at each vertex of

mesh (requires angle between normal, vector
to light) for Lambertian diffuse reflection

 linearly interpolate vertex color values to get
colors at all points: C = C1 + t(C2- C1)
 weighted averaging: the closer point is to a

vertex, the more it is influenced by that vertex
 How do we determine vertex colors? Need

a normal…
 Vertex normals are an artifice; the normal is

mathematically undefined since a vertex is a
discontinuity

 Sol’n 1: use plane normal, get faceted shading
 Sol’n 2: hack: average face/plane normals

Shading Rule (4/6)

Smooth

Faceted

The normal at a vertex is
the same as the plane
normal. Therefore, each
vertex has as many
normals as the number of
planes it helps define.

Only one vertex normal per
vertex; average of face
normals of the faces the
vertex is part of

3D Graphics using OpenGL – 9/13/2016

CS337 | INTRODUCTION TO COMPUTER GRAPHICS AND VIRTUAL REALITY

Bin SHENG © 15/46

 Vertex normals
 if vertex used by only one face, normal is

set to face's normal
 typically computed from the face’s

plane equation
 otherwise, normal is set to average of

normals of all faces sharing it
 if mesh is not too coarse, vertex normal

is a decent approximation to the normal
of modeled surface closest to that vertex

 adaptive meshing adds more triangles in
areas with rapid changes in curvature

 in assignments, you use some hacks to
compute better approximations of the
normal to the original surface

Shading Rule (5/6)

2D curve approximation
(vertex normals in green)

3D mesh approximation
(looking down on an
irregular pyramid, face
normals roughly cancel
each other out, hence
normal points out)

Vertex normals shown in
color, face normals in black

3D Graphics using OpenGL – 9/13/2016

CS337 | INTRODUCTION TO COMPUTER GRAPHICS AND VIRTUAL REALITY

Bin SHENG © 16/46

 Programmable OpenGL API doesn’t provide any lighting or shading. Use
shaders to implement lighting model and shading rule of your choice
 to get flat shading, specify the same surface normal for vertices of the same facet

(each vertex gets n normals, where n is the number of facets it is a part of)
 to get smooth shading, you must specify a single shared normal for each (shared)

vertex in the object

Shading Rule (6/6)

3D Graphics using OpenGL – 9/13/2016

Smooth Faceted

CS337 | INTRODUCTION TO COMPUTER GRAPHICS AND VIRTUAL REALITY

Bin SHENG © 17/46

Interpolation vs Flat Shading Summary

3D Graphics using OpenGL – 9/13/2016

CS337 | INTRODUCTION TO COMPUTER GRAPHICS AND VIRTUAL REALITY

Bin SHENG © 18/46

 Sending vertex normal to the shader requires a small extension to the way
we specify vertices

 Each vertex is now a position plus a normal, e.g.,
GLfloat[] vertexData = {
 -1, 0, 0, // Position 1
 0, 0, -1, // Normal 1
 1, 0, 0, // Position 2
 1, 0, 0, // Normal 2
 … };
 Normals needn’t be axis-aligned, of course…
 For flat shading a shared vertex has as many (position, normal) entries as

the facets it’s a part of

3D Graphics using OpenGL – 9/13/2016

Vertex Normals

CS337 | INTRODUCTION TO COMPUTER GRAPHICS AND VIRTUAL REALITY

Bin SHENG © 19/46

 Non-geometric lights:
 Ambient: crudest approximation (i.e., total hack) to inter-object (“global”) reflection - all

surfaces receive same light intensity. Allows all facets to be minimally visible
 Directional: illuminates all objects equally from a given direction; light rays are parallel

(models sun, sufficiently far away)
 Geometric lights:

 Point: Originates from single point, spreads outward equally in all directions
 Spotlight: Originates from single point, spreads outward inside cone’s directions

Point

Phong Reflectance (Illumination, Lighting) Model (1/7)

Directional Spotlight

3D Graphics using OpenGL – 9/13/2016

CS337 | INTRODUCTION TO COMPUTER GRAPHICS AND VIRTUAL REALITY

Bin SHENG © 20/46

 Many models exist to approximate lighting physics – more accurate => more computation
 Fixed-function OpenGL: Phong reflection model, survives today (though crude)

 implemented in fixed function hardware for decades, easily implemented in shaders
 approximates lighting by breaking down into three components: ambient, diffuse, specular
 can think of these as coincident, independent layers, each with its own characteristics, and sum them

to get the final result
 is a non-global illumination model – no inter-object reflections, non-physically based

Phong Reflectance Model (2/7)

AMBIENT
Effect of light that is non-directional,
affecting all surfaces equally. +

DIFFUSE
Effect of directional light on a
surface with a dull/rough finish. +

SPECULAR
Effect of directional light on a shiny
surface when the vector to the eye-
point is closely aligned to the light’s
reflected rays.

=
THE COMPOSITE
The three independent reflectivity
types are accumulated to produce the
result.

3D Graphics using OpenGL – 9/13/2016

CS337 | INTRODUCTION TO COMPUTER GRAPHICS AND VIRTUAL REALITY

Bin SHENG © 21/46

 𝐼𝐼𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝜆𝜆 =

 Equation is wavelength-dependent; approximate with separate equations

for 𝜆𝜆 ∈ 𝑅𝑅,𝐺𝐺,𝐵𝐵
 All values unitless real numbers between 0 and 1
 Evaluates total reflected light 𝐼𝐼𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝜆𝜆 at a single point, based on all lights

Phong Reflectance Model (3/7)

3D Graphics using OpenGL – 9/13/2016

Ambient Component 𝐼𝐼𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡,𝜆𝜆𝑘𝑘𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡,𝜆𝜆𝑂𝑂𝑑𝑑𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎,𝜆𝜆 +

Diffuse Component Σ𝑑𝑑𝑎𝑎𝑑𝑑𝑎𝑎𝑑𝑑𝑡𝑡𝑎𝑎𝑡𝑡𝑎𝑎𝑡𝑡𝑡𝑡 𝑡𝑡𝑎𝑎𝑙𝑙𝑙𝑡𝑡𝑑𝑑 𝐼𝐼𝑑𝑑𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎,𝜆𝜆𝑘𝑘𝑑𝑑𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎,𝜆𝜆𝑂𝑂𝑑𝑑𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎,𝜆𝜆(cos𝜃𝜃)
 + Σ𝑙𝑙𝑎𝑎𝑡𝑡𝑎𝑎𝑎𝑎𝑡𝑡𝑑𝑑𝑎𝑎𝑑𝑑 𝑡𝑡𝑎𝑎𝑙𝑙𝑙𝑡𝑡𝑑𝑑 𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝐼𝐼𝑑𝑑𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎,𝜆𝜆𝑘𝑘𝑑𝑑𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎,𝜆𝜆𝑂𝑂𝑑𝑑𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎,𝜆𝜆 cos𝜃𝜃 +

Specular Component Σ𝑑𝑑𝑎𝑎𝑑𝑑𝑎𝑎𝑑𝑑𝑡𝑡𝑎𝑎𝑡𝑡𝑎𝑎𝑡𝑡𝑡𝑡 𝑡𝑡𝑎𝑎𝑙𝑙𝑙𝑡𝑡𝑑𝑑 𝐼𝐼𝑑𝑑𝑠𝑠𝑎𝑎𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡𝑑𝑑,𝜆𝜆𝑘𝑘𝑑𝑑𝑠𝑠𝑎𝑎𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡𝑑𝑑,𝜆𝜆𝑂𝑂𝑑𝑑𝑠𝑠𝑎𝑎𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡𝑑𝑑,𝜆𝜆 cos 𝛿𝛿 𝑎𝑎

 +Σ𝑙𝑙𝑎𝑎𝑡𝑡𝑎𝑎𝑎𝑎𝑡𝑡𝑑𝑑𝑎𝑎𝑑𝑑 𝑡𝑡𝑎𝑎𝑙𝑙𝑙𝑡𝑡𝑑𝑑 𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝐼𝐼𝑑𝑑𝑠𝑠𝑎𝑎𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡𝑑𝑑,𝜆𝜆𝑘𝑘𝑑𝑑𝑠𝑠𝑎𝑎𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡𝑑𝑑,𝜆𝜆𝑂𝑂𝑑𝑑𝑠𝑠𝑎𝑎𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡𝑑𝑑,𝜆𝜆 cos 𝛿𝛿 𝑎𝑎

CS337 | INTRODUCTION TO COMPUTER GRAPHICS AND VIRTUAL REALITY

Bin SHENG © 22/46

 Variables
 𝜆𝜆 = wavelength / color component (e.g. R, G, and B)
 𝐼𝐼𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝜆𝜆 = total amount of light reflected at the point
 𝐼𝐼𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡 = intensity of incident ambient light; similar for diffuse, specular incident light
 𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡 = attenuation function for a geometric light
 𝑂𝑂 = innate color of object's material at specific point on surface (RGB approximation)
 𝑘𝑘 = object’s efficiency at reflecting light
 Since both 𝑂𝑂 and 𝑘𝑘 are dimensionless fractions we really only need one of them

 Ambient component
 𝐼𝐼𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡,𝜆𝜆𝑘𝑘𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡,𝜆𝜆𝑂𝑂𝑑𝑑𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎,𝜆𝜆 -- think of 𝑘𝑘𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡,𝜆𝜆 as the fraction of 𝐼𝐼𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡 reflected for that 𝜆𝜆. Note that

here we use 𝑂𝑂𝑑𝑑𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎,𝜆𝜆 for the ambient component; in Sceneview we use distinct 𝑂𝑂𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡,𝜆𝜆

 effect on surface is constant regardless of orientation, no geometric information

 total hack (crudest possible approximation to global lighting based on inter-object reflection), but makes all
objects a little visible - scene looks too stark without it

Phong Reflectance Model (4/7)

3D Graphics using OpenGL – 9/13/2016

CS337 | INTRODUCTION TO COMPUTER GRAPHICS AND VIRTUAL REALITY

Bin SHENG © 23/46

 Diffuse component (R component shown below, same for G, B) -
viewer independent!
 uses Lambert's diffuse-reflection cosine law
 Σ 𝐼𝐼𝑑𝑑𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎,𝑅𝑅𝑘𝑘𝑑𝑑𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎,𝑅𝑅𝑂𝑂𝑑𝑑𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎,𝑅𝑅(cos𝜃𝜃)
 𝐼𝐼𝑑𝑑𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎 = light’s diffuse color
 𝑘𝑘𝑑𝑑𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎 = the efficiency of incident light reflection
 𝑂𝑂𝑑𝑑𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎 = innate color of object's diffuse material property at specific point

on surface
 cos𝜃𝜃 = Lambert's attenuation factor where 𝜃𝜃 is the angle between normal

and light vector

3D Graphics using OpenGL – 9/13/2016

Phong Reflectance Model (5/7)

CS337 | INTRODUCTION TO COMPUTER GRAPHICS AND VIRTUAL REALITY

Bin SHENG © 24/46

Specular falloff of (cos δ) n

 Specular Component (for R) – viewer-dependent
 highlights seen on shiny objects (plastic, metal, mirrors, etc.)
 cosine-based attenuation factor ensures highlight only visible if reflected
light vector and vector to viewer are closely aligned
 n = specular power, how "sharp" highlight is – the sharper, the more intense
 specular highlight of most metals are the color of the metal but those on plastic,

shiny apple, pearl, etc. are mostly the color of the light (see Materials chapter 27)

Phong Reflectance Model (6/7)

e = viewpoint
r = reflected image of light source
ℓ = vector from the light source
n = surface normal
δ = angle between e and r
n = specular coefficient

3D Graphics using OpenGL – 9/13/2016
Note: Fixed-function OpenGL uses a slightly different lighting model called Blinn-Phong. See 14.9.3

Σ𝑡𝑡𝑎𝑎𝑙𝑙𝑙𝑡𝑡𝑑𝑑 𝐼𝐼𝑑𝑑𝑠𝑠𝑎𝑎𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡𝑑𝑑,𝜆𝜆𝑘𝑘𝑑𝑑𝑠𝑠𝑎𝑎𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡𝑑𝑑,𝜆𝜆𝑂𝑂𝑑𝑑𝑠𝑠𝑎𝑎𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡𝑑𝑑,𝜆𝜆 cos𝛿𝛿 𝑎𝑎

CS337 | INTRODUCTION TO COMPUTER GRAPHICS AND VIRTUAL REALITY

Bin SHENG © 25/46

 Attenuation factor
 Used in diffuse and specular light calculation:

 Directional lights have no attenuation (infinitely far away)
 Geometric lights (point lights, spot lights) get dimmer with distance
 Inverse square law

 area covered increases by square of distance from light
 thus, light intensity is inversely proportional to square

of distance from light
 light twice as far away is one quarter as intense
 though physics says inverse square law,

doesn't always look good in practice so OpenGL lets you choose
attenuation function (quadratic, linear, or constant)

Phong Reflectance Model (7/7)

d
d

d

3D Graphics using OpenGL – 9/13/2016

𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎
...+ Σ𝑙𝑙𝑎𝑎𝑡𝑡𝑎𝑎𝑎𝑎𝑡𝑡𝑑𝑑𝑎𝑎𝑑𝑑 𝑡𝑡𝑎𝑎𝑙𝑙𝑙𝑡𝑡𝑑𝑑 𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝐼𝐼𝑑𝑑𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎,𝜆𝜆𝑘𝑘𝑑𝑑𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎,𝜆𝜆𝑂𝑂𝑑𝑑𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎,𝜆𝜆 cos𝜃𝜃 +...

CS337 | INTRODUCTION TO COMPUTER GRAPHICS AND VIRTUAL REALITY

Bin SHENG © 26/46

 Goal: adding more detail to geometry of scene without adding more actual polygons
 Solution: texture mapping

 used extensively in video games, e.g., for backgrounds, billboards
 also used for many other techniques such as level-of-detail management
 cover the mesh's surface in stretchable "contact paper" with pattern or image on it
 in general, difficult to specify mapping from contact paper to every point on an arbitrary 3D

surface
 mapping to planar polygons is easy: specify mapping for each vertex and interpolate to find

mapping of interior points

Texture Mapping (1/2)

3D Graphics using OpenGL – 9/13/2016

CS337 | INTRODUCTION TO COMPUTER GRAPHICS AND VIRTUAL REALITY

Bin SHENG © 27/46

 Specifying "texture point" mapped to particular vertex
 requires coordinate system for referring to positions within texture image
 convention:

 points on pixmap described in abstract floating-point
 "texture-coordinate system"

 axes labeled u and v, range 0 to 1.
 origin located at the upper-left corner of the pixmap

3D Graphics using OpenGL – 9/13/2016

Texture Mapping (2/2)

U axis (1,0) (0,0)

(0,1) V
ax

is

CS337 | INTRODUCTION TO COMPUTER GRAPHICS AND VIRTUAL REALITY

Bin SHENG © 28/46

 Let’s map from two coplanar triangles from a face in the 3D model to a
texture map

 Texture map uses UV texture coordinates: just use ratios

 Texture mapping arbitrary solids is much harder – we’ll study this later

Texture Mapping UV Coordinates

3D Graphics using OpenGL – 9/13/2016

Object Quad Face Texture Map

CS337 | INTRODUCTION TO COMPUTER GRAPHICS AND VIRTUAL REALITY

Bin SHENG © 29/46

 We add texture coordinates* in the same way we added normals
GLfloat[] vertexData = {
 -10, 0, 0, // Position 1
 0, 1, 0, // Normal 1
 0, 0, // Texture Coordinate 1
 10, 0, 0, // Position 2
 0, 1, 0, // Normal 2
 1, 0, // Texture Coordinate 2
 … };

3D Graphics using OpenGL – 9/13/2016

Texture Mapping Example (1/2)

 * We’ll teach how to set up texture maps in Lab 3

CS337 | INTRODUCTION TO COMPUTER GRAPHICS AND VIRTUAL REALITY

Bin SHENG © 30/46

 Create a brick wall by applying brick texture to plane

 Produces realistic-looking image, but very few bricks in wall

 Tiling increases number of apparent bricks

Texture Mapping (Tiling)

3D Graphics using OpenGL – 9/13/2016

CS337 | INTRODUCTION TO COMPUTER GRAPHICS AND VIRTUAL REALITY

Bin SHENG © 31/46

 Create a sky backdrop by applying
 a sky image to a plane

 Would look unnatural if tiled
 Stretch to cover whole plane

 Your texture shader can implement tiling and stretching by multiplying UV

coordinates by a value >1 for tiling and <1 for stretching

Texture Mapping (Stretching)

3D Graphics using OpenGL – 9/13/2016

CS337 | INTRODUCTION TO COMPUTER GRAPHICS AND VIRTUAL REALITY

Bin SHENG © 32/46

 Camera Properties:
 Perspective or Orthographic
 Position: placement of camera
 Look Direction: direction camera is aimed (vector determining lens axis)
 Up Direction: rotates camera about look vector, specifying which way is “up” – must

not be collinear to the look vector
 Far-Plane Distance: objects behind do not appear
 Near-Plane Distance: objects in front do not appear
 Field Of View: (Width, height or diagonal angle)
 Aspect Ratio (Relative width and height)

Camera (1/3)

3D Graphics using OpenGL – 9/13/2016

CS337 | INTRODUCTION TO COMPUTER GRAPHICS AND VIRTUAL REALITY

Bin SHENG © 33/46

 Perspective Projection

Camera (2/3)

3D Graphics using OpenGL – 9/13/2016

Look Vector

Position

Projection of
Up Direction

Up Direction

Near-Plane
Distance

Far-Plane
Distance

FOV in y-direction y

CS337 | INTRODUCTION TO COMPUTER GRAPHICS AND VIRTUAL REALITY

Bin SHENG © 34/46

 Orthographic Projection

Camera (3/3)

3D Graphics using OpenGL – 9/13/2016

Height

Width

Look Vector
Near

distance

Position

Far
distance

Up
vector

Projection of
up vector

CS337 | INTRODUCTION TO COMPUTER GRAPHICS AND VIRTUAL REALITY

Bin SHENG © 35/46

 Fixed-function API has support for perspective and orthographic
cameras

 With the Programmable API you must construct and supply all model,
view, and projection matrices, and then use them in your shaders

 In the Viewing lectures you will learn how to construct these
matrices yourselves, to use in the Camtrans lab (We will take care of
the camera until then)

 In the shader labs you will learn how the matrices are used in
shaders

OpenGL Camera

3D Graphics using OpenGL – 9/13/2016

CS337 | INTRODUCTION TO COMPUTER GRAPHICS AND VIRTUAL REALITY

Bin SHENG © 36/46

 Pipeline of rendering with OpenGL
 Calculate vertex data (position, normals, texture coords)
 Calculate scene data (light position/type, camera position/orientation etc.)
 Pass scene data to shader (specifying uniforms, in OGL parlance)
 Pass vertex data to shader (specifying attributes, in OGL parlance)
 Tell OpenGL to draw

 To be extra clear:
 You write most code in C++
 The C++ code involves using the OpenGL API to set up data structures for scene

geometry, lights, and camera, which are then passed to the shaders for execution
 You write the shaders in GLSL to process this data for rendering

 Easy enough, but just how do you pass data to shader?

3D Graphics using OpenGL – 9/13/2016

Rendering with OpenGL

CS337 | INTRODUCTION TO COMPUTER GRAPHICS AND VIRTUAL REALITY

Bin SHENG © 37/46

 What kinds of data do we have in the scene?
 Vertex data (position, normal, tex coords)

 Pass as attributes in a single large array
 Requires two OpenGL objects

 VBOs (Vertex Buffer Objects)
 VAOs (Vertex Array Objects)

 Also have data that remains constant across vertices (e.g., camera
matrices)
 Pass as uniforms using a named variable

3D Graphics using OpenGL – 9/13/2016

Passing Data to Shader (1/5)

CS337 | INTRODUCTION TO COMPUTER GRAPHICS AND VIRTUAL REALITY

Bin SHENG © 38/46

 Used for data that remains constant for all vertices
 e.g. color,* camera position, light position

 Three steps
 1. In GLSL shader => declare uniform variable

 Ex: uniform vec3 color;

 2. In C++ OpenGL => Find memory address of uniform variable
 Ex: GLint color_loc = glGetUniformLocation(m_shaderID, "color");

 3. In C++ OpenGL => Store data in memory address
 Ex: glUniform3f(color_loc, 0.5, 0.9, 0.8);

 Note: 3f stands for 3 floats (RGB). To store 2 floats, use glUniform2f. To store 4 ints, use glUniform4i
 See here for list of entire glUniform family

 3D Graphics using OpenGL – 9/13/2016

Passing Data to Shader (2/5) -- Uniforms

* Here color is constant for the whole object,
but it can also be a vertex attribute

https://www.opengl.org/sdk/docs/man/html/glUniform.xhtml

CS337 | INTRODUCTION TO COMPUTER GRAPHICS AND VIRTUAL REALITY

Bin SHENG © 39/46

// passing information for color
// ambient term is specified as RGB(A). Use glUniform4f to provide optional alpha value
// this specifies a dark grey ambient “light”
glUniform4f(<Ambient Location>, 0.2, 0.2, 0.2, 1.0); // 4f = 4 floats

// passing information for lighting
glUniform3f(<Position Location>, 10.0, 5.0, 8.0); // 3f = 3 floats
glUniform3f(<Direction Location>, 1.0, 2.0, 3.0);

// specify an integer constant to describe type of light, here a point light
glUniform1i(<Type Location>, POINT_LIGHT_TYPE); // 1i = 1 int

// To use a directional light
glUniform1i(<Type Location>, DIRECTIONAL_LIGHT_TYPE);

3D Graphics using OpenGL – 9/13/2016

Passing Data to Shader (3/5) – Example Uniforms

CS337 | INTRODUCTION TO COMPUTER GRAPHICS AND VIRTUAL REALITY

Bin SHENG © 40/46

 Passing vertex data is more complicated than uniform data
 Have vertex data (pos, normal, tex) in single large array

 Note: In OGL parlance, pos, normal, tex etc. are attributes each vertex has
 Two steps

 1. Store data in Vertex Buffer Object (VBO)
 2. Specify attribute layout in VBO with Vertex Array Object (VAO)

3D Graphics using OpenGL – 9/13/2016

Passing Data to Shader (4/5) – Vertex Data

CS337 | INTRODUCTION TO COMPUTER GRAPHICS AND VIRTUAL REALITY

Bin SHENG © 41/46

 VBO (Vertex Buffer Object) stores vertex data, such as position, normal, and
texture coordinates. Created in C++ program, passed to shader
 (all numbers below are really GL_FLOATs)

 Meaningless w/o interpretation - VAO tells shader how attributes are stored

3D Graphics using OpenGL – 9/13/2016

VBOs and VAOs

-5 0 0 0 0 -1 5 0 0 0 0 … -1 0 7 0 0 0 -1

Position 1 Normal 1 Position 2 Normal 2 Position 3 Normal 3

Triangle 1

Position Pointer

Normal Pointer

Position Stride

Size

Normal Stride

CS337 | INTRODUCTION TO COMPUTER GRAPHICS AND VIRTUAL REALITY

Bin SHENG © 42/46

 For each attribute, VAO takes three parameters, details in lab 1
 size parameter is how many values an attribute has (e.g. 3 for position)
 stride specifies how far apart values of the same type are in our array
 pointer is a pointer to the index of the first value of that attribute
 Because VBO is byte array, multiply parameters by sizeof(Glfloat)

3D Graphics using OpenGL – 9/11/2014

Vertex Array Objects

Position 1 Normal 1 Position 2 Normal 2 Position 3 Normal 3

Triangle 1

Position Pointer: 0
Normal Pointer: 3*sizeof(GLfloat)

Stride: 6*sizeof(GLfloat)

Size: 3*sizeof(GLfloat)

-5 0 0 0 0 -1 5 0 0 0 0 … -1 0 7 0 0 0 -1

CS337 | INTRODUCTION TO COMPUTER GRAPHICS AND VIRTUAL REALITY

Bin SHENG © 43/46

 TA has written a guide to OpenGL:
 http://www.cs.sjtu.edu.cn/~shengbin/course/cg/course.html

Question 1:
 Write a program to draw a simple red cube.
Question 2:
 Write a program to draw a simple blue triangle.

 Reference:
 http://www.opengl-tutorial.org/beginners-tutorials/tutorial-2-the-first-triangle/
 https://graphics.stanford.edu/courses/cs248-99/OpenGLSession/tri.html
 http://antongerdelan.net/opengl/hellotriangle.html

3D Graphics using OpenGL – 9/13/2016

The CS337 Guide to OpenGL

http://www.opengl-tutorial.org/beginners-tutorials/tutorial-2-the-first-triangle/
https://graphics.stanford.edu/courses/cs248-99/OpenGLSession/tri.html
http://antongerdelan.net/opengl/hellotriangle.html

CS337 | INTRODUCTION TO COMPUTER GRAPHICS AND VIRTUAL REALITY

Bin SHENG © 44/46

Question 3:
 Write a C++ class to draw and move a car using the geometrical classes.

The car should be kind of similar to the one below. You can implement
more complex car shapes if you want.

3D Graphics using OpenGL – 9/13/2016

Assignment 1- Introduction to OpenGL

CS337 | INTRODUCTION TO COMPUTER GRAPHICS AND VIRTUAL REALITY

Bin SHENG © 45/46

 Hands on exploration of concepts discussed in this lecture
 Modeling smooth surfaces

Demos (1/2)

http://math.hws.edu/graphicsbook/demos/c4/smooth-vs-flat.html

3D Graphics using OpenGL – 9/13/2016

http://math.hws.edu/graphicsbook/demos/c4/smooth-vs-flat.html
http://math.hws.edu/graphicsbook/demos/c4/smooth-vs-flat.html
http://math.hws.edu/graphicsbook/demos/c4/smooth-vs-flat.html
http://math.hws.edu/graphicsbook/demos/c4/smooth-vs-flat.html
http://math.hws.edu/graphicsbook/demos/c4/smooth-vs-flat.html

CS337 | INTRODUCTION TO COMPUTER GRAPHICS AND VIRTUAL REALITY

Bin SHENG © 46/46

 Lighting and shading model

Demos (2/2)

http://sklardevelopment.com/graftext/ChapWPF3D/
See the “Materials and Reflectivity” part

3D Graphics using OpenGL – 9/13/2016

A different one with shader code
http://www.mathematik.uni-

marburg.de/~thormae/lectures/graphics1/code/WebG
LShaderLightMat/ShaderLightMat.html

http://www.mathematik.uni-marburg.de/%7Ethormae/lectures/graphics1/code/WebGLShaderLightMat/ShaderLightMat.html
http://www.mathematik.uni-marburg.de/%7Ethormae/lectures/graphics1/code/WebGLShaderLightMat/ShaderLightMat.html
http://www.mathematik.uni-marburg.de/%7Ethormae/lectures/graphics1/code/WebGLShaderLightMat/ShaderLightMat.html
http://www.mathematik.uni-marburg.de/%7Ethormae/lectures/graphics1/code/WebGLShaderLightMat/ShaderLightMat.html
http://www.mathematik.uni-marburg.de/%7Ethormae/lectures/graphics1/code/WebGLShaderLightMat/ShaderLightMat.html
http://www.mathematik.uni-marburg.de/%7Ethormae/lectures/graphics1/code/WebGLShaderLightMat/ShaderLightMat.html
http://www.mathematik.uni-marburg.de/%7Ethormae/lectures/graphics1/code/WebGLShaderLightMat/ShaderLightMat.html

	Introduction to 3D Graphics
	Classical Polygon Graphics (H/W) Pipeline
	Why OpenGL for 3D?
	3D Polygons (1/2)
	3D Polygons (2/2)
	Complexities of Light Reflection from Surfaces – Need to Know
	An Imperfect World – Model via Approximations
	An Imperfect World
	Simple Lighting (Illumination) Models (1/2)
	Simple Lighting (Illumination) Models (2/2)
	Shading Rule (1/6)
	Shading Rule (2/6)
	Shading Rule (3/6)
	Shading Rule (4/6)
	Shading Rule (5/6)
	Shading Rule (6/6)
	Interpolation vs Flat Shading Summary
	Vertex Normals
	Phong Reflectance (Illumination, Lighting) Model (1/7)
	Phong Reflectance Model (2/7)
	Phong Reflectance Model (3/7)
	Phong Reflectance Model (4/7)
	Phong Reflectance Model (5/7)
	Phong Reflectance Model (6/7)
	Phong Reflectance Model (7/7)
	Texture Mapping (1/2)
	Texture Mapping (2/2)
	Texture Mapping UV Coordinates
	Texture Mapping Example (1/2)
	Texture Mapping (Tiling)
	Texture Mapping (Stretching)
	Camera (1/3)
	Camera (2/3)
	Camera (3/3)
	OpenGL Camera
	Rendering with OpenGL
	Passing Data to Shader (1/5)
	Passing Data to Shader (2/5) -- Uniforms
	Passing Data to Shader (3/5) – Example Uniforms
	Passing Data to Shader (4/5) – Vertex Data
	VBOs and VAOs
	Vertex Array Objects
	The CS337 Guide to OpenGL
	Assignment 1- Introduction to OpenGL
	Demos (1/2)
	Demos (2/2)

