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Real-Time Detection and Recognition
of Road Traffic Signs

Jack Greenhalgh and Majid Mirmehdi, Senior Member, IEEE

Abstract—This paper proposes a novel system for the auto-
matic detection and recognition of traffic signs. The proposed
system detects candidate regions as maximally stable extremal
regions (MSERs), which offers robustness to variations in lighting
conditions. Recognition is based on a cascade of support vector
machine (SVM) classifiers that were trained using histogram of
oriented gradient (HOG) features. The training data are generated
from synthetic template images that are freely available from an
online database; thus, real footage road signs are not required
as training data. The proposed system is accurate at high vehicle
speeds, operates under a range of weather conditions, runs at an
average speed of 20 frames per second, and recognizes all classes
of ideogram-based (nontext) traffic symbols from an online road
sign database. Comprehensive comparative results to illustrate the
performance of the system are presented.

Index Terms—Histogram of oriented gradient (HOG) features,
maximally stable extremal regions (MSERs), support vector ma-
chines (SVMs), synthetic data, traffic sign recognition.

I. INTRODUCTION

AUTOMATIC traffic sign detection and recognition is an
important part of an advanced driver assistance system.

Traffic symbols have several distinguishing features that may
be used for their detection and identification. They are designed
in specific colors and shapes, with the text or symbol in high
contrast to the background. Because traffic signs are generally
oriented upright and facing the camera, the amount of rotational
and geometric distortion is limited.

Information about traffic symbols, such as shape and color,
can be used to place traffic symbols into specific groups;
however, there are several factors that can hinder effective
detection and recognition of traffic signs. These factors include
variations in perspective, variations in illumination (including
variations that are caused by changing light levels, twilight, fog,
and shadowing), occlusion of signs, motion blur, and weather-
worn deterioration of signs. Road scenes are also generally
very cluttered and contain many strong geometric shapes that
could easily be misclassified as road signs. Accuracy is a key
consideration, because even one misclassified or undetected
sign could have an adverse impact on the driver.
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The proposed method consists of the following two stages:
1) detection is performed using a novel application of maxi-
mally stable extremal regions (MSERs) [1], and 2) recognition
is performed with histogram of oriented gradient (HOG) fea-
tures, which are classified using a linear support vector machine
(SVM).

Another novel aspect of this paper is the use of an online road
sign database [2] that consists of synthetic graphical represen-
tations of signs. To the best of our knowledge, this is the first
paper that uses the entire range of road signs in operation. Previ-
ous works, such as [3]–[5], all use hand-selected subsets. Large
training sets are then generated by applying random distortions
to our graphic templates, e.g., geometric distortion, blurring,
and illumination variations, to capture examples of occurrences
of real-scene distortions. It is essential for the classifiers to be
trained on all possible signs to avoid misclassification of similar
but excluded signs. Generating synthetic data in this way allows
classification to be performed on all possible road signs and
also avoids the tedious process of hand labeling large data sets.
Examples of the proposed road sign detection system are shown
in Fig. 1.

In Section II, we review previous work and state the im-
provements that we make. Then, in Section III, we outline the
methodology used, which includes detection, recognition, and
the generation of synthetic data. In Section IV, we describe
comparative results to illustrate the performance of the system.
Finally, conclusions are drawn in Section V.

II. RELATED WORK

A significant number of papers that deal with the recognition
of ideogram-based road signs in real road scenes have been
published [4]–[15].

The most common approach, quite sensibly, consists of two
main stages: detection and recognition. The detection stage
identifies the regions of interest and is mostly performed using
color segmentation, followed by some form of shape recog-
nition. Detected candidates are then either identified or re-
jected during the recognition stage using, for example, template
matching [16] or some form of classifier such as SVMs [4], [5],
[11] or neural networks [3], [17].

The majority of systems make use of color information as
a method for segmenting the image [9], [11], [12], [18]–[20].
The performance of color-based road sign detection is often
reduced in scenes with strong illumination, poor lighting, or
adverse weather conditions such as fog. Color models, such
as hue–saturation–value (HSV) [8], [12], [19], YUV [21], and
CIECAM97 [10], have been used in an attempt to overcome
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Fig. 1. Examples of the proposed road sign detection and recognition system.

these issues. For example, Shadeed et al. [21] performed seg-
mentation by applying the U and V chrominance channels of
the YUV space, with U being positive and V being negative
for red colors. This information was used in combination with
the hue channel of the HSV color space to segment red road
signs. Gao et al. [10] applied a quad-tree histogram method to
segment the image based on the hue and chroma values of the
CIECAM97 color model. Malik et al. [12] thresholded the hue
channel of the HSV color space to segment red road signs.

In contrast, there are several approaches [7], [22] that entirely
ignore color information and instead use only shape informa-
tion from grayscale images. For example, Loy and Zelinksy
[22] proposed a system that used local radial symmetry to
highlight points of interest in each image and detect octagonal,
square, and triangular road signs.

Some recent methods such as [23] and [24] use HOG features
for road sign feature extraction. Creusen et al. [23] extended
the HOG algorithm to incorporate color information using the
CIELAB and YCbCr color spaces. Overett et al. [24] presented
two variant formulations of HOG features for the detection of
speed signs in New Zealand. We also use HOG features to aid
our classification process and will explain later why we find
they are most suited to this application.

The vast majority of existing systems consist of classifiers
that were trained using hand-labeled real images, for example
[3]–[5], which is a repetitive, time-consuming, and error-prone
process. Our method avoids collecting and manually label-
ing training data, because it requires only synthetic graphical
representations of signs that were obtained from an online
road sign database [2]. Furthermore, although many existing
systems report high classification rates, the total number of
traffic sign classes recognized is generally very limited, e.g.,
seven classes in [4], 42 classes in [15], or 20 classes in [16], and
are hence less likely to suffer mismatches against similar signs
that were missing from their databases. Our proposed system
uses all instances of ideogram-based traffic symbols used in the
U.K. and hence performs its matching in this larger set. We
expect our approach to be equally functional if applied to other
countries’ traffic sign databases obtained in a similar fashion.

Note that many proposed systems suffer from slow speed,
making them inappropriate for application to real-time prob-
lems. Some methods report processing times of several seconds
for a single frame [4], [11], [25], [26]. Our system runs at an
average speed of 20 frames per second.

There are a few commercial traffic sign recognition systems
on the market, including [27] and [28]. Such commercial sys-
tems also recognize a very limited set of traffic signs; for exam-

ple, the system that was developed by Mobileye [28] detects
only speed limit signs and no-overtaking signs. Comparison
with these commercial systems is difficult, given that little
information on their performance is available.

In Section IV, we first compare our proposed method with
a similar road sign detection system that was proposed by
Gómez-Moreno et al. [11]. We then evaluate the performance
of our synthetically generated training data against real train-
ing data on the German Traffic Sign Recognition Benchmark
(GTSRB) [29].

III. TRAFFIC SIGN DETECTION

AND RECOGNITION SYSTEM

A. Overview of the System

The proposed system consists of the following two main
stages: detection and recognition. The complete set of road
signs used in our training data and recognized by the system is
shown in Fig. 2. Candidates for traffic symbols are detected as
MSERs, as described by Matas et al. [1]. MSERs are regions
that maintain their shape when the image is thresholded at
several levels. This method of detection was selected due to
its robustness to variations in contrast and lighting conditions.
Rather than detecting candidates for road signs by border color,
the algorithm detects candidates based on the background color
of the sign, because these backgrounds persist within the MSER
process. Our proposed method, as described in detail in the
following section, is broadly illustrated in Fig. 3.

B. Detection of Road Signs as MSERs

For the detection of traffic symbols with white background,
MSERs are found for a grayscale image. Each frame is bi-
narized at a number of different threshold levels, and the
connected components at each level are found. The connected
components that maintain their shape through several threshold
levels are selected as MSERs. Fig. 4 shows different thresholds
for an example image with the connected components colored.
It is shown that the connected component that represents the
circular road symbol maintains its shape through several thresh-
old levels. This helps ensure robustness to both variations in
lighting and contrast.

Several features of the detected connected component re-
gions are used to further reduce the number of candidates.
These features are width, height, aspect ratio, region perimeter
and area, and bounding-box perimeter and area. Removing the
connected components that do not match the requirements helps
speed up the process and improve accuracy. The parameters
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Fig. 2. Full set of graphical road signs used in training the proposed system [2].

used as limits for these features were empirically determined
and are shown in Table I.

We approach the detection of traffic symbols with red or
blue backgrounds in a slightly different manner. Rather than
detecting MSERs for a grayscale image, the frame is first
transformed from red–green–blue (RGB) into a “normalized
red/blue” image ΩRB such that, for each pixel of the original
image, values are found for the ratio of the blue channel to the
sum of all channels and the ratio of the red channel to the sum
of all channels. The greater of these two values is used as the
pixel value of the normalized red/blue image, i.e.,

ΩRB = max

(
R

R+G+B
,

B

R+G+B

)
. (1)

Pixel values in this image are higher for red and blue pixels and
lower for other colors. MSER regions are then found for this
new image. Fig. 5 shows an example image and the result of
the normalized red/blue transform. Fig. 6 shows the connected
components at several different thresholds of the transformed
image. Again, it is shown that the red and blue road signs
maintain their shape at several threshold levels, making them
candidates for classification.

Although MSER offers a robust form of detection for traffic
signs in complex scenes, it can be computationally expen-
sive. Therefore, to increase the speed, we threshold only at
an appropriate range of values rather than at every possible
value, which is the norm in the original MSER [1]. Fig. 7
shows the number of used thresholds plotted against the pro-
cessing time and accuracy of detection. The thresholds were
evenly spaced between the values 70 and 190, because the
MSERs that represent road signs generally appear within this
range. The number of thresholds selected was 24, which, in
this example, corresponds to 94.3% accuracy and 50.1-ms
processing time.

C. Road Sign Classification

The recognition stage is used to confirm a candidate region
as a traffic sign and classify the exact type of sign. For the
classification of candidate regions, their HOG features are
extracted from the image [30], which represent the occurrence
of gradient orientations in the image. HOG feature vectors are
calculated for each candidate region. A Sobel filter is used to
find the horizontal and vertical derivatives and, hence, the mag-
nitude and orientation for each pixel. We find the application
of HOG to recognition of traffic symbols very suitable, given
that traffic symbols are composed of strong geometric shapes
and high-contrast edges that encompass a range of orientations.
Traffic signs are generally found to be approximately upright
and facing the camera, which limits rotational and geometric
distortion, removing the need for rotation invariance.

The HOG features are computed on a dense grid of cells
using local contrast normalization on overlapping blocks. A
nine-bin histogram of unsigned pixel orientations weighted
by magnitude is created for each cell. These histograms are
normalized over each overlapping block. The components of
the feature vector are the values from the histogram of each
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Fig. 3. Overview schematic of the proposed approach.

Fig. 4. (Top) Original image. (Middle and Bottom) Connected components at
several threshold levels.

TABLE I
PROPERTIES USED TO SORT CONNECTED COMPONENTS

normalized cell. Fig. 8, shows an example image divided into
cells and an example HOG block that consists of four cells.
Although this intensive normalization produces large feature
vectors (1764 dimensions for a 64 × 64 image), it provides high
accuracy. The size N of the HOG feature vector is computed
using

N =

(
Rwidth

Mwidth
− 1

)
×
(
Rheight

Mheight
− 1

)
×B ×H (2)

Fig. 5. Image transformed into our normalized red/blue color space ΩRB .

Fig. 6. Connected components at several thresholds of the normalized
red–blue image.

where R is the region, M is the cell size, B is the number of
cells per block, and H is the number of histograms per cell. The
values used were M = 8 × 8, B = 4, and H = 9.

Regions are then classified using a cascade of multiclass
SVMs [31]. SVM is a supervised learning method that con-
structs a hyperplane to separate data into classes. The “support
vectors” are data points that define the maximum margin of
the hyperplane. Although SVM is primarily a binary classifier,
multiclass classification can be achieved by training many one-
against-one binary SVMs. SVM classification is fast, highly
accurate, and less prone to overfitting compared to many other
classification methods. It is also possible to very quickly train
an SVM classifier, which significantly helps in our proposed
method, given our large amount of training data and high
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Fig. 7. Chart that shows the number of thresholds used for MSER plotted
against accuracy of detection and processing time.

Fig. 8. Regions of HOG features.

number of classes. However, we plan to perform further com-
parison with other classification methods in future work.

Each region in our system is classified using a cascade of
SVM classifiers, as illustrated in Fig. 9. First, the candidate
region is resized to 24 × 24 pixels. A HOG feature vector
with 144 dimensions is then calculated, and this feature vector
is used to classify the shape of the region as a circle, triangle,
upside-down triangle, rectangle, or background. Octagonal stop
signs are considered to be circles. If the region is found to be
background, it is rejected. If the region is found to be a shape,
it is then passed on to a (symbol) subclassifier for that specific
shape.

Different classifier trees are used for candidates with white
background (MSERs for a grayscale image) and candidates
with red or blue background (MSERs for a normalized red/blue
image). Therefore, each subclassifier is specific to symbols with
a certain background color and shape. Color background trian-
gles and color background upside-down triangles are rejected as
background, because no signs of these types exist in the U.K.
road sign database [2].

To optimize the performance of the linear SVM classifier,
an appropriate value for the cost of misclassification parameter
C has to be selected. Choosing a value that is too large may
result in overfitting, whereas a value that is too small may cause
underfitting. Hence, a cross correlation of the training set is
performed for log2 C = −5,−3,−2, . . . , 15, and the value of
C that produces the highest cross-correlation accuracy is used.

Fig. 9. Cascaded SVM classifier.

Road sign classifications from several frames are merged
together to form a decision. A probabilistic SVM model is
used for classification. Rather than having each classification
counting as a single vote for a specific class, a vote was made
for each class, weighted by its probability. The class with the
highest score S was taken as the correct classification, i.e.,

S =

N∑
n=1

P (An) (3)

where N is the total number of classifications, and A is an SVM
classification. The classification is made once S exceeds the
decision threshold λ.

In Section IV-B, we compare the results with and without the
inclusion of this frame-merging technique.

D. Generation of Synthetic Training Data

Training the classifiers on all possible road signs is essential
to avoid misclassification of unknown signs. However, gath-
ering a sufficient amount of real data on which to train the
classifiers is difficult and time consuming, given the sheer
number of different existing signs and the scarcity of particular
signs. This is possibly one of the reasons that most other
works (and commercial systems such as Mobileye’s Traffic
Sign Recognition [28]) focus only on a subset of more common
signs regularly found in their footage; for example, see [3]–[5].
We further suggest that using only a subset of signs also avoids
misclassification against other similar but excluded signs; there-
fore, in many cases, the quality of the reported results can
be unreliable. Our proposed solution to this problem is to
use easily available graphical data and synthetically generate
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Fig. 10. Comparison of real and synthesized data.

variations and distortions of them to create training data for
the classifiers. This approach allows us to use the entire range
of road signs, avoid tedious manual hand labeling for training
purposes, and report more reliable classification results that are
a true reflection of a complete search.

The graphical base images that we use were obtained from
a free online database provided by the U.K. Department for
Transport [2]. Randomized geometric distortions were then
applied to replicate the range of distortions likely to be seen
in real data and the type of regions likely to be found during the
detection stage. Each distorted example image is superimposed
over a random section of background, taken from a database of
typical background images. Randomized brightness, contrast,
noise, blurring, and pixelation are also applied to each image.

The complete set of 131 road sign images used for training
is shown in Fig. 2. For each sign, 1200 synthetic distorted
images were generated. As a means of comparison, Fig. 10
shows a number of real road sign images next to a number of
our generated training images.

IV. EXPERIMENTAL RESULTS

The proposed system can operate at a range of vehicle
speeds and was tested under a variety of lighting and weather
conditions. A considerable increase in speed was gained by
implementing the algorithm in parallel as a pipeline to around
20 frames per second, running on a 3.33-GHz Intel Core i5
central processing unit under OpenCV, where the frame dimen-
sions were 640 × 480. However, the system retained a latency
of around 200 ms.

We compare our proposed method (later in Section IV-B)
with a road sign detection system that was proposed by
Gómez-Moreno et al. [11], which also deals with the entire
problem of detection and recognition, detects a relatively large
number of road signs (encompassing a variety of different
shapes and colors) compared to other methods, and uses SVMs
for classification. These factors make the system in [11] a
particularly suitable method for comparison purposes.

The system that was proposed by Gómez-Moreno et al. [11]
detects candidate regions using color information and performs
recognition using SVM based on a training set of between 20
and 100 images per class on an unspecified number of classes.
Each frame is segmented using the hue and saturation compo-
nents of a hue–saturation–intensity (HSI) image. Histograms of

Fig. 11. Example images from the test set.

Fig. 12. Confusion matrix for a cascaded classifier with white background
(accuracy = 89.2%).

hue and saturation are built for red, blue, and yellow sign colors,
and created using images with a range of weather and lighting
conditions. For the segmentation of white road signs, the image
is binarized based on the achromaticity of each pixel, and then,
each candidate blob is classified by shape. The distance from
the side of the candidate blob to its bounding box is measured at
each side (left, right, top, and bottom) at several points. Binary
SVMs for each shape are then used to vote for each side of
the blob (circle or triangle). If the blob receives four votes for a
particular shape, that shape is chosen. An SVM with a Gaussian
kernel is then used to classify each sign type based on shape and
color. The SVM is trained using pixel values from the candidate
region that falls into a template that represents the shape (circle
or triangle).

A. Performance of the Proposed Method

To assess the performance of our classifiers, a test data set
was collected from frames of road video footage and road sign
images obtained from the Internet. This test set included many
challenging images affected by geometric distortion, blurring,
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Fig. 13. Confusion matrix for a cascaded classifier with color background
(accuracy = 92.1%).

Fig. 14. Chart that shows precision against recall of system as decision
threshold λ is varied.

deterioration, and partial occlusion (see Fig. 11). The accuracy
for white road signs was 89.2% and 92.1% for color signs.

The confusion matrices in Figs. 12 and 13 represent classi-
fier results for white background and color background signs,
respectively. The values on the x-axis represent the individual
road sign classes, and the values on the y-axis represent the
predictions made by the classifier. Column 1 of both matrices
represents classification as the background (negative) class, and
this is shown to have been the most common misclassification
at 7.0%, with some misclassification between nonbackground
classes at 3.4%. This case is preferred, because in the overall
system, decisions are formed over several frames, and regions
that are classified as background are simply ignored.

Fig. 14 shows the precision of the system plotted against
recall as the decision threshold λ is varied. It is shown in this
graph that, because λ is reduced to increase the number of

Fig. 15. Image that shows the detection of the “Give Way” sign (taken from
video 1).

Fig. 16. Image that shows the detection of the “Pedestrians in Road” sign
(taken from video 2).

Fig. 17. Image that shows the detection of the speed limit sign (taken from
video 3).

detections, the precision of the system falls as the number of
false positives increases.

B. Comparative Analysis

For the Gómez-Moreno et al. method, between 20 and 100
real training images per class were used to train the SVM
classifiers for recognition, as suggested in [11]. For test data, we
used several videos, filmed under a range of weather conditions,
at a variety of different vehicle speeds. Video 1 was filmed
in clear weather conditions, at low speeds of around 20 mi/h.
Video 2 was filmed in thick fog, at high vehicle speeds, e.g.,
above 50 mi/h. Video 3 was filmed in clear weather conditions,
at a variety of vehicle speeds, ranging from 20 to 60 mi/h. An
example frame from each video, with results overlaid from our
system, is shown in Figs. 15–17.
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TABLE II
COMPARATIVE RESULTS FOR GÓMEZ-MORENO ET AL.’S SYSTEM [11] AND THE PROPOSED METHOD.

THE TOTAL NUMBER OF SIGNS WAS 14 IN VIDEO 1, 5 IN VIDEO 2, AND 38 IN VIDEO 3

The results in Table II show that our proposed method
outperformed the method used in [11]. Although their detec-
tion method reasonably classified in clear weather conditions,
scenes that suffer from poor lighting conditions and strong illu-
mination caused it to fail. Our MSER detection system provides
robustness by searching for candidate regions at a range of
thresholds rather than using a single fixed value. The recog-
nition method that was proposed by Gómez-Moreno et al. [11]
also produced a large number of false positives. Our approach
of using the HOG feature descriptor with SVM performed
better than directly using pixel values.

Our method was also tested without the use of frame merg-
ing, which was described in Section III-C. Removing this part
of the system reduced the total precision to 67.7%, which is
a considerable drop from the 86.8% achieved with the use of
frame merging. Although the reported results are still too low
for use in practice, the performance is high, given the large
number of classes recognized.

C. Performance of the Synthetically Generated Test Set

To assess the relevance of the concept of synthetically gener-
ated training data, a comparison was made between a classifier
that was trained on real data from the GTSRB [29] and a
classifier that was trained on synthetic training data.

A training data set of German road signs was generated from
graphics-based images, with a single example for each class,
resulting in a total of 43 classes. A total of 1200 synthetic
images were generated for each class, and HOG features were
calculated for each image. A data set of HOG features was also
created from the images contained in the GTSRB training data
set. A linear SVM classifier was trained for both the real data
set and the generated synthetic data set. Both classifiers were
then tested using the GTSRB test data set.

The classifier that was trained on the synthetic data gave an
accuracy of 85.7%, and the classifier that was trained on real
data gave an accuracy of 85.9%. Based on these results, it is
shown that the synthetic data set produced results comparable
to a data set of hand-labeled real images. Although the results
for real training data were slightly higher than for the syn-
thetic data, the use of synthetic data allowed the tedious time-
consuming process of manually hand labeling a large data set
of real images to be avoided.

To show that the features learned by the classifier relate
only to the road signs and not to background information,

the classifier was also tested using a data set that comprises
synthetically generated images, but with different backgrounds
from that in the training set. The accuracy achieved for this
experiment was 97.6%, which verified the claim.

To more thoroughly validate the system, another classifier
was trained, with a data set that contains real images and
synthetically generated interpolations, created using randomly
distorted version of the real images. The total number of images
in this data set was 43 509. This classifier had an overall
accuracy of 89.2%, which was greater than either the fully
synthetic or the fully real data set.

V. CONCLUSION

We have proposed a novel real-time system for the automatic
detection and recognition of traffic symbols. Candidate regions
are detected as MSERs. This detection method is significantly
insensitive to variations in illumination and lighting conditions.
Traffic symbols are recognized using HOG features and a
cascade of linear SVM classifiers. A method for the synthetic
generation of training data has been proposed, which allows
large data sets to be generated from template images, removing
the need for hand labeled data sets. Our system can identify
signs from the whole range of ideographic traffic symbols
currently in use in the U.K. [2], which form the basis of our
training data. The system retains a high accuracy at a variety of
vehicle speeds.
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