
 
 

Overview Graph Coverage 
Criteria 



2 

Graph Coverage 

Four Structures for 
Modeling Software 

Graphs Logic Input Space Syntax 

Use cases 

Specs 

Design 

Source 

Applied 
to 

DNF Specs 

FSMs Source 

Applied to 

Input 

Models 

Integ 

Source 

Applied 
to 



Covering Graphs 

• Graphs are the most commonly used structure for testing 
 

• Graphs can come from many sources 
– Control flow graphs 

– Design structure 

– FSMs and statecharts 

– Use cases 

 

• Tests usually are intended to “cover” the graph in some 
way 

3 



4 

Definition of a Graph 

• A set N of nodes, N is not empty 
 

• A set N0 of initial nodes, N0 is not empty 
 

• A set Nf of final nodes, Nf is not empty 
 

• A set E of edges, each edge from one node to another 
– ( ni , nj ), i is predecessor, j is successor 



5 

Three Example Graphs 

1 

3 2 

4 

N0 = { 1} 

Nf = { 4 } 

1 

3 2 

4 

N0 = { } 

Nf = { 4 } 

10 

1 

5 4 

8 

2 

6 

9 

3 

7 

N0 = { 1, 2, 3 } 

Nf = { 8, 9, 10 } 

Not a 

valid 

graph 



6 

Paths in Graphs 
• Path : A sequence of nodes – [n1, n2, …, nM] 

– Each pair of nodes is an edge 

• Length : The number of edges 
– A single node is a path of length 0 

• Subpath : A subsequence of nodes in p is a subpath of p 

• Reach (n) : Subgraph that can be reached from n 

10 8 9 

1 2 3 

5 4 6 7 

A Few Paths 

[ 1, 4, 8 ] 

[ 2, 5, 9, 6, 2 ] 

[ 3, 7, 10 ] 

Reach (1) = { 1, 4, 5, 

8, 9, 6, 2, 10 } 

Reach ({1, 3}) = G 

Reach([3,7]) = {3, 7, 

10} 



7 

Test Paths and SESEs 

• Test Path : A path that starts at an initial node and ends 
at a final node 

• Test paths represent execution of test cases 
– Some test paths can be executed by many tests 

– Some test paths cannot be executed by any tests 

• SESE graphs : All  test paths start at a single node and end 
at another node 

– Single-entry, single-exit 

– N0 and Nf have exactly one node 

1 

3 

2 

7 4 

6 

5 
Double-diamond graph 

Four test paths 

[1, 2, 4, 5, 7] 

[1, 2, 4, 6, 7] 

[1, 3, 4, 5, 7] 

[1, 3, 4, 6, 7] 



8 

Visiting and Touring 

• Visit : A test path p visits node n if n is in p 

               A test path p visits edge e if e is in p 

• Tour : A test path p tours subpath q if q is a subpath of p 

Path [ 1, 2, 4, 5, 7 ] 

Visits nodes 1, 2, 4, 5, 7 

Visits edges (1, 2),   (2, 4),   (4, 5),  (5, 7) 

Tours subpaths [1, 2, 4],   [2, 4, 5],   [4, 5, 7],   [1, 2, 4, 5],   [2, 4, 5, 7] 



9 

Tests and Test Paths 

• path (t) : The test path executed by test t 

• path (T) : The set of test paths executed by the set of 
tests T 

 

• Each test executes one and only one test path 

• A location in a graph (node or edge) can be reached from 
another location if there is a sequence of edges from the 
first location to the second 

– Syntactic reach : A subpath exists in the graph 

– Semantic reach : A test exists that can execute that subpath 



10 

Tests and Test Paths 
test 1 

test 2 

test 3 

many-to-one 

test 1 

test 2 

test 3 

many-to-many 
Test Path 1 

Test Path 2 

Test Path 3 

Non-deterministic software–a test can execute different test 

paths 

Test 

Path 

Deterministic software–a test always executes the same test 

path 



11 

Testing and Covering Graphs (6.2) 

• We use graphs in testing as follows : 
– Developing a model of the software as a graph 

– Requiring tests to visit or tour specific sets of nodes, edges or subpaths 

• Test Requirements (TR) : Describe properties of test paths 

• Test Criterion : Rules that define test requirements 

• Satisfaction : Given a set TR of test requirements for a criterion C, a set 
of tests T satisfies C on a graph if and only if for every test requirement in 
TR, there is a test path in path(T) that meets the test requirement tr 

• Structural Coverage Criteria : Defined on a graph just in terms of 
nodes and edges 

• Data Flow Coverage Criteria : Requires a graph to be annotated 
with references to variables 



12 

Node and Edge Coverage 

• The first (and simplest) two criteria require that each 
node and edge in a graph be executed  

Node Coverage (NC) : Test set T satisfies node coverage 

on graph G iff for every syntactically reachable node n in 

N, there is some path p in path(T) such that p visits n. 

Node Coverage (NC) : TR contains each reachable node 

in G. 

• This statement is a bit cumbersome, so we abbreviate it in 
terms of the set of test requirements  



13 

Node and Edge Coverage 

• Edge coverage is slightly stronger than node coverage  

Edge Coverage (EC) : TR contains each reachable path of 

length up to 1, inclusive, in G. 

• The phrase “length up to 1” allows for graphs with one node and no 
edges 

• NC and EC are only different when there is an edge and another 
subpath between a pair of nodes (as in an “if-else” statement) 

Node Coverage :  TR = { 1, 2, 3 } 

                             Test Path = [ 1, 2, 3 ] 

 

Edge Coverage : TR = { (1, 2), (1, 3), (2, 3) } 

                             Test Paths = [ 1, 2, 3 ] 

                                                   [ 1, 3 ] 

2 

3 

1 



14 

Paths of Length 1 and 0 

• A graph with only one node will not have any edges  

• It may seem trivial, but formally, Edge Coverage needs to 
require Node Coverage on this graph 

1 

• Otherwise, Edge Coverage will not subsume Node 
Coverage 

– So we define “length up to 1” instead of simply “length 1” 

2 

1 
• We have the same issue with graphs that 

only have one edge – for Edge Pair 
Coverage … 



15 

Covering Multiple Edges 

• Edge-pair coverage requires pairs of edges, or subpaths of 
length 2 

Edge-Pair Coverage (EPC) : TR contains each reachable 

path of length up to 2, inclusive, in G. 

• The phrase “length up to 2” is used to include graphs that have less 
than 2 edges 

Complete Path Coverage (CPC) : TR contains all paths in 

G. 

Specified Path Coverage (SPC) : TR contains a set S of 

test paths, where S is supplied as a parameter. 

• The logical extension is to require all paths … 

• Unfortunately, this is impossible if the graph has a loop, so a weak 
compromise is to make the tester decide which paths: 



16 

Structural Coverage Example 
Node Coverage 

TR = { 1, 2, 3, 4, 5, 6, 7 } 

Test Paths: [ 1, 2, 3, 4, 7 ] [ 1, 2, 3, 5, 6, 5, 7 ] 

7 

1 

3 

2 

4 5 

Edge Coverage 

TR = { (1,2), (1, 3), (2, 3), (3, 4), (3, 5), (4, 7), (5, 6), (5, 7), 

(6, 5) } 

Test Paths: [ 1, 2, 3, 4, 7 ] [1, 3, 5, 6, 5, 7 ] 

Edge-Pair Coverage 

TR = {[1,2,3], [1,3,4], [1,3,5], [2,3,4], [2,3,5], [3,4,7], 

             [3,5,6], [3,5,7], [5,6,5], [6,5,6], [6,5,7] } 

Test Paths: [ 1, 2, 3, 4, 7 ] [ 1, 2, 3, 5, 7 ] [ 1, 3, 4, 7 ]  

                     [ 1, 3, 5, 6, 5, 6, 5, 7 ] 

Complete Path Coverage 

Test Paths: [ 1, 2, 3, 4, 7 ] [ 1, 2, 3, 5, 7 ] [ 1, 2, 3, 5, 6, 5, 6 

] [ 1, 2, 3, 5, 6, 5, 6, 5, 7 ] [ 1, 2, 3, 5, 6, 5, 6, 5, 6, 5, 7 ] … 

6 



17 

Loops in Graphs 

• If a graph contains a loop, it has an infinite number of paths 
 

• Thus, CPC is not feasible 
 

• SPC is not satisfactory because the results are subjective 
and vary with the tester 

 

• Attempts to “deal with” loops: 
– 1970s : Execute cycles once  ([4, 5, 4] in previous example, informal) 

– 1980s : Execute each loop, exactly once (formalized) 

– 1990s : Execute loops 0 times, once, more than once (informal description) 

– 2000s : Prime paths 



18 

Simple Paths and Prime Paths 
• Simple Path : A path from node ni to nj is simple if no node 

appears more than once, except possibly the first and last 
nodes are the same 

– No internal loops 

– A loop is a simple path 

• Prime Path : A simple path that does not appear as a proper 
subpath of any other simple path 

Simple Paths : [1,2,4,1], [1,3,4,1], [2,4,1,2], 

[2,4,1,3], [3,4,1,2], [3,4,1,3], [4,1,2,4], [4,1,3,4], 

[1,2,4], [1,3,4], [2,4,1], [3,4,1], [4,1,2], [4,1,3], [1,2], 

[1,3], [2,4], [3,4], [4,1], [1], [2], [3], [4] 

 

Prime Paths : [2,4,1,2], [2,4,1,3], [1,3,4,1], [1,2,4,1], 

[3,4,1,2], [4,1,3,4], [4,1,2,4], [3,4,1,3] 

2 3 

1 

4 



19 

Prime Path Coverage 

• A simple, elegant and finite criterion that requires loops 
to be executed as well as skipped 

Prime Path Coverage (PPC) : TR contains each prime path 

in G. 

• Will tour all paths of length 0, 1, … 

• That is, it subsumes node and edge coverage 

• PPC does NOT subsume EPC 

• If a node n has an edge to itself, EPC will require [n, n, m] 

• [n, n, m] is not prime 



20 

Round Trips 

• Round-Trip Path : A prime path that starts and ends at the 
same node 

Simple Round Trip Coverage (SRTC) : TR contains at 

least one round-trip path for each reachable node in G 

that begins and ends a round-trip path. 

Complete Round Trip Coverage (CRTC) : TR contains all 

round-trip paths for each reachable node in G. 

• These criteria omit nodes and edges that are not in round trips 

• That is, they do not subsume edge-pair, edge, or node coverage 



21 

Prime Path Example 

• The previous example has 38 simple paths 

• Only nine prime paths 

Prime Paths 

[1, 2, 3, 4, 7] 

[1, 2, 3, 5, 7] 

[1, 2, 3, 5, 6] 

[1, 3, 4, 7] 

[1, 3, 5, 7] 

[1, 3, 5, 6] 

[6, 5, 7] 

[6, 5, 6] 

[5, 6, 5] 

Execute 

loop once 

Execute loop 

more than once 
6 

1 

3 

2 

4 5 

7 

Execute 

loop 0 times 



26 

Data Flow Criteria 

• Definition (def) : A location where a value for a variable is 
stored into memory 

• Use : A location where a variable’s value is accessed 

Goal: Try to ensure that values are computed and used 

correctly 

1 

3 

2 

7 4 

6 

5 
X = 42 

Z = X-8 

Z = X*2 Defs: def (1) = {X} 

        def (5) = {Z} 

        def (6) = {Z} 

Uses: use (5) = {X} 

         use (6) = {X} 

The values given in defs should reach at least one, some, or 

all possible uses 



DU Pairs and DU Paths 

 

27 

• def (n) or def (e) : The set of variables that are defined by node n  

   or edge e 

• use (n) or use (e) : The set of variables that are used by node n or  

   edge e 

• DU pair : A pair of locations (li, lj) such that a variable v is  

   defined at li and used at lj 

• Def-clear : A path from li to lj is def-clear with respect to variable  

  v if v is not given another value on any of the nodes or edges in  

  the path 

• Reach : If there is a def-clear path from li to lj with respect to v,  

  the def of v at li reaches the use at lj 

• du-path : A simple subpath that is def-clear with respect to v  

  from a def of v to a use of v 

• du (ni, nj, v) – the set of du-paths from ni to nj 

• du (ni, v) – the set of du-paths that start at ni 



29 

Data Flow Test Criteria 

All-defs coverage (ADC) : For each set of du-paths S = du 

(n, v), TR contains at least one path d in S. 

All-uses coverage (AUC) : For each set of du-paths to 

uses S = du (ni, nj, v), TR contains at least one path d in S. 

All-du-paths coverage (ADUPC) : For each set S = du (ni, 

nj, v), TR contains every path d in S. 

• Then we make sure that every def reaches all possible uses 

• Finally, we cover all the paths between defs and uses 

• First, we make sure every def reaches a use 



30 

Data Flow Testing Example 

1 

3 

2 

7 4 

6 

5 
X = 42 

Z = X-8 

Z = X*2 

All-defs for X 

[ 1, 2, 4, 5 ] 

All-uses for X 

[ 1, 2, 4, 5 ] 

[ 1, 2, 4, 6 ] 

All-du-paths for X 

[ 1, 2, 4, 5 ] 

[ 1, 3, 4, 5 ] 

[ 1, 2, 4, 6 ] 

[ 1, 3, 4, 6 ] 



 
 

Graph Coverage for Source 
Code 



33 

Overview 

• A common application of graph criteria is to program 
source 

• Graph : Usually the control flow graph (CFG) 

• Node coverage : Execute every statement 

• Edge coverage : Execute every branch 

• Loops : Looping structures such as for loops, while loops, 
etc. 

• Data flow coverage : Augment the CFG 

– defs are statements that assign values to variables 

– uses are statements that use variables 



34 

Control Flow Graphs 

• A CFG models all executions of a method by describing 
control structures 

• Nodes : Statements or sequences of statements (basic 
blocks) 

• Edges : Transfers of control 

• Basic Block : A sequence of statements such that if the first 
statement is executed, all statements will be (no branches) 

• CFGs are sometimes annotated with extra information 

– branch predicates 

– defs 

– uses 

• Rules for translating statements into graphs … 



35 

CFG : The if Statement 

if (x < y) 

{ 

   y = 0; 

   x = x + 1; 

} 

else 

{ 

   x = y; 

} 
4 

1 

2 3 

x >= y x < y 

x = y 
y = 0 

x = x + 1 

if (x < y) 

{ 

   y = 0; 

   x = x + 1; 

} 

3 

1 

2 
x >= y 

x < y 

y = 0 

x = x + 1 



36 

CFG : The if-Return Statement 

if (x < y) 

{ 

   return; 

} 

print (x); 

return; 

3 

1 

2 
x >= y 

x < y 

return 

print (x) 

return 

No edge from node 2 to 3. 

The return nodes must be distinct. 



37 

Loops 

• Loops require “extra” nodes to be added 

 

• Nodes that do not represent statements or basic blocks 



38 

CFG : while and for Loops 

x = 0; 

while (x < y) 

{ 

   y = f (x, y); 

   x = x + 1; 

} 

1 x = 0 

4 3 

y =f(x,y) 

x = x + 1 

x >= y x < y 

for (x = 0; x < y; x++) 

{ 

   y = f (x, y); 

} 

1 

x = x + 1 

2 

3 5 

x >= y x < y 

y = f (x, y) 

4 

2 

dummy node 

x = 0 
implicitly 

initializes loop 

implicitly 

increments loop 



39 

CFG : do Loop, break and 
continue 

x = 0; 

do 

{ 

   y = f (x, y); 

   x = x + 1; 

} while (x < y); 

println (y) 

 

1 x = 0 

3 

2 

x >= y 
x < y 

y = f (x, y) 

x = x+1 

1 x = 0 

8 

3 

x = x + 1 

break 

y < 0 

2 

4 

5 

6 

7 

y =f(x,y) 

y == 0 

y = y*2 

continue 

x = 0; 

while (x < y) 

{ 

   y = f (x, y); 

   if (y == 0) 

   { 

      break; 

   } else if y < 0) 

   { 

      y = y*2; 

      continue; 

   } 

   x = x + 1; 

} 

print (y); 



40 

CFG : The case (switch) Structure 

read ( c) ; 

switch ( c ) 

{ 

   case ‘N’: 

      y = 25; 

      break; 

   case ‘Y’: 

      y = 50; 

      break; 

   default: 

      y = 0; 

      break; 

} 

print (y); 

5 

1 read ( c ); 

c == ‘N’ 

y = 0; 

break; 

2 4 3 

c == ‘Y’ default 

y = 50; 

break; 

y = 25; 

break; 

print (y); 



Example Control Flow – Stats 
public static void computeStats (int [ ] numbers) 
{ 
     int length = numbers.length; 
     double med, var, sd, mean, sum, varsum; 
 
     sum = 0; 
     for (int i = 0; i < length; i++) 
     { 
          sum += numbers [ i ]; 
     }  
     med   = numbers [ length / 2]; 
     mean = sum / (double) length; 
 
     varsum = 0; 
     for (int i = 0; i < length; i++) 
     { 
          varsum = varsum  + ((numbers [ I ] - mean) * (numbers [ I ] - mean)); 
     } 
     var = varsum / ( length - 1.0 ); 
     sd  = Math.sqrt ( var ); 
 
     System.out.println ("length:                   " + length); 
     System.out.println ("mean:                    " + mean); 
     System.out.println ("median:                 " + med); 
     System.out.println ("variance:                " + var); 
     System.out.println ("standard deviation: " + sd); 
} 

41 



Control Flow Graph for Stats 
public static void computeStats (int [ ] numbers) 
{ 
     int length = numbers.length; 
     double med, var, sd, mean, sum, varsum; 
 
     sum = 0; 
     for (int i = 0; i < length; i++) 
     { 
          sum += numbers [ i ]; 
     }  
     med   = numbers [ length / 2]; 
     mean = sum / (double) length; 
 
     varsum = 0; 
     for (int i = 0; i < length; i++) 
     { 
          varsum = varsum  + ((numbers [ I ] - mean) * (numbers [ I ] - mean)); 
     } 
     var = varsum / ( length - 1.0 ); 
     sd  = Math.sqrt ( var ); 
 
     System.out.println ("length:                   " + length); 
     System.out.println ("mean:                    " + mean); 
     System.out.println ("median:                 " + med); 
     System.out.println ("variance:                " + var); 
     System.out.println ("standard deviation: " + sd); 
} 

i = 0 

i >= length 

i < length 

i++ 

i >= length 
i < length 

i = 0 

i++ 

1 

2 

3 

5 
4 

6 

8 7 

42 



Control Flow TRs and Test Paths—EC 

1 

2 

3 

5 
4 

6 

8 7 

TR 

A. [ 1, 2 ] 

B. [ 2, 3 ] 

C. [ 3, 4 ] 

D. [ 3, 5 ] 

E. [ 4, 3 ] 

F. [ 5, 6 ] 

G. [ 6, 7 ] 

H. [ 6, 8 ] 

I. [ 7, 6 ] 

Test Path 

[ 1, 2, 3, 4, 3, 5, 6, 7, 6, 8 ] 

Edge Coverage 

43 



44 

Control Flow TRs and Test Paths—EPC 

1 

2 

3 

5 
4 

6 

8 7 

TR 

A. [ 1, 2, 3 ] 

B. [ 2, 3, 4 ] 

C. [ 2, 3, 5 ] 

D. [ 3, 4, 3 ] 

E. [ 3, 5, 6 ] 

F. [ 4, 3, 5 ] 

G. [ 5, 6, 7 ] 

H. [ 5, 6, 8 ] 

I. [ 6, 7, 6 ] 

J. [ 7, 6, 8 ] 

K. [ 4, 3, 4 ] 

L. [ 7, 6, 7 ] 

Test Paths 

i. [ 1, 2, 3, 4, 3, 5, 6, 7, 6, 8 ] 

ii. [ 1, 2, 3, 5, 6, 8 ] 

iii. [ 1, 2, 3, 4, 3, 4, 3, 5, 6, 7, 

       6, 7, 6, 8 ] 

Edge-Pair Coverage 



45 

Control Flow TRs and Test Paths—PPC 

1 

2 

3 

5 
4 

6 

8 7 

TR 

A. [ 3, 4, 3 ] 

B. [ 4, 3, 4 ] 

C. [ 7, 6, 7 ] 

D. [ 7, 6, 8 ] 

E. [ 6, 7, 6 ] 

F. [ 1, 2, 3, 4 ] 

G. [ 4, 3, 5, 6, 7 ] 

H. [ 4, 3, 5, 6, 8 ] 

I. [ 1, 2, 3, 5, 6, 7 ] 

J. [ 1, 2, 3, 5, 6, 8 ] 

Test Paths 

i.  [ 1, 2, 3, 4, 3, 5, 6, 7, 6, 8 ] 

ii. [ 1, 2, 3, 4, 3, 4, 3, 

       5, 6, 7, 6, 7, 6, 8 ] 

iii. [ 1, 2, 3, 4, 3, 5, 6, 8 ] 

iv. [ 1, 2, 3, 5, 6, 7, 6, 8 ] 

v.  [ 1, 2, 3, 5, 6, 8 ] 

Prime Path Coverage 



46 

Data Flow Coverage for Source 

• def : a location where a value is stored into memory 
– x appears on the left side of an assignment (x = 44;) 
– x is an actual parameter in a call and the method changes its value 
– x is a formal parameter of a method (implicit def when method 

starts) 
– x is an input to a program 

• use : a location where variable’s value is accessed 
– x appears on the right side of an assignment 
– x appears in a conditional test 
– x is an actual parameter to a method 
– x is an output of the program 
– x is an output of a method in a return statement 

• If a def and a use appear on the same node, then it is only 
a DU-pair if the def occurs after the use and the node is in 
a loop 



47 

Example Data Flow – Stats 
public static void computeStats (int [ ] numbers) 
{ 
     int length = numbers.length; 
     double med, var, sd, mean, sum, varsum; 
 
     sum = 0.0; 
     for (int i = 0; i < length; i++) 
     { 
          sum += numbers [ i ]; 
     } 
     med   = numbers [ length / 2 ];  
     mean = sum / (double) length;  
 
     varsum = 0.o; 
     for (int i = 0; i < length; i++) 
     { 
          varsum = varsum  + ((numbers [ i ] - mean) * (numbers [ i ] - mean)); 
     } 
     var = varsum / ( length - 1 ); 
     sd  = Math.sqrt ( var ); 
 
     System.out.println ("length:                   " + length); 
     System.out.println ("mean:                    " + mean); 
     System.out.println ("median:                 " + med); 
     System.out.println ("variance:                " + var); 
     System.out.println ("standard deviation: " + sd); 
} 



48 

8 

1 

2 

4 

3 

5 

6 

7 

Control Flow Graph for Stats  
( numbers ) 

sum = 0 

length = numbers.length 

i = 0 

i >= length 

i < length 

sum += numbers [ i ] 

i++ 

med = numbers [ length / 2 ] 

mean = sum / (double) length 

varsum = 0 

i = 0 

i >= length 

i < length 

varsum = … 

i++ 

var = varsum / ( length - 1.0 ) 

sd  = Math.sqrt ( var ) 

print (length, mean, med, var, sd) 



49 

8 

1 

2 

4 

3 

5 

6 

7 

CFG for Stats – With Defs & Uses 

def (1) = { numbers, sum, length } 

def (2) = { i } 

def (5) = { med, mean, varsum, i } 

use (5) = { numbers, length, sum } 

def (8) = { var, sd } 

use (8) = { varsum, length, mean, 

                   med, var, sd } 

use (3, 5) = { i, length } 

use (3, 4) = { i, length } 

def (4) = { sum, i } 

use (4) = { sum, numbers, i } 

use (6, 8) = { i, length } 

use (6, 7) = { i, length } 

def (7) = { varsum, i } 

use (7) = { varsum, numbers, i, mean } 



50 

Defs and Uses Tables for Stats  

Node Def Use 

1 { numbers, sum, 
length } 

 { numbers } 

2 { i } 

3 

4 { sum, i } { numbers, i, sum } 

5 { med, mean, 
varsum, i } 

{ numbers, length, sum } 

6 

7 { varsum, i } { varsum, numbers, i, 
mean } 

8 { var, sd } { varsum, length, var, 
mean, med, var, sd } 

Edge Use 

(1, 2) 

(2, 3) 

(3, 4) { i, length } 

(4, 3) 

(3, 5) { i, length } 

(5, 6) 

(6, 7) { i, length } 

(7, 6) 

(6, 8) { i, length } 



51 

DU Pairs for Stats  

variable DU Pairs 

numbers (1, 4) (1, 5) (1, 7) 

length (1, 5) (1, 8) (1, (3,4)) (1, (3,5)) (1, (6,7)) (1, (6,8)) 

med (5, 8) 

var (8, 8) 

sd (8, 8) 

mean (5, 7) (5, 8) 

sum (1, 4) (1, 5) (4, 4) (4, 5) 

varsum (5, 7) (5, 8) (7, 7) (7, 8) 

i (2, 4) (2, (3,4)) (2, (3,5)) (2, 7) (2, (6,7)) (2, (6,8)) 

(4, 4) (4, (3,4)) (4, (3,5)) (4, 7) (4, (6,7)) (4, (6,8)) 

(5, 7) (5, (6,7)) (5, (6,8)) 

(7, 7) (7, (6,7)) (7, (6,8)) 

No def-clear path … 

different scope for i 

No path through graph 

from nodes 5 and 7 to 4 or 3 

defs come before uses, 

do not count as DU pairs 

defs after use in loop, 

these are valid DU pairs 



52 

DU Paths for Stats 
variable DU Pairs DU Paths 

numbers (1, 4) 

(1, 5) 

(1, 7) 

[ 1, 2, 3, 4 ] 

[ 1, 2, 3, 5 ] 

[ 1, 2, 3, 5, 6, 7 ] 

length (1, 5) 

(1, 8) 

(1, (3,4)) 

(1, (3,5)) 

(1, (6,7)) 

(1, (6,8)) 

[ 1, 2, 3, 5 ] 

[ 1, 2, 3, 5, 6, 8 ] 

[ 1, 2, 3, 4 ] 

[ 1, 2, 3, 5 ] 

[ 1, 2, 3, 5, 6, 7 ] 

[ 1, 2, 3, 5, 6, 8 ]  

med (5, 8) [ 5, 6, 8 ] 

var (8, 8) No path needed 

sd (8, 8) No path needed 

sum (1, 4) 

(1, 5) 

(4, 4) 

(4, 5) 

[ 1, 2, 3, 4 ] 

[ 1, 2, 3, 5 ] 

[ 4, 3, 4 ] 

[ 4, 3, 5 ] 

variable DU Pairs DU Paths 

mean (5, 7) 

(5, 8) 

[ 5, 6, 7 ] 

[ 5, 6, 8 ] 

varsum (5, 7) 

(5, 8) 

(7, 7) 

(7, 8) 

[ 5, 6, 7 ] 

[ 5, 6, 8 ] 

[ 7, 6, 7 ] 

[ 7, 6, 8 ] 

i (2, 4) 

(2, (3,4)) 

(2, (3,5)) 

(4, 4) 

(4, (3,4)) 

(4, (3,5)) 

(5, 7) 

(5, (6,7)) 

(5, (6,8)) 

(7, 7) 

(7, (6,7)) 

(7, (6,8)) 

[ 2, 3, 4 ] 

[ 2, 3, 4 ] 

[ 2, 3, 5 ] 

[ 4, 3, 4 ] 

[ 4, 3, 4 ] 

[ 4, 3, 5 ] 

[ 5, 6, 7 ] 

[ 5, 6, 7 ] 

[ 5, 6, 8 ] 

[ 7, 6, 7 ] 

[ 7, 6, 7 ] 

[ 7, 6, 8 ] 



53 

DU Paths for Stats—No Duplicates 

There are 38 DU paths for Stats, but only 12 unique 

[ 1, 2, 3, 4 ] 

[ 1, 2, 3, 5 ] 

[ 1, 2, 3, 5, 6, 7 ] 

[ 1, 2, 3, 5, 6, 8 ] 

[ 2, 3, 4 ] 

[ 2, 3, 5 ] 

[ 4, 3, 4 ] 

[ 4, 3, 5 ] 

[ 5, 6, 7 ] 

[ 5, 6, 8 ] 

[ 7, 6, 7 ] 

[ 7, 6, 8 ] 

4 expect a loop not to be “entered” 

2 require at least two iterations of a loop 

6 require at least one iteration of a loop 



54 

Test Cases and Test Paths 

Test Case : numbers = (44) ;  length = 1 

Test Path : [ 1, 2, 3, 4, 3, 5, 6, 7, 6, 8 ] 

Additional DU Paths covered (no sidetrips) 
[ 1, 2, 3, 4 ]   [ 2, 3, 4 ]   [ 4, 3, 5 ]   [ 5, 6, 7 ]   [ 7, 6, 8 ] 

The five  stars       that require at least one iteration of a loop 

Test Case : numbers = (2, 10, 15) ;  length = 3 

Test Path : [ 1, 2, 3, 4, 3, 4, 3, 4, 3, 5, 6, 7, 6, 7, 6, 7, 6, 8 ] 

DU Paths covered (no sidetrips) 
[ 4, 3, 4 ]   [ 7, 6, 7 ] 

The two stars       that require at least two iterations of a loop 

Other DU paths    require arrays with length 0 to skip loops 

But the method fails with index out of bounds exception… 

     med = numbers [length / 2]; A fault was 

found 



Summary 

• Applying the graph test criteria to control flow graphs is 
relatively straightforward 

– Most of the developmental research work was done with CFGs 

 

• A few subtle decisions must be made to translate control 
structures into the graph 

 

• Some tools will assign each statement to a unique node 

– These slides and the book uses basic blocks 

– Coverage is the same, although the bookkeeping will differ 

55 


