Overview Graph Coverage Criteria

Graph Coverage

Covering Graphs

Graphs are the most commonly used structure for testing

Graphs can come from many sources

- Control flow graphs
- Design structure
- FSMs and statecharts
- Use cases

 Tests usually are intended to "cover" the graph in some way

Definition of a Graph

- A set N of nodes, N is not empty
- A set N_0 of initial nodes, N_0 is not empty
- A set N_f of final nodes, N_f is not empty
- A set E of edges, each edge from one node to another
 (n_i, n_j), i is predecessor, j is successor

Three Example Graphs

Paths in Graphs

- Path : A sequence of nodes [n₁, n₂, ..., n_M]
 - Each pair of nodes is an edge
- Length : The number of edges
 - A single node is a path of length 0
- Subpath : A subsequence of nodes in p is a subpath of p
- Reach (n) : Subgraph that can be reached from n

Reach $(1) = \{ 1, 4, 5, 8, 9, 6, 2, 10 \}$ Reach $(\{1, 3\}) = G$ Reach $([3,7]) = \{3, 7, 10\}$

Test Paths and SESEs

- Test Path : A path that starts at an initial node and ends at a final node
- Test paths represent execution of test cases
 - Some test paths can be executed by many tests
 - Some test paths cannot be executed by any tests
- SESE graphs : All test paths start at a single node and end at another node
 - Single-entry, single-exit
 - N0 and Nf have exactly one node

Double-diamond graph Four test paths [1, 2, 4, 5, 7] [1, 2, 4, 6, 7] [1, 3, 4, 5, 7] [1, 3, 4, 6, 7]

Visiting and Touring

- Visit : A test path p visits node n if n is in p
 A test path p visits edge e if e is in p
- Tour : A test path p tours subpath q if q is a subpath of p

Path [1, 2, 4, 5, 7] Visits nodes 1, 2, 4, 5, 7 Visits edges (1, 2), (2, 4), (4, 5), (5, 7) Tours subpaths [1, 2, 4], [2, 4, 5], [4, 5, 7], [1, 2, 4, 5], [2, 4, 5, 7]

Tests and Test Paths

- path (t) : The test path executed by test t
- path (T): The set of test paths executed by the set of tests T
- Each test executes one and only one test path
- A location in a graph (node or edge) can be reached from another location if there is a sequence of edges from the first location to the second
 - Syntactic reach : A subpath exists in the graph
 - Semantic reach : A test exists that can execute that subpath

Tests and Test Paths

Deterministic software-a test always executes the same test

Non-deterministic software-a test can execute different test paths

Testing and Covering Graphs (6.2)

- We use graphs in testing as follows :
 - Developing a model of the software as a graph
 - Requiring tests to visit or tour specific sets of nodes, edges or subpaths
- Test Requirements (TR) : Describe properties of test paths
- Test Criterion : Rules that define test requirements
- Satisfaction : Given a set TR of test requirements for a criterion C, a set of tests T satisfies C on a graph if and only if for every test requirement in TR, there is a test path in path(T) that meets the test requirement tr
- Structural Coverage Criteria : Defined on a graph just in terms of nodes and edges
- Data Flow Coverage Criteria : Requires a graph to be annotated with references to variables

Node and Edge Coverage

 The first (and simplest) two criteria require that each node and edge in a graph be executed

<u>Node Coverage (NC)</u> : Test set T satisfies node coverage on graph G iff for every syntactically reachable node n in N, there is some path p in path(T) such that p visits n.

 This statement is a bit cumbersome, so we abbreviate it in terms of the set of test requirements

Node Coverage (NC) : TR contains each reachable node in G.

Node and Edge Coverage

• Edge coverage is slightly stronger than node coverage

Edge Coverage (EC) : TR contains each reachable path of length up to l, inclusive, in G.

- The phrase "length up to 1" allows for graphs with one node and no edges
- NC and EC are only different when there is an edge and another subpath between a pair of nodes (as in an "if-else" statement)

Node Coverage : TR = { 1, 2, 3 } Test Path = [1, 2, 3] Edge Coverage :TR = { (1, 2), (1, 3), (2, 3) } Test Paths = [1, 2, 3] [1, 3]

Paths of Length 1 and 0

- A graph with only one node will not have any edges
- It may seem trivial, but formally, Edge Coverage needs to require Node Coverage on this graph
- Otherwise, Edge Coverage will not subsume Node Coverage
 - So we define "length up to 1" instead of simply "length 1"
- We have the same issue with graphs that only have one edge – for Edge Pair Coverage …

1

Covering Multiple Edges

 Edge-pair coverage requires pairs of edges, or subpaths of length 2

Edge-Pair Coverage (EPC) : TR contains each reachable path of length up to 2, inclusive, in G.

- The phrase "length up to 2" is used to include graphs that have less than 2 edges
- The logical extension is to require all paths ...

<u>Complete Path Coverage (CPC)</u> : TR contains all paths in G.

 Unfortunately, this is impossible if the graph has a loop, so a weak compromise is to make the tester decide which paths:

<u>Specified Path Coverage (SPC)</u> : TR contains a set S of test paths, where S is supplied as a parameter.

Structural Coverage Example

3

4

5

6

Node Coverage TR = { 1, 2, 3, 4, 5, 6, 7 } Test Paths: [1, 2, 3, 4, 7] [1, 2, 3, 5, 6, 5, 7]

Edge Coverage TR = { (1,2), (1,3), (2,3), (3,4), (3,5), (4,7), (5,6), (5,7), (6,5) } Test Paths: [1, 2, 3, 4, 7] [1, 3, 5, 6, 5, 7]

Edge-Pair Coverage TR = {[1,2,3], [1,3,4], [1,3,5], [2,3,4], [2,3,5], [3,4,7], [3,5,6], [3,5,7], [5,6,5], [6,5,6], [6,5,7] } Test Paths: [1,2,3,4,7] [1,2,3,5,7] [1,3,4,7] [1,3,5,6,5,6,5,7]

Complete Path Coverage Test Paths: [1, 2, 3, 4, 7] [1, 2, 3, 5, 7] [1, 2, 3, 5, 6, 5, 6] [1, 2, 3, 5, 6, 5, 6, 5, 7] [1, 2, 3, 5, 6, 5, 6, 5, 6, 5, 7] ...

Loops in Graphs

- If a graph contains a loop, it has an infinite number of paths
- Thus, CPC is not feasible
- SPC is not satisfactory because the results are subjective and vary with the tester
- Attempts to "deal with" loops:
 - 1970s : Execute cycles once ([4, 5, 4] in previous example, informal)
 - 1980s : Execute each loop, exactly once (formalized)
 - 1990s : Execute loops 0 times, once, more than once (informal description)
 - 2000s : Prime paths

Simple Paths and Prime Paths

- Simple Path : A path from node ni to nj is simple if no node appears more than once, except possibly the first and last nodes are the same
 - No internal loops
 - A loop is a simple path
- Prime Path : A simple path that does not appear as a proper subpath of any other simple path

Simple Paths : [1,2,4,1], [1,3,4,1], [2,4,1,2], [2,4,1,3], [3,4,1,2], [3,4,1,3], [4,1,2,4], [4,1,3,4], [1,2,4], [1,3,4], [2,4,1], [3,4,1], [4,1,2], [4,1,3], [1,2], [1,3], [2,4], [3,4], [4,1], [1], [2], [3], [4]

Prime Paths : [2,4,1,2], [2,4,1,3], [1,3,4,1], [1,2,4,1], [3,4,1,2], [4,1,3,4], [4,1,2,4], [3,4,1,3]

Prime Path Coverage

• A simple, elegant and finite criterion that requires loops to be executed as well as skipped

Prime Path Coverage (PPC) : TR contains each prime path in G.

- Will tour all paths of length 0, 1, ...
- That is, it subsumes node and edge coverage
- PPC does NOT subsume EPC
 - If a node *n* has an edge to itself, EPC will require [*n*, *n*, *m*]
 - [*n*, *n*, *m*] is not prime

Round Trips

Round-Trip Path : A prime path that starts and ends at the same node

<u>Simple Round Trip Coverage (SRTC)</u> : TR contains at least one round-trip path for each reachable node in G that begins and ends a round-trip path.

<u>Complete Round Trip Coverage (CRTC)</u> : TR contains all round-trip paths for each reachable node in G.

- These criteria omit nodes and edges that are not in round trips
- That is, they do not subsume edge-pair, edge, or node coverage

Prime Path Example

- The previous example has 38 simple paths
- Only nine prime paths

Data Flow Criteria

<u>Goal</u>:Try to ensure that values are computed and used correctly

- Definition (def) : A location where a value for a variable is stored into memory
- Use : A location where a variable's value is accessed

The values given in defs should reach at least one, some, or all possible uses

DU Pairs and DU Paths

- def (n) or def (e) : The set of variables that are defined by node n or edge e
- use (n) or use (e) : The set of variables that are used by node n or edge e
- DU pair : A pair of locations (*l_i*, *l_j*) such that a variable v is defined at *l_i* and used at *l_i*
- Def-clear : A path from l_i to l_j is def-clear with respect to variable v if v is not given another value on any of the nodes or edges in the path
- Reach : If there is a def-clear path from I_i to I_j with respect to v, the def of v at I_i reaches the use at I_i
- du-path : A simple subpath that is def-clear with respect to v from a def of v to a use of v
- du (n_i, n_j, v) the set of du-paths from n_i to n_j
- du (n_i, v) the set of du-paths that start at n_i

Data Flow Test Criteria

• First, we make sure every def reaches a use

<u>All-defs coverage (ADC)</u> : For each set of du-paths S = du (*n*, *v*), TR contains at least one path *d* in *S*.

Then we make sure that every def reaches all possible uses

<u>All-uses coverage (AUC)</u> : For each set of du-paths to uses $S = du (n_p, n_p, v)$, TR contains at least one path d in S.

• Finally, we cover all the paths between defs and uses

<u>All-du-paths coverage (ADUPC)</u> : For each set S = du (ni, nj, v), TR contains every path d in S.

Data Flow Testing Example

Graph Coverage for Source Code

Overview

- A common application of graph criteria is to program source
- Graph : Usually the control flow graph (CFG)
- Node coverage : Execute every statement
- Edge coverage : Execute every branch
- Loops : Looping structures such as for loops, while loops, etc.
- Data flow coverage : Augment the CFG
 - defs are statements that assign values to variables
 - uses are statements that use variables

Control Flow Graphs

- A CFG models all executions of a method by describing control structures
- Nodes : Statements or sequences of statements (basic blocks)
- Edges : Transfers of control
- Basic Block : A sequence of statements such that if the first statement is executed, all statements will be (no branches)
- CFGs are sometimes annotated with extra information

 branch predicates
 - defs
 - uses
- Rules for translating statements into graphs ...

CFG : The if Statement

CFG : The if-Return Statement

if (x < y)
{
 return;
}
print (x);
return;</pre>

No edge from node 2 to 3. The return nodes must be distinct.

- Loops require "extra" nodes to be added
- Nodes that do not represent statements or basic blocks

CFG : while and for Loops

CFG : The case (switch) Structure

```
read ( c) ;
switch (c)
  case 'N':
   y = 25;
   break;
  case 'Y':
   y = 50;
   break;
  default:
   y = 0;
   break;
}
print (y);
```


Example Control Flow – Stats

```
public static void computeStats (int [] numbers)
```

}

```
int length = numbers.length;
double med, var, sd, mean, sum, varsum;
sum = 0:
for (int i = 0; i < \text{length}; i++)
   sum += numbers [ i ];
med = numbers [ length / 2];
mean = sum / (double) length;
varsum = 0:
for (int i = 0; i < \text{length}; i++)
   varsum = varsum + ((numbers [1] - mean) * (numbers [1] - mean));
var = varsum / (length - 1.0);
sd = Math.sqrt (var);
System.out.println ("length:
                                        " + length);
System.out.println ("mean:
                                        " + mean);
System.out.println ("median:
                                        " + med);
System.out.println ("variance:
                                        " + var):
System.out.println ("standard deviation: " + sd);
```

Control Flow Graph for Stats

Control Flow TRs and Test Paths—EC

Control Flow TRs and Test Paths—EPC

Control Flow TRs and Test Paths—PPC

TR A. [3, 4, 3] **B**. [4, 3, 4] **C**. [7, 6, 7] **D**. [7, 6, 8] **E**. [6, 7, 6] **F**[1, 2, 3, 4] **G**. [4, 3, 5, 6, 7] H. [4, 3, 5, 6, 8] **I**, **[]**, **2**, **3**, **5**, **6**, **7] [[]**, **2**, **3**, **5**, **6**, **8]**

Prime Path Coverage

Test Pathsi. [1, 2, 3, 4, 3, 5, 6, 7, 6, 8]ii. [1, 2, 3, 4, 3, 4, 3, 5, 6, 7, 6, 7, 6, 8]iii. [1, 2, 3, 4, 3, 5, 6, 8]iv. [1, 2, 3, 5, 6, 7, 6, 8]v. [1, 2, 3, 5, 6, 8]

Data Flow Coverage for Source

- def : a location where a value is stored into memory
 - -x appears on the left side of an assignment (x = 44;)
 - -x is an actual parameter in a call and the method changes its value
 - x is a formal parameter of a method (implicit def when method starts)
 - -x is an input to a program
- use : a location where variable's value is accessed
 - -x appears on the right side of an assignment
 - x appears in a conditional test
 - -x is an actual parameter to a method
 - -x is an output of the program
 - -x is an output of a method in a return statement

 If a def and a use appear on the same node, then it is only a DU-pair if the def occurs after the use and the node is in a loop

<u> Example Data Flow – Stats</u>

```
public static void computeStats (int [] numbers)
   int length = numbers.length;
   double med, var, sd, mean, sum, varsum;
   sum = 0.0:
   for (int i = 0; i < \text{length}; i++)
      sum += numbers [ i ];
   med = numbers [ length / 2 ];
   mean = sum / (double) length;
   varsum = 0.0;
   for (int i = 0; i < \text{length}; i++)
      varsum = varsum + ((numbers [ i ] - mean) * (numbers [ i ] - mean));
   var = varsum / (length - 1);
   sd = Math.sqrt (var);
                                           " + length);
   System.out.println ("length:
   System.out.println ("mean:
                                            " + mean);
   System.out.println ("median:
                                           " + med);
                                           " + var);
   System.out.println ("variance:
   System.out.println ("standard deviation: " + sd);
```

Control Flow Graph for Stats

CFG for Stats – With Defs & Uses

Defs and Uses Tables for Stats

Node	Def	Use	Edge	Use
I	{ numbers, sum, length }	{ numbers }	(1, 2)	
2	{ i }		(2, 3)	{ i, length }
3			(4 3)	
4	{ sum, i }	{ numbers, i, sum }		(• I
5	{ med, mean,	{ numbers, length, sum }	(3, 5)	{ I, length }
	varsum, i }		(5, 6)	
6			(6, 7)	{ i, length }
7	{ varsum, i }	{ varsum, numbers, i,	(7, 6)	
		mean }	(6,8)	{ i, length }
8	{ var, sd }	<pre>{ varsum, length, var, mean, med, var, sd }</pre>		

DU Pairs for Stats

variable	DU Pairs	defs come <u>before</u> uses,			
numbers	(1,4)(1,5)(1,7)				
length	(1,5)(1,8)(1,(3,4))(1,(3,5))(
med	(5,8)				
var	(8,8)	defs <u>after</u> use i	n loop,		
sd	(8,8)	these are valid	DU pairs		
mean	(5,7) (5,8)				
sum	(1,4) (1,5) (4,4) (4,5)	No def-clear pa	for i		
varsum	(5,7) (5,8) (7,7) (7,8)				
i	(2, 4) (2, (7, 4)) (2, (3, 5)) (7, 7) (7,	2, (6,7)) (2, (6,8 <u>))</u>			
	(4, 4) (4, (3,4)) (4, (3,5)) (4, 7) (4, 7)	1, (6,7)) (1, (6,8))			
	(5, 7) (5, (6,7)) (5, (6,8))				
((7,7)(7,(6,7))(7,(6,8))	7) (7, (6,7)) (7, (6,8)) No path through graph			
		om nodes 5 and	/ to 4 or 3		

DU Paths for Stats

variable	DU Pairs	DU Paths	variable	DU Pairs	DU Paths
numbers	(1,4)	[1, 2, 3, 4]	mean	(5, 7)	[5,6,7]
	(1,5)	[1,2,3,5]		(5, 8)	[5, 6, 8]
	(1, /)	[1, 2, 3, 5, 6, 7]	varsum	(5, 7)	[5, 6, 7]
length	(1,5)	[1, 2, 3, 5]		(5, 8)	[5, 6, 8]
	(1,8)	[1,2,3,5,6,8]		(7,7)	[7,6,7]
	(1, (3,4))	[1,2,3,4]		(7,8)	[/, 6, 8]
	(1, (3,5))	[1,2,3,5]	i	(2, 4)	[2,3,4]
	(1, (6,7))	[1, 2, 3, 5, 6, 7]		(2, (3,4))	[2,3,4]
	(1, (6,8))	[1, 2, 3, 5, 6, 8]		(2, (3,5))	[2, 3, 5]
				(4, 4)	[4,3,4]
med	(5, 8)	[5, 6, 8]		(4, (3,4))	[4,3,4]
var	(8, 8)	No path needed		(4, (3,5))	[4,3,5]
sd	(8, 8)	No path needed		(5, 7)	[5,6,7]
sum	(1, 4)	[1, 2, 3, 4]		(5, (6,7))	[5,6,7]
	(1,5)	[1, 2, 3, 5]		(5, (6,8))	[5,6,8]
	(4, 4)	[4,3,4]		(7, 7)	[7,6,7]
	(4, 5)	[4,3,5]		(7, (6, 7))	
				(7, (6,8))	[7,6,8]

DU Paths for Stats—No Duplicates

There are 38 DU paths for Stats, but only 12 unique

★ 4 expect a loop not to be "entered"

✤ 6 require at least one iteration of a loop

2

2 require at least <u>two</u> iterations of a loop

Test Cases and Test Paths

Test Case : numbers = (44) ; length = 1 Test Path : [1, 2, 3, 4, 3, 5, 6, 7, 6, 8] <u>Additional DU Paths covered (no sidetrips)</u> [1, 2, 3, 4] [2, 3, 4] [4, 3, 5] [5, 6, 7] [7, 6, 8] The five stars + that require at least one iteration of a loop

Test Case : numbers = (2, 10, 15) ; length = 3 Test Path : [1, 2, 3, 4, 3, 4, 3, 4, 3, 5, 6, 7, 6, 7, 6, 7, 6, 8] <u>DU Paths covered (no sidetrips)</u> [4, 3, 4] [7, 6, 7] The two stars that require at least two iterations of a loop

Other DU paths * require arrays with length 0 to skip loops But the method fails with index out of bounds exception... med = numbers [length / 2];

found

Summary

- Applying the graph test criteria to control flow graphs is relatively straightforward
 - Most of the developmental research work was done with CFGs
- A few subtle decisions must be made to translate control structures into the graph
- Some tools will assign each statement to a unique node
 These slides and the book uses basic blocks
 - Coverage is the same, although the bookkeeping will differ