e

Overview Graph Coverage
Criteria

Four Structures for
Modeling Software

Source Specs

Design Use cases

‘ Covering Graphs

« Graphs are the most commonly used structure for testing

« Graphs can come from many sources

— Control flow graphs
— Design structure
— FSMs and statecharts

— Use cases

 Tests usually are intended to “cover” the graph in some
way

‘ Definition of a Graph

A set N of nodes, N is not empty

A set N, of initial nodes, N, is not empty

A set N:of final nodes, N;is not empty

A set E of edges, each edge from one node to another

— (n;, n;), i is predecessor, j is successor

Three Example Graphs

| | | |
@i@\ ® @ @

D ® ® OTFF
oG e

No={1} No={1,2,3} N, ={}
N;={4} N,={8,9,10} N,={4)}

‘ Paths in Graphs

» Path : A sequence of nodes — [n, n,, ..., ny]

— Each pair of nodes is an edge

 Length : The number of edges

— A single node is a path of length 0
 Subpath : A subsequence of nodes in p is a subpath of p

« Reach (n) : Subgraph that can be reached from n
y |

a e e A Few Paths || Reach (1) ={1, 4,5,

48] 8,9,6,2 10}

@ (D (@) (Diasaes |Ren@d=c
'3.7.10] Reach([3,7]) = {3, 7,
OO ©®

10}

‘ Test Paths and SESEs

» Test Path : A path that starts at an initial node and ends
at a final node

 Test paths represent execution of test cases

— Some test paths can be executed by many tests

— Some test paths cannot be executed by any tests

« SESE graphs : All test paths start at a single node and end
at another node

— Single-entry, single-exit

— NO and Nf have exactly one node

(2]
- @
©

Double-diamond graph

e Four test paths

1,2,4,5,7
G 4, ,7%

* Visit : A test path p visits node n if nis in p
A test path p visits edge e if e is in p
« Tour : A test path p tours subpath q if g is a subpath of p

‘ Tests and Test Paths

« path (t) : The test path executed by test t

 path (T) : The set of test paths executed by the set of
tests T

 Each test executes one and only one test path

* A location in a graph (node or edge) can be reached from
another location if there is a sequence of edges from the
first location to the second

— Syntactic reach : A subpath exists in the graph
— Semantic reach : A test exists that can execute that subpath

‘ Tests and Test Paths

= many-to-one

'

VL A 4

Deterministic software-a test always executes the same test

path
many-to-many

Non-deterministic software-a test can execute different test
paths

10

‘ Testing and Covering Graphs (6.2)

We use graphs in testing as follows :

— Developing a model of the software as a graph

— Requiring tests to visit or tour specific sets of nodes, edges or subpaths

 Test Requirements (TR) : Describe properties of test paths
« Test Criterion : Rules that define test requirements

- Satisfaction : Given a set TR of test requirements for a criterion C, a set
of tests T satisfies C on a graph if and only if for every test requirement in
TR, there is a test path in path(T) that meets the test requirement tr

o Structural Coverage Criteria : Defined on a graph just in terms of
nodes and edges

« Data Flow Coverage Criteria : Requires a graph to be annotated
with references to variables

11

‘ Node and Edge Coverage

» The first (and simplest) two criteria require that each
node and edge in a graph be executed

Node Coverage | ies node coverage

on gra h G iff for every syntactically reachable node n in
grap [2/ /
at p visits n.

- This statement is a bit cumbersome, so we abbreviate it in
terms of the set of test requirements

contains, eacin reacne

12

‘ Node and Edge Coverage

+ Edge coverage is slightly stronger than node coverage

Edge Coverage (EC) : TR contains each reachable path of
length up to |, inclusive,in G.

« The phrase “length up to I allows for graphs with one node and no
edges

« NC and EC are only different when there is an edge and another
subpath between a pair of nodes (as in an “if-else” statement)

‘l' Node Coverage: TR={1,2,3}
Test Path=[1,2,3]

@ Edge Coverage :TR ={ (I, 2),(l,3),(2,3)}
Test Paths=[1,2,3]
[1,3]

13

‘ Paths of Length 1 and O

» A graph with only one node will not have any edges
!

@

* |t may seem trivial, but formally, Edge Coverage needs to
require Node Coverage on this graph

« Otherwise, Edge Coverage will not subsume Node
Coverage

— So we define “length up to |” instead of simply “length 1”

* We have the same issue with graphs that
only have one edge — for Edge Pair
Coverage ...

14

‘ Covering Multiple Edges

 Edge-pair coverage requires pairs of edges, or subpaths of
length 2

Edge-Pair Coverage (EPC) : TR contains each reachable
path of length up to 2, inclusive, in G.

« The phrase “length up to 2” is used to include graphs that have less
than 2 edges

« The logical extension is to require all paths ...

Complete Path Coverage (CPC) : TR contains all paths in
G.

« Unfortunately, this is impossible if the graph has a loop, so a weak
compromise is to make the tester decide which paths:

Specified Path Coverage (SPC) : TR contains a set S of
test paths, where S is supplied as a parameter.

15

‘ Structural Coverage Example

Node Coverage
TR={1,2,3,4,5,6,7}

i Test Paths:[1,2,3,4,7][1,2,3,5,6,5,7]
I Edge Coverage
TR ={(1,2),(l,3),(2,3),(3,4),(3,5),(4,7),(5,6),(5,7),
© 6,5}
UV Test Paths:[1,2,3,4,7] [I,3,5,6,5,7]
3

Edge-Pair Coverage
TR ={[1,2,3],[1,3,4],[I,3,5],[2,3,4],[2,3,5],[3,4,7],
[3,5,6],[3,5,7], [5,6,5], [6,5,61,[6,5,7] }
& Test Paths:[1,2,3,4,7][1,2,3,5,7]1[1,3,4,7]

[1,3,5,6,5,6,5,7]

Complete Path Coverage
Test Paths:[1,2,3,4,7][1,2,3,5,7][1,2,3,5,6,5,6
101,2%,3,5,6,5,6,5,7]1[1,2,3,5,6,5,6,5,6,5,7]

16

‘ Loops in Graphs

If a graph contains a loop, it has an infinite number of paths

Thus, CPC is not feasible

SPC is not satisfactory because the results are subjective
and vary with the tester

Attempts to “deal with” loops:

— 1970s : Execute cycles once ([4, 5, 4] in previous example, informal)

— 1980s : Execute each loop, exactly once (formalized)

— 1990s : Execute loops 0 times, once, more than once (informal description)
— 2000s : Prime paths

17

Simple Paths and Prime Paths

 Simple Path : A path from node ni to nj is simple if no node
appears more than once, except possibly the first and last
nodes are the same

— No internal loops
— Aloop is a simple path
« Prime Path : A simple path that does not appear as a proper
subpath of any other simple path

Simple Paths : [1,2,4,1],[1,3,4,11, [2,4,1,2],
[2’4’ I ’3]’ [3’4’ I ’2]’ [3’4’ I ’3]’ [4’ I ’2’4]’ [4’ I ’3’4]’

!
e &e [1,3],[2,4],[3,4],[4,1]1,[1],[2], [3], [4]
(&

[3,4,1,2],[4,1,3,4],[4,1,2,4],[3,4,1,3]

[I ’2’4]’ [I ’3’4]’ [2’4’ I]’ [3’4’ I]’ [4’ I ’2]’ [4’ I ’3]’ [I ’2]’

Prime Paths : [2,4,1,2],[2,4,1,3],[1,3,4,11,[1,2,4,1],

18

‘ Prime Path Coverage

A simple, elegant and finite criterion that requires loops
to be executed as well as skipped

Prime Path Coverage (PPC) : TR contains each prime path
in G.

« Will tour all paths of length 0, 1, ...
« That is, it subsumes node and edge coverage
« PPC does NOT subsume EPC
« If a node n has an edge to itself, EPC will require [n, n, m]

« [n,n,m] is not prime

19

‘ Round Trips

« Round-Trip Path : A prime path that starts and ends at the
same node

Simple Round Trip Coverage (SRTC) : TR contains at
least one round-trip path for each reachable node in G
that begins and ends a round-trip path.

Complete Round Trip Coverage (CRTC) : TR contains all
round-trip paths for each reachable node in G.

« These criteria omit nodes and edges that are not in round trips

« That is, they do not subsume edge-pair, edge, or node coverage

20

Prime Path Example

» The previous example has 38 simple paths

* Only nine prime paths

Vv

@

R
g

Prime Paths

[1,2,3,4,7]
[1,2,3,5,7]
[1, 2, 3,5, 6]

Execute
loop O times

Execute

loop once

Execute loop
more than once

21

‘ Data Flow Criteria

Goal:Try to ensure that values are computed and used
correctly

» Definition (def) : A location where a value for a variable is
stored into memory

« Use : A location where a variable’s value is accessed
7 = X9 Defs: def (1) = {X}

X =42 G 9 def (5) = {Z}
—>® (4) (7 def (6) = {Z)
e ° Uses: use (5) = {X}

Z=X-8 use (6) = {X}

The values given in defs should reach at least one, some, or
all possible uses

26

‘ DU Pairs and DU Paths

* def (n) or def (e) :The set of variables that are defined by node n
or edge e

* use (n) or use (e) :The set of variables that are used by node n or
edge e

* DU pair :A pair of locations (I,) such that a variable v is
defined at |, and used at |,

* Def-clear :A path from |; to [is def-clear with respect to variable
v if v is not given another value on any of the nodes or edges in
the path

* Reach :If there is a def-clear path from /; to | with respect to v,
the def of v at |, reaches the use at |,

* du-path :A simple subpath that is def-clear with respect to v
from a def of v to a use of v

* du (n; n, v) — the set of du-paths from n; to n,

* du (n, v) — the set of du-paths that start at n.

27

‘ Data Flow Test Criteria

« First, we make sure every def reaches a use

All-defs coverage (ADC) : For each set of du-paths S = du
(n, v), TR contains at least one path d in S.

« Then we make sure that every def reaches all possible uses

All-uses coverage (AUC) : For each set of du-paths to
uses S = du (n, n;, v), TR contains at least one path d in S.

« Finally, we cover all the paths between defs and uses

All-du-paths coverage (ADUPCQC) : For each set S = du (ni,
nj,v), TR contains every path d in S.

29

e

Graph Coverage for Source
Code

‘ Overview

« A common application of graph criteria is to program
source

* Graph : Usually the control flow graph (CFG)
« Node coverage : Execute every statement
« Edge coverage : Execute every branch

 Loops : Looping structures such as for loops, while loops,
etc.

 Data flow coverage : Augment the CFG
— defs are statements that assign values to variables

— uses are statements that use variables

33

‘ Control Flow Graphs

« A CFG models all executions of a method by describing
control structures

« Nodes : Statements or sequences of statements (basic
blocks)

 Edges : Transfers of control

» Basic Block : A sequence of statements such that if the first
statement is executed, all statements will be (no branches)

« CFGs are sometimes annotated with extra information

— branch predicates
— defs

— UsSes

 Rules for translating statements into graphs ...

34

‘ CFG : The if-Return Statement

if (x <) J

{ |
return; X <

} X >= y

print (X), return

return; Vv

@ print (x)
return

No edge from node 2 to 3.
The return nodes must be distinct.

36

‘ Loops

» Loops require “extra” nodes to be added

* Nodes that do not represent statements or basic blocks

37

38

CFG : do Loop, break and
continue
Xx=0 X =0; !
do while (x < y) @X:O
{ {
y=1(XY) y=1(X,Yy);
X=X+1; if (y ==0) 2
} while (X <vy); {
intl break; =f(x,
printin (y) | eloa 1ty < 0 yy:(iscf))
l/ {y:y*z; ‘ break
X=0 continue;
& } ol
X=X+1;
@)) | @
X>=y > print (y); continue
=Y I x:xl

39

‘ CFG : The case (switch) Structure

read (C) ;
switch (c)

{

case ‘N’:
y = 25;
break;

case ‘Y’:
y = 50;
break;

default:
y=0;
break;

}
print (y);

40

‘ Example Control Flow - Stats

public static void computeStats (int [] numbers)

{

int length = numbers.length;
double med, var, sd, mean, sum, varsum;

sum = 0;
for (inti = 0; i < length; i++)
{

sum += numbers [i];

med = numbers [length / 2];
mean = sum / (double) length;

varsum = 0;
for (inti = 0; i < length; i++)
{

varsum = varsum + ((numbers [|] - mean) * (numbers [|] - mean));

}

var = varsum / (length - 1.0);
sd = Math.sqgrt (var);

System.out.printin ("length: " + length);
System.out.println ("mean: " + mean);
System.out.println ("median: " + med);
System.out.printin ("variance: "+ var);

System.out.println ("standard deviation: " + sd);

41

‘ Control Flow Graph for Stats

publlc static void computeStats (int [] numbers)
l

int length = numbers.le

rs [leng
mean = sum / (dduble) Iength'

varsum =
L1 =0; i <length; i++)

varsum = varsum + ((numbers [I] - mean

h|

—Val = varsum /(Te
sd = Math.sqgrt (var);

0);

System.out.printin ("length:
System.out.printin ("mean:
System.out.printin ("median:
System.out.println ("variance:
System.out.println ("stan

}

" + length);
-+ _Mmean);
"+ med];
" + var);
eviation: " + sd);

Control Flow TRs and Test Paths—EC

Control Flow TRs and Test Paths—EPC

Control Flow TRs and Test Paths—PPC

‘ Data Flow Coverage for Source

» def: a location where a value is stored into memory
— x appears on the left side of an assighment (X = 44;)
— X is an actual parameter in a call and the method changes its value
— x is a formal parameter of a method (implicit def when method
starts)
— X IS an input to a program

» use : a location where variable’s value is accessed
— x appears on the right side of an assignment
— X appears in a conditional test
— X is an actual parameter to a method
— X is an output of the program
— X is an output of a method in a return statement

* If a def and a use appear on the same node, then it is only
a DU-pair if the def occurs after the use and the node is in
a loop

46

‘ Example Data Flow — Stats

public static void computeStats (int [] numbers)

{

int length = numbers.length;
double med, var, sd, mean, sum, varsum;

sum = 0.0;
for (inti = 0; i < length; i++)
{

sum += numbers [i];

med = numbers [length/2];
mean = sum / (double) length;

varsum = 0.0;
for (inti = 0; i < length; i++)

{
}

var = varsum / (length - 1);
sd = Math.sqgrt (var);

varsum = varsum + ((numbers [i]- mean) * (numbers [i] - mean));

System.out.printin ("length: " + length);
System.out.printin ("mean: "+ mean);
System.out.println ("median: " + med);
System.out.printin ("variance: "+ var);

System.out.println ("standard deviation: " + sd);

47

‘ Control FIow Graph for Stats

(numbers)
sum =0
length = numbers.length

>= |ength

med = numbers [length / 2]
mean = sum / (double) length
varsum =0

>= |ength

var = varsum / (length - 1.0)
sd = Math.sqrt (var)
varsum print (length, mean, med, var, sd)

I++

48

‘ CFG for Stalts — With Defs & Uses

G def (1) = { numbers, sum, length }

def (5) = { med, mean, varsum, i }
use (5) = { numbers, length, sum }

def (8) = { var, sd }
use (8) = { varsum, length, mean,

def (7) = { varsum, i } med, var, sd }

use (7) = { varsum, numbers,

49

‘ Defs and Uses Tables for Stats
Node Def Use Edge Use
| { numbers, sum, | { numbers } (1,2)
length } 2,3)
2 ti} (3,4) {i, length }
: 4.3
4 { sum,i } { numbers, i, sum } 3’ : N—
5 { med, mean, { numbers, length, sum } G.) {1 length }
varsum,i } (5,6)
6 C {i, length }
7 { varsum, i } { varsum, numbers, i, (7, 6)
mean } (6,8) {i, length }
8 { var,sd } { varsum, length, var,
mean, med, var, sd }

‘ DU Pairs for Stats

DU Pairs defs come before uses,
do not count as DU pairs

variable
numbers | (1,4) (I,5) (I,7)
length | (1,5) (1,8) (I, (3:4)) (I.(3,9)) (I, (6,7)) (I, (6,8))

med (5,8)

var (8,8) defs after use in loop,

sd (8,8) these are valid DU pairs
mean (5,7) (5,8) |

sum (1,4) (1,5) 4, 4) (4,5) No def-clear path ...

different scope for i

varsum | (5,7) (5,8) (7,7) (7,8)

i (2,4) (2,(34)) (2,3,9)) (= 77 2,87 2,52
(4.4) (4, (3:4)) (4, (3,9)) (% 7 (L &7 (H &Sy
(5,7 (5,(6,7)) (5. (6,8))

(7,7) 7,(6,7)) (7,(6,8)) No path through graph
from nodes 5 and 7 to 4 or 3

51

DU Paths for Stats

variable | DU Pairs DU Paths
numbers | (I,4) [1,2,3,4]
) [1,2,3,5]
(1,7) [1,2,3,5,6,7]
length (1,5) [1,2,3,5]
(1,8) [1,2,3,5,6,8]
(NER)) [1,2,3,4]
(1, (3,5)) [1,2,3,5]
(1,(6,7)) [1,2,3,5,6,7]
(1,(6,8)) [1,2,3,5,6,8]
med (5, 8) [5,6,8]
var (8,8) No path needed
e (8, 8) No path needed
sum (1,4) [1,2,3,4]
(1,5) [1,2,3,5]
(4,4) [4,3,4]
(4,5) [4,3,5]

variable DU Pairs DU Paths
mean (5,7) [5,6,7]
(5, 8) [5,6,8]
varsum (5,7) [56,7]
(5, 8) [5,6,8]
(7,7) [7,6,7]
(7, 8) RACK: A
[(2,4) [2,3,4]
(2, (3,4)) [2,3,4]
(2, (3,5)) [2,3,5]
(4, 4) [4,3,4]
CNER))) [4,3,4]
CNER))) [4,3,5]
(5,7) [5,6,7]
(5, (6,7)) [5,6,7]
(5, (6,8)) [5,6,8]
(7,7) RACKA
(7, (6,7)) [7,6,7]
(7, (6,8)) RACK: A

52

‘ DU Paths for Stats—No Duplicates

There are 38 DU paths for Stats, but only 12 unique

+[|,2,3,4] [4,3,4]
A[1,2,3,5] 4,3,5]
+[I,2,3,5,6,7] 15,6,7
*[1,2,3,568] |[568] %
2,3,4] 7,6,7
x[23,5] 17,6,8]

*| 4 expect a loop not to be “entered”

+,

‘I 2 require at least two iterations of a loop

53

‘ Test Cases and Test Paths

Test Case : numbers = (44) ; length = |
Test Path:[I,2,3,4,3,5,6,7,6,8]
Additional DU Paths covered (no sidetrips)

[1,2,3,4] [2,3,4] [4,3,5] [56,7] [7,6,8]
The five stars +that require at least one iteration of a loop

Test Case : numbers = (2, 10, 15) ; length =3

Test Path:[1,2,3,4,3,4,3,4,3,5,6,7,6,7,6,7,6,8]
DU Paths covered (no sidetrips)

[4,3,4] [7,6,7]

The two stars {{} that require at least two iterations of a loop

Other DU paths x require arrays with length O to skip loops
But the method fails with index out of boupds exception...

A fault was
found

med = numbers [length / 2];

54

‘ Summary

« Applying the graph test criteria to control flow graphs is
relatively straightforward

— Most of the developmental research work was done with CFGs

« A few subtle decisions must be made to translate control
structures into the graph

« Some tools will assign each statement to a unique node
— These slides and the book uses basic blocks

— Coverage is the same, although the bookkeeping will differ

55

