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Abstract—In this study, we present WindTalker, a novel and practical keystroke inference framework that can be used to infer the
sensitive keystrokes on a mobile device through WiFi-based side-channel information. WindTalker is motivated from an observation
that keystrokes on mobile devices will lead to different hand coverage and the finger motions, which will introduce a unique interference
to the multi-path signals and can be reflected by the channel state information (CSI). An attacker can exploit the strong correlation
between the CSI fluctuation and the keystrokes to infer the user’s password input. Compared with the previous keystroke inference
approaches, WindTalker neither deploys external equipment physically close to the target device nor compromises the target device.
Instead, it employs a more practical setting by deploying a free public WiFi hotspot and collects the CSI data from the target device as
long as the device is connected to the hotspot. In addition, to improve inference accuracy and efficiency, it analyzes the WiFi traffic to
selectively collect CSI only for the sensitive period where password entering occurs. WindTalker can be implemented without the
requirement of visually seeing the target device, or installing any malware on the device. We tested Windtalker on several mobile
phones and performed a detailed case study to evaluate the practicality of the password inference towards Alipay, the largest mobile
payment platform in the world. Furthermore, we proposed a novel CSI obfuscation countermeasure to thwart the inference attack. The
evaluation results show that the performance of WindTalker can be dramatically reduced by adopting the proposed countermeasures.

Index Terms—Channel State Information, Online Payment, Password Inference, Traffic Analysis, Wireless Security.
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1 INTRODUCTION

SMARTPHONES and tablets are widely used for perform-
ing privacy sensitive transactions of banking, payment,

and social applications. Unlike stationary devices connect-
ing to a secure network and sitting in a physically-secure
space, these mobile devices are often carried by a mobile
user and connected to a dynamic network where attackers
can physically approach the target user’s device and launch
various direct and indirect eavesdropping attacks. While
direct eavesdropping attacks aim at directly observing the
input of the target device from its screen or keyboard,
indirect eavesdropping attacks, a.k.a. side-channel attacks
make use of side channels to infer the inputs on the target
devices. Prior works [2], [3], [4], [5], [6], [7], [8], [9], [10]
have shown that both types of attacks can be effective in
certain conditions. Particularly for the side-channel attacks,
it is shown that the PIN number and the words entered at
keyboard can be inferred from the electromagnetic signal
at radio antenna [2], the acoustic signal at microphone [3],
[4], [5], the visible light at camera [6], [7], and the motion
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status at motion sensors [8], [9], [10]. To access the side
channels, these works often assume either external signal
collector devices are physically close to the target device
(for example, 30 cm in [2]) or the sensors of the target
devices are compromised to provide side channel infor-
mation. However, in a mobile scenario, both assumptions
are hardly true and the impact of attacks is thus limited.
In addition, the prior works have studied the keystroke
inference aiming at achieving a high inference accuracy on a
series of keystrokes during a relatively-long period of time.
However, the keystrokes on a mobile device are not always
highly sensitive. Obviously, the eavesdropping attacker has
a greater interest in obtaining the payment PIN number in
a short moment than a regular typing information. There-
fore, to increase the inference accuracy and efficiency, the
application context information needs to be considered in
the keystroke inference framework.

In this paper, we present WindTalker, a novel and prac-
tical keystroke inference framework that can be used to
infer sensitive keystrokes on a mobile device through WiFi
signals. WindTalker is motivated from an observation that
the typing activity on mobile devices involves hand and the
finger motions, which produce a recognizable interference
to the multi-path WiFi signals from the target device to the
WiFi router that connects to the device. Unlike prior side-
channel attacks or traditional CSI based gesture recognition,
WindTalker neither deploys external devices close to the
target device nor compromises any part of the target device;
instead, WindTalker setups a ‘rogue’ hotspot to lure the
target user with free WiFi service, which is easy-to-deploy
and difficult-to-detect. As long as the target mobile device is
connected to the rogue WiFi hotspot, WindTalker intercepts
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the WiFi traffic and selectively collects the channel state
information (CSI) between the target device and the hotspot.

WindTalker has three major technical challenges. i) The
impact of the hand and finger movement of keystrokes on
CSI waveforms is very subtle. An effective signal analysis
method is needed to analyze keystrokes from the limited
CSI. ii) The prior CSI collection method requires two WiFi
devices, one as a signal sender and the other as a signal
receiver, which are deployed close to the victim. A more
flexible and practical CSI collection method is highly desir-
able for the mobile device scenario. iii) The key inference
must be done at some selective moments for obtaining a
sensitive keystroke, such as payment PIN number. Such
context-oriented CSI collection has not been addressed by
prior works. The contributions of our paper are as follows.

• We present a practical cross-layer based approach
for mobile payment password inference on smart-
phones using public WiFi architecture. We propose
a novel password inference model which analyzes
both physical layer information (CSI) and network
layer traffic.

• We present a novel ICMP-based CSI collection
method, without compromising the victim’s device
or deploying an external device very close to the
victim’s device. We develop an IP pool based method
to recognize the PIN input period. And we propose
an effective keystroke inference algorithm based on
the collected CSI.

• We perform extensive evaluations on password infer-
ence at the mobile payment platform Alipay, which is
secured by the HTTPS protocol and thus traditionally
believed to be secure. We investigate the impact of
various factors on WindTalker and we demonstrate
that WindTalker can infer the PIN number at a high
successful rate.

• We introduce some effective countermeasures to
thwart the inference attack. Especially, we propose
a novel CSI obfuscation algorithm to prevent the
attacker to collect the accurate CSI data without
the requirements of user’s participation. This coun-
termeasure could minimize the impact on the user
experience and we perform experiments to prove
its ability to reduce the attacking performance of
WindTalker.

The remainder of this paper is organized as follows. In
Section 2, we introduce the background of this work. In
Section 3, we introduce the research motivation by showing
the correlation of keystroke and CSI changing. We present
the detailed design in Section 4, which is followed by Eval-
uation, Real-world experiment, Impact of various factors,
Countermeasures, Limitations and Related work in Section
5, 6, 7, 8, 9 and 10, respectively. Finally, we conclude this
paper in Section 11.

2 BACKGROUND

In this section, we introduce our attack scenario, the
overview of the keystroke inference methods, and prelim-
inaries of channel state information.
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Fig. 1. WiFi-based Keystroke Inference Models

2.1 Scenario
We consider a scenario where a user has a mobile device,
such as a smartphone and he or she is using the free public
WiFi through the device. It is a very common situation that
people could have in the shopping mall, the airport, and
restaurants. A WiFi hotspot is set up at a corner or on the
ceiling, an unnoticeable location from the user’s view. The
user searches all the available WiFi signals at her device, and
chooses to connect with the WiFi hotspot if the name of the
hotspot “looks” good and the hotspot is authentication-free.
With the use of application layer security protocol (HTTPS),
the user may believe that the Internet traffic is protected
from end-to-end such that the content shown at the device
and the user’s inputs at the device will be only known to
herself and the service provider. However, as we will show,
our WindTalker framework presents an effective keystroke
inference method targeting at the mobile device.

2.2 In-band keystroke inference model
Different with existing works [2], [11], [12], WindTalker
chooses In-band Keystroke Inference (IKI) model. As shown
in Fig. 1(a), WindTalker deploys one Commercial Off-The-
Shelf (COTS) WiFi device close to the target device, which
could be a WiFi hotspot. The WiFi hotspot provides free
WiFi networks for nearby users. When a user connects her
device to the hotspot, the WiFi hotspot is able to monitor the
application context by checking the pattern of the transmit-
ted WiFi traffic. In addition, the WiFi hotspot periodically
sends ICMP packets to obtain the CSI information from
the target device. With the meta data of the WiFi traffic
collected by hotspot, WindTalker knows when the sensitive
operations (such as typing password) happen. And then, the
hotspot adaptively launches CSI-based keystroke inference
method to recognize sensitive key inputs. To the best of our
knowledge, the IKI method we propose is the first one using
existing network protocols of IEEE 802.11n/ac standard to
obtain the application context and the CSI information at
mobile devices.

Note that the existing works about CSI based gesture
recognition choose another strategy: Out-of-band Keystroke
Inference (OKI) model [2]. In this model, the adversary
deploys two COTS WiFi devices close to the target device
and makes sure the target device is placed right between
two COTS WiFi devices. One is the sender device contin-
uously emitting signals and the other one is the receiver
device continuously receiving the signals. The keystrokes
are inferred from the multi-path distortions in signals.

Compared with OKI model, the proposed IKI model
has the following advantages. Firstly, IKI model does not
require the placement of both sender and receiver device
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and can be deployed in a more flexible and stealthy way.
Secondly, in OKI model, the user device is not connected
with attacker’s device, so that the attacker cannot obtain the
WiFi traffic from the user’s device. Therefore, OKI model
fails to differentiate the non-sensitive operations on mobile
devices (e.g., clicking the screen to open an APP or just for
web-browsing) from sensitive operation (e.g., inputting the
password). Instead, IKI model allows the attacker to obtain
both of un-encrypted meta data traffic as well as the CSI
data to launch a more fine-grained attack.

2.3 Channel State Information
The basic goal of WindTalker is measuring the impact of
hand and fingers’ movement on WiFi signals and leveraging
correlation of CSI and the unique hand motion to recognize
PIN. In the below, we briefly introduce the CSI related
backgrounds.

WiFi Standards like IEEE 802.11n/ac all support
Multiple-Input Multiple-Output (MIMO) and Orthogonal
Frequency Division Multiplexing (OFDM), which are ex-
pected to significantly improve the channel capacity of
the wireless system. In a system with transmitter antenna
number NTX , receiver antenna number NRX and OFDM
subcarriers number Ns, system will use NTX ×NRX ×Ns
subcarriers to transmit signal at the same time.

CSI measures Channel Frequency Response (CFR) in
different subcarriers f . CFR H (f, t) represents the state
of wireless channel in a signal transmission process. Let
X (f, t) and Y (f, t) represent the transmitted and received
signal with different subcarrier frequency. H (f, t) can be
calculated in receiver using a known transmitted signal via

Y (f, t) = H (f, t)×X (f, t) (1)

Since the received signal reflects the constructive and de-
structive interference of several multi-path signals scattered
from the wall and surrounding objects, the movements of
the fingers while password input can generate a unique
pattern in the time-series of CSI values, which can be used
for keystrokes recognition.

Many commercial devices such as Atheros 9390 [13],
Atheros 9580 [14] and Intel 5300 [15] network interface
cards (NICs) with special drivers provide open access to
CSI value. In this study, we adopt Intel 5300 NICs, which
follows IEEE 802.11n standard [16] and can work in 2.4GHz
or 5GHz. By selecting a group of 30 OFDM subcarriers of
totally 56 subcarriers, Intel 5300 NICs collect CSI value for
each TX-RX antenna pair.

3 MOTIVATION

In this section, we illustrate the rationale behind CSI based
keystroke inference on smart phones using real-world ex-
periments. Fig. 2(a) shows the sketch of typical touching
screen during the PIN entry for mobile payment (e.g., Ali-
pay or Wechat pay). We particularly focus on the vertical
touch and the oblique touch, which are two most common
touching gestures [17], [18], [19]. As shown in Fig. 2(b)
and Fig. 2(c), oblique touch is the most common typing
gesture which happens when people press different keys,
and vertical touch usually happens when the human con-
tinuously presses the same key. Fig .2(d) shows the original
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Fig. 3. CSI Change when Typing

CSI waveforms from the 21st subcarrier to 30th subcarrier
during once keystroke. It can be seen that CSI waveforms
collected by Intel 5300 NIC are affected by the keystroke and
the fluctuations of these ten waveforms are similar. Fig. 2(e)
shows the processed CSI value for the keystroke (the process
method is mentioned in Section 4). We find that the pattern
of processed CSI value is very closely related to oblique and
vertical touch, and this pattern could be used to characterize
the corresponding keystroke.

We further investigate how these two common typing
gestures influence CSI. Generally speaking, since CSI re-
flects the constructive and destructive interference of several
multi-path signals, the change of multi-path propagation



1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2019.2893338, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 14, NO. 8, AUGUST 2015 4

during the PIN entry can generate a unique pattern in the
time-series of CSI values, which can be used for keystrokes
inference. From our experiments, we found that two main
factors contributing to CSI changes are hand coverage and
the finger click.

Hand coverage and finger position on a smart phone
touchscreen are one of the major factors that cause the fluc-
tuation of CSI waveform. Since time series of CSI waveform
reflects the interference of several multi-path signals, differ-
ent finger position and coverage will inevitably introduce
the interference to the WiFi signals and thus lead to the
changes of the CSI. We further demonstrate the relationship
between CSI variation and finger position/coverage via
a series of experiments. Fig. 3(a) shows a CSI waveform
when continuously pressing different number from 1 to 9,
followed by 0, each for 5 times. It can be seen that the
different coverage leads to the different fluctuation range
of the CSI value, which can be exploited for key inference.

Finger click is another important factor that contributes
to the fluctuation of CSI. Compared with CSI change caused
by the hand coverage, the experiment shows that finger click
has a more direct influence on CSI by introducing a sharp
convex in Fig. 3(b), which corresponds to the quick click’s
influence on multi-path propagation. This feature can be
used to distinguish the oblique touches in the case that the
human continuously presses the same key or the adjacent
keys, which produce similar CSI values.

4 THE DESIGN OF WINDTALKER

4.1 System Overview
The basic strategy of WindTalker is hitting two birds with
one stone. On one hand, it analyzes the WiFi traffic to
identify the sensitive attack windows (e.g., PIN number)
on smartphones. On the other hand, as long as an attack
window is identified, WindTalker starts to launch the CSI
based keystroke recognition. As shown in Fig. 4, WindTalker
is consisted of the following modules: Sensitive Input Window
Recognition Module, which is responsible for distinguishing
the sensitive input time windows, ICMP Based CSI Acquire-
ment Module, which collects the user’s CSI data during his
access to WiFi hotspot, Data Preprocessing Module, which
preprocesses the CSI data to remove the noises and reduce
the dimension, Keystroke Extraction Module, which enables
WindTalker to automatically determine the start and the
end point of keystroke waveform, and Keystroke Inference
Module, which compares the different keystroke waveforms
and determines the corresponding keystroke.

4.2 Sensitive Input Window Recognition Module
To distinguish the time window of the sensitive input from
that of the insensitive input, WindTalker captures all packets
of the victim with Wireshark and records the timestamp
of each CSI data. Currently, most of the important appli-
cations are secured via HTTPS, which provides end-to-end
encryption and prevents the eavesdropper from obtaining
the sensitive data such as the password. Our insight is that
though HTTPS provides end-to-end encryption, it cannot
protect the meta data of the traffic such as the IP address
of the destination sever, which can be used to recognize
sensitive input window.
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Fig. 4. WindTalker Framework

TABLE 1
Payment applications and their sensitive IP addresses.

Payment application IP address
Alipay 110.76.15.1xx & 110.75.236.xx

Wechat Pay 182.254.78.1xx
JD Pay 111.13.142.x

In particular, WindTalker builds a Sensitive IP Pool for
the interested applications or services. Take the AliPay as
an example. During the payment process, the data packets
will be directed to a limited number of IP addresses, which
can be obtained via a series of trials. In the experimental
evaluation, it is shown that, for Alipay users, the traffics of
the users under the same network will be directed to the
same server IP, which will last for a period (e.g., several
days for one round of experiment). Therefore, it is feasible
to try to access the interested applications or services at
regular intervals and append the obtained IP addresses to
the Sensitive IP Pool. This constantly updated pool allows
WindTalker to figure out the sensitive input time window.

To evaluate this method, we conduct experiments on
three popular mobile payment applications (i.e., Alipay,
Wechat Pay and JD Pay) and capture the network traffic
using WireShark. We completed mobile payment for each
application ten times. As shown in Table 1, for a certain
application, when the password input process starts, some
packets with a specific IP address will happen. This result
demonstrates the effectiveness of the sensitive IP pool based
method. Therefore, during the attack process, as long as the
traffic to the IP addresses contained in the Sensitive IP Pool
is observed, WindTalker will extract these traffic, and then
record the corresponding start time and the end time, which
serve as the start and the end of the Sensitive Input Window.
Then, it starts to analyze the CSI data in this period to launch
the password inference attack via WiFi signals.

4.3 ICMP based CSI Acquirement Module
4.3.1 Collecting CSI Data by Enforcing ICMP Reply
Different from the previous works which rely on two de-
vices including both of the sender and the receiver to collect
CSI data, we apply an approach that leverages Internet
Control Message Protocol (ICMP) in hotspot to collect CSI
data during the user accesses to the pre-installed access
point. In particular, WindTalker periodically sends a ICMP
Echo Request to the victim smartphone, which will reply
an Echo Reply for each request. To acquire enough CSI
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information of the victim, WindTalker needs to send ICMP
Echo Request at a high frequency, which enforces the victim
to replay at the same frequency. In practice, WindTalker can
work well for several smartphones such as Xiaomi, Redmi
and Samsung at the rate of 800 packets per second. It is
important to point out that this approach does not require
any permission of the target smartphone and is difficult to
be detected by the victim.

ICMP based CSI collection approach introduces a limited
number of extra traffics. For a 98 bytes ICMP packet, when
we are sending 800 ICMP packets per second to the victim,
it needs only 78.4 KB/s for the attack where 802.11n can
theoretically support the transmission speed up to 140 Mbits
per second. It is clear that the proposed attack makes little
interference to the WiFi experience of the victim.

4.3.2 Reducing Noise via Directional Antenna

CSI will be influenced by both finger movement and peo-
ple’s body movement. One of the major challenges of ob-
taining the exact CSI data in public space is how to minimize
the interference caused by the nearby human beings. We
present a noise reduction approach by adopting the direc-
tional antenna. Different from omnidirectional antennas that
have a uniform gain in each direction, directional antennas
have a different antenna gain in each direction. As a result
the signal level at a receiver can be increased or decreased
simply by rotating the orientation of the directional antenna.
WindTalker employs directional antenna to focus the energy
toward the target of interest, which is expected to minimize
the effects of the nearby human body movement.

WindTalker employs a TDJ-2400BKC antenna working
in 2.4GHz to collect CSI data of the targeted victim, whose
Horizontal Plane -3dB Power Beamwidth and Vertical Plane
-3dB Power Beamwidth are 30◦ and 25◦ respectively.

Fig. 5 shows the comparison of CSI collection with di-
rectional antenna and without directional antenna in public
place. Fig. 5(b), Fig. 5(c), Fig. 5(d) show CSI amplitude in the
case that a victim is located at 75, 125, 150 cm accordingly
away from directional antenna while one human moving
nearby. Unique pattern caused by finger click in number
1 can be easily caught from the original CSI waveform
without any preprocessing. However, these patterns are
submerged in human body’s influence on CSI waveform
obtained by omni-directional antenna even when the victim
and attacker is close as 75 cm, which is shown in Fig. 5(a). In
the following sections, we only discuss the CSI acquirement
with directional antenna.

4.4 Data Preprocessing Module

Before launching keystroke inference module, WindTalker
needs to preprocess the CSI data to remove the noises
introduced by commodity WiFi NICs due to the frequent
changes in internal CSI reference levels, transmission power
levels, and transmission rates. To achieve this, WindTalker
first turns to wavelet denoising to remove noises from the
obtained signals. Then, WindTalker leverages the Principal
Component Analysis to reduce the dimensionality of the
feature vectors to enable better analysis of the data.
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4.4.1 Wavelet Denoising
We observe that the variation of CSI waveforms caused
by finger motion normally appears at the low end of the
spectrogram while the frequency of the noise occupies at the
high end of the spectrogram. We do not adopt the low-pass
filter since high-frequency signal includes some finger mo-
tion characters. In this paper, wavelet denoising method is
used to remove noise from the raw signal. Different from the
traditional frequency analysis such as Fourier Transform,
Discrete Wavelet Transform (DWT) is the time-frequency
analysis which has a good resolution at both of the time and
frequency domains. WindTalker can thus leverage DWT to
analyze the finger movement in varied frequency domains.
Wavelet denoising includes three main steps as follows:

Discrete Wavelet Transform: Generally speaking, a dis-
crete signal x [n] can be expressed in terms of the wavelet
function by the following equation:

x[n] =
1√
L

∑
k

Wφ[j0, k]φj0,k[n]

+
1√
L

∞∑
j=j0

∑
k

Wψ[j, k]ψj,k[n]

(2)

Where x[n] represents the original discrete signal and L
represents the length of x[n]. φj0,k[n] and ψj,k[n] refer to
wavelet basis. Wφ[j0, k] and Wψ[j, k] refer to the wavelet
coefficients. The functions φj0,k[n] refer to scaling functions
and the corresponding coefficients Wφ[j0, k] refer to the
approximation coefficients. Similarly, functions ψj,k[n] refer
to wavelet functions and coefficients Wψ[j, k] refer to detail
coefficients. To obtain the wavelet coefficients, the wavelet
basis φj0,k[n] and ψj,k[n] are chosen to be orthogonal to each
other.

During the decomposition process, the origin signal is
first divided into the approximation coefficients and detail
coefficients. Then the approximation coefficients are itera-
tively divided into the approximation and detail coefficients
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of next level. The approximation and the detail coefficients
in jth level can be calculated as follows:

Wφ[j0, k] = 〈x[n], φj0+1,k[n]〉 =
1√
L

∑
n

x[n]φj0+1,k[n] (3)

Wψ[j, k] = 〈x[n], ψj+1,k[n]〉 =
1√
L

∑
n

x[n]ψj+1,k[n] (4)

Threshold Selection: After recursive DWT decomposi-
tion, the raw signal is broken into detail coefficients (high-
frequency) and approximation coefficients (low-frequency)
at different frequency levels. Then, the threshold is applied
to the detail coefficients to remove their noisy part. The
threshold selection is important because a small threshold
will remain the noisy components while a large threshold
will lose the major information of signals. In this paper,
the minimax threshold is chosen based on it’s dynamic,
effectiveness and simplicity [20].

Wavelet Reconstruction: After the above two steps, we
reconstruct the signal to achieve noise removal by com-
bining the coefficients of the last approximation level with
all details which have applied threshold. Wavelet selection
plays a key role in wavelet decomposition and reconstruc-
tion. There are many wavelet bases such as Daubechies and
Haar wavelet [20]. In practice, we choose Daubechies D4
wavelet and perform 5-level DWT decomposition in wavelet
denoising in our study.

4.4.2 Dimension Reduction
Dimension reduction is essential for keystroke inference
via CSI information. For a CSI recording system using
Intel 5300 NICs with NTX transmitter antennas and NRX
receiver antennas, it can collect NTX × NRX × 30 CSI
waveforms. It is important to reduce the dimensionality of
the CSI information obtained from 30 subcarriers in each
TX-RX pair and recognize those subcarriers which show the
strongest correlation with the hand and fingers movements.
WindTalker adopts PCA to choose the most representative
or principal components from all CSI time series. PCA is
also expected to remove the uncorrelated noisy components.
The procedure of dimension reduction of CSI time series
based on PCA includes the following steps.

Subcarrier Selection: We observe that the CSI waveforms
from different subcarriers have different sensitivities to CSI
variation caused by keystrokes due to frequency diversity.
As shown in Fig. 6(a), 6(b) and 6(c), some subcarriers am-
plitudes vary a lot with keystrokes, but others are obtuse.

As shown in Fig. 6(d), we calculate the variance of each
subcarrier. We find that subcarriers 10 to 19 have lower
variances, which means they have lower sensitivities with
keystrokes. So we discard the lowest ten subcarriers before
PCA.

Sample Centralization: We use a matrix H to present
original CSI waveform data. For example, in a system with
one pair of TX-RX antenna, we will get 30 CSI waveforms
from 30 subcarriers. Thus, with sampling rate S and time T ,
H has dimension of M × 30, where M = S × T . Then we
calculate the mean value of each column in H and subtract
the corresponding mean values in every column. After the
centralization step, we get a processed matrix Hp.

Calculating Covariance Matrix: Calculating the correla-
tion matrix of Hp as Hp

T ×Hp.
Handling Covariance: Calculating the Eigenvalues and

Eigenvectors of Covariance. The Eigenvectors are normal-
ized to unit vectors.

Choosing Main Eigenvalues: Sorting the Eigenvalues
from large to small and choosing the maximum k number
of Eigenvalues. Then the corresponding k Eigenvectors are
used as the column vectors to form a Eigenvector matrix. We
will get a Eigenvector matrix whose dimension is 30× k.

Data Reconstruction: Projecting Hp onto the selected k
Eigenvector matrix. The reconstruction CSI data stream Hr

has the dimension of M × k.

Hr(M × k) = Hp(M × 30)× EigenV ectors(30× k) (5)

With PCA, we can identify the most representative
components influenced by the victim’s hand and fingers’
movement and remove the noisy components at the same
time. In our experiment, it is observed the first k = 4
components almost show the most significant changes in
CSI waveforms and the rest components are noises. In our
experiment part, we observed that the first PCA component
reserves most changes in CSI while the ambient noise is
weak. Thus we only take one PCA component from the first
4 components in the password inference module.

4.5 Keystroke Inference Module
4.5.1 Keystroke Extraction
By processing the wavelet denoising and dimension re-
duction, it is observed that the CSI data shows a strong
correlation with the keystrokes, as shown in Fig. 7(a). In
the experiment, the sharp rise and fall of the CSI waveform
signals are observed in coincidence with the start and end
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Fig. 7. Keystroke Extraction

of finger touch. How to determine the start and the end
point of CSI time series during a keystroke is essential for
keystroke recognition. However, the existing burst detec-
tion schemes such as Mann-Kendall test, moving average
method and cumulative anomalies [21] do not work well
in our situation since the CSI waveform has many change-
points during the password input period. Therefore, we
propose a novel detection algorithm to automatically detect
the start and end point. The proposed algorithm includes
the following three steps.

Waveform Profile Building: As shown in Fig. 7(a), it is
observed that there is a sharp rise and fall which correspond
to the finger motions. However, there is a strong noise which
prevents us from extracting interested CSI waveform re-
lated to the keystrokes. This motives us to perform another
round of noise filtering. In the experiment, we still adopt
wavelet denoising to make the waveform smooth. After
being filtered, the CSI data during the keystroke period
are highlighted while the waveform during non-keystroke
period becomes smooth, which are shown in Fig. 7(b).

CSI Time Series Segmentation and Feature Segment
Selection: To extract the CSI waveforms for individual
keystrokes, we slice the CSI time series into multiple seg-
ments, which be grouped together according to the temporal
proximity, and then choose the center of segment as the
feature waveform for a specific keystroke. Without loss of
the generality, it is assumed that each segment contains W
samples. Given the sampling frequency S, and the time du-
ration τ , W can be represented by S × τ . For the waveform
with time duration of T , the number of segments N can be
calculated as below:

N =

[
T × S
W

]
(6)

It is observed that the CSI segments during the keystroke
period show a much larger variance than those happening
out of the period, which is shown in Fig. 7(d). Motivated
by this, we are only interested in the segments with the

variance which is larger than a predetermined threshold
while removing the segments with the variance under this
threshold. The selected segments are grouped into various
groups according to the temporal proximity (e.g., five ad-
jacent segments grouped into one group in the practice).
Each group represents the CSI waveform of an individual
keystroke and the center point of this group is selected as
the feature segment of this keystroke. The process of time
series segmentation and feature segment selection is shown
in Fig. 7(d).

Keystroke Waveforms Extraction: To extract keystroke
waveforms, the key issue is how to determine the start
and the end point of CSI time series, which could cover
as much keystroke waveform as possible while minimizing
the coverage of the non-keystroke portion.

We calculate the average value of the segment samples
J , and then choose two key metrics K and L. K is the
average value of J and samples’ maximum value, while
L is the average value of J and samples’ minimum value.
The intersection of K, L and the CSI waveform serves as the
anchor points. On line K, starting from the leftmost anchor
point, it performs a local search and chooses the nearest
local extremum which is below K as the first start point.
Similarly, beyond the rightmost anchor point, it can choose
the nearest local extremum which is belowK as the first end
point. Also, we can perform local searches from two anchor
points on line L in order to choose two local extremum
beyondL as the second start point and the second end point.
Finally, we compare these points respectively. As shown in
Fig. 7(c), Fig. 7(f), Fig. 7(e), with the lower start point and
the higher end point, keystroke waveform can be extracted.

Thus, we can divide a CSI waveform into several
keystroke waveform. The ith keystroke waveform Ki from
the kth principal component Hr(:, k) of CSI waveforms as
follows.

Ki = Hr(si : ei, k) (7)

where si and ei are the start and the end time of
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Fig. 8. CSI Difference Between Two Number

ith keystroke. After keystroke extraction, we use these
keystroke waveform to conduct recognition process.

4.5.2 Keystroke Time Domain Feature Extraction

One of the major challenges for differentiating keystrokes
is how to choose the appropriate features that can uniquely
represent the keystrokes. As shown in Fig. 8, it is observed
that different keystrokes will lead to different waveforms,
which motivates us to choose waveform shape as a feature
for keystroke classification. However, directly using the
keystroke waveforms as the classification features leads to
a high computational cost in the classification process since
waveforms contain many data points for each keystroke.
Therefore, we leverage Discrete Wavelet Transform (DWT)
to compress the length of CSI waveform by extracting the
approximate sequence. In the below, we will introduce the
details.

Wavelet Compression: As mentioned in Section 4.4.1, a
discrete keystroke waveform Ki[n] can be expressed by the
following equation:

Ki[n] =
1√
L

∑
k

Wφ[j0, k]φj0,k[n]

+
1√
L

∞∑
j=j0

∑
k

Wψ[j, k]ψj,k[n]

(8)

where L represents the length of Ki[n], Wφ[j0, k] and
Wψ[j, k] refer to the approximation and detail coefficients
respectively. In the first DWT decomposition step, the length
of approximation coefficients is half of L. For the jth decom-
position step, the length is half of the previous decomposi-
tion step. We use the approximation coefficients to compress
the original keystroke waveforms to reduce computational
cost. In order to achieve the trade-off between the sequence
length reduction and preserving the waveform information,
we choose Daubechies D4 wavelet and perform 3-level
DWT decomposition in the classification model. Therefore,
for ith keystroke, the third level approximation coefficient
Fi of Ki is chosen as the feature of the keystroke. After
compression, the length of feature Fi is about 1/8 of Ki[n].
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Fig. 9. CSI Difference Between Two Number: Frequency Domain

4.5.3 Keystroke Frequency Domain Feature Extraction

Besides CSI waveform shape, the CSI frequency feature can
also be used to differentiate keystrokes. The CSI spectro-
grams in frequency domain is a stable property of CSI
streams and is highly correlated to keystrokes. Fig. 9 il-
lustrates the CSI spectrograms corresponding to the CSI
waveforms shown in Fig. 8. It is observed that different
keystrokes have significantly different CSI spectrograms.
Therefore, it’s feasible to use CSI spectrogram information
as the feature to recognize keystroke.

In this paper, WindTalker first performs Short Time
Fourier Transform (STFT) to obtain the two-dimensional
frequency spectrograms of CSI. Then, WindTalker calcu-
lates the contours of the spectrograms to extract features.
To extract the contour, WindTalker first resizes the CSI
spectrograms with frequency from 0 to 30Hz into a m-
by-n matrix MCSI(i, h) and normalize the MCSI(i, h) to
a range between 0 and 1. Note that, in MCSI(i, h), each
column represents the normalized frequency shifts dur-
ing the ith time slide. Then, WindTalker chooses a pre-
defined threshold and get the contour CCSI(i), where
i = 1...n. CCSI(i) is the maximum value j which sat-
isfies that MCSI(i, j) ≥ threshold. As shown in Fig. 9,
the contours are marked by the black lines. It is observed
that, between the same keystrokes, the contours of CSI
spectrograms have the similar variation trends. Thus we
can regard the contours as the frequency domain features
of the classification and calculate the similarity between the
contours for keystroke recognition.

4.5.4 Keystroke Recognition

WindTalker builds a classifier to recognize the keystrokes
based on both the time domain feature and the fre-
quency domain feature. To compare the features of different
keystrokes, WindTalker adopts the Dynamic Time Warping
(DTW) to measure the similarity between two keystrokes.

Dynamic Time Warping: DTW utilizes dynamic pro-
gramming to calculate the distance between two sequences
with different lengths. With DTW, the sequences (e.g., time
series and spectrogram contours) are warped non-linearly
in the time dimension to measure their similarity. The input
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of DTW algorithm is two sequences and the output is the
distance between them. A low distance indicates that these
two sequences are highly similar.

By adopting DTW, the classifier gives each keystroke a
set of scores, which allows the keystrokes to be differen-
tiated based on the user’s training dataset (keystrokes on
different numbers). For a certain keystroke Ki, classifier
first calculates the DTW distances between the features of
Ki and all of the keystroke number’s features in dataset
in time and frequency domain respectively. Thus, for Ki,
we will get two scores arrays ST = {st1, st2, ..., st10},
SF = {sf1, sf2, ..., sf10}, where ST , SF represent the scores
in time and frequency domain respectively, and stn refers to
the shortest distance between the input keystroke and the
certain key number n in time domain. sfn is similar but in
frequency domain. Finally the classifier calculates the score
S = {s1, s2, ..., s10}, where sn = stn × sfn. The lower the
score sn is, the higher possibility the certain number n is
actual input number. The classifier chooses the key number
which has the minimum score (the value n which satisfies
sn is the lowest one) as the predicted key number. Note that
the classifier saves all scores of the certain keystroke Ki in
order to generate password candidates in Section 5.3.

5 KEYSTROKE INFERENCE EVALUATIONS

5.1 System Setup

WindTalker is built with the off-the-shelf hardware, which is
actually a commercial laptop computer equipped with Intel
5300 NIC with one external directional antenna. WindTalker
also serves as the WiFi hotspot to attract the users to access
to the WiFi. The laptop runs Ubuntu 14.04 LTS with a
modified Intel driver to collect CSI data. To collect the CSI
data related to the user’s touch screen clicks, WindTalker
uses ICMP echo and reply to achieve the sampling rate of
800 packets/s. In this evaluation, the distance between the
mobile user and the AP is 75 cm and the AP is placed on the
left side of mobile phone.

In the experiments, we recruit 20 volunteers to join our
evaluation, including 17 males and 3 females. All of the
volunteers are right-handed and they perform the touch-
screen operations by following their own fashions. During
the experiment, the volunteers should participate in the
data training phase and keystroke recognition phase by
inputting the numbers according to the system hints. In the
data training phase, WindTalker records each input and its
corresponding CSI data. In the test phase, WindTalker infers
the input data based on the observed CSI time series. The
training data and testing data collection should be finished
within 30 minutes since CSI may change with the change of
environment.

We start the evaluation by testing the classification ac-
curacy and the 6-digit password inference accuracy. Then
we perform a more specific case study by inferring the
password of mobile payment for Alipay in Section 6. Af-
terwards we investigate various metrics that may influence
the inference accuracy of WindTalker including the distance,
the direction and the human movement in Section 7. In
the current stage evaluation, we only perform user-specific
training and will discuss its limitation in Section 9.
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Fig. 10. Classification Accuracy

5.2 Classification Accuracy

In Section 3, we have shown that different keystrokes may
be correlated with different CSI waveforms. In this section,
we aim to explore whether the differences of keystroke
waveforms are large enough to be used for recognizing
different PIN numbers inputs in the real-world setting. We
collected training and testing data from 20 volunteers. Each
volunteer first generates 50 loop samples, where a loop is
defined as the CSI waveform of keystroke number from
0 to 9 by pressing the corresponding digit. After that, we
evaluate the classification accuracy of WindTalker through
the collected CSI data.

The classification accuracy is evaluated in terms of 10-
fold cross validation accuracy. However, in real world sce-
nario, it is not reasonable to collect 50 training samples
for one specific PIN number. Therefore, we first divide
these 50 loops data into 5 groups evenly. Then, for every
10 loops CSI data, we pick up one loop in turn for the
testing data and choose the other 9 loops as the training
data. WindTalker adopts the classifier introduced in Section
4.5 to recognize the keystroke. We perform the evaluation
on Xiaomi, Redmi and Samsung Note3 smartphone. All of
them run with Android 5.0.2. Fig. 10(a) shows the average
classification accuracy of all 20 volunteers in 10 PIN number.
It is observed that WindTalker achieves the average accuracy
classification of 93.5% using combined CSI features. How-
ever, if WindTalker only utilizes time-domain feature as [1],
the accuracy will drop to 87.3%.

Fig. 10(b) describes the color map of confusion matrix of
keystroke inference. For a specific typed number, it gives the
corresponding inference results. The darker the area is, the
higher the possibility of keystroke inference result is. Intu-
itively, it is easier for an input number that is confused with
the neighboring numbers during the keystroke inference
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TABLE 2
Recovery Rate and Training Loop Times

Loop Times One Three Five Nine
Recovery Rate 79.5% 86.2% 88.5% 93.5%

TABLE 3
Recovery rate and the number of candidates.

Number of candidates One Two Three
Recovery rate 86.2% 93.4% 96.2%

process. We further analyze the impact of the number of
training data on recovery rate in WindTalker. Table. 2 shows
the keystroke inference accuracy increases with the training
loop increases. Even if there is only one training sample for
one keystroke, WindTalker can still achieve whole recovery
rate of 79.5%.

5.3 Password Inference

In a practical scenario setting, it may not be easy for
WindTalker to get 9 training samples for each PIN number.
So in the remaining section, we only use 3 samples per
PIN number for training. To illustrate the performance of
WindTalker for password Inference, in this part, we ask vol-
unteers to press 10 randomly generated 6-digit passwords
on Xiaomi smartphone and use their corresponding 3 loops
as training dataset.

We test totally 500 set of passwords, which include 3000
keys. As shown in Table. 3, with 3 loops as training data,
WindTalker can achieve an average 1-digit recovery rate of
86.2%. For a 6-digit password in AliPay, the attacker can
try several times to recover the password at an increased
successful rate. Thus, we introduce a new metric, recovery
rate with Top N candidates, which indicates the rate of
successfully recovering the password for trying N times
and represents a more reasonable metric to describe the
capability of the attacker in the practical setting. As shown
in Table. 3, if we evaluate the 1-digit recovery rate under top
2 and top 3 candidates, the recovery rate can be significantly
improved.

We further study how many candidates can help us to
succeed in predicting the right 6-digit payment password in
WindTalker. In particular, we will investigate the inference
accuracy under top N candidates. In the experiment, each
6-digit password will be correlated with six keystrokes
K = {K1,K2, . . . ,K6}. For each keystroke Ki, WindTalker
calculates its corresponding score Si = {si,1, si,2, . . . , si,10}.
Then, for a given password candidate PIN number P =
{p1, p2, . . . , p6}, where pi ∈ [0, 9], WindTalker calculates
the likelihood L between K and P . L is defined by
L =

∏6
i=1 si,pi . Given a 6-digit password K, for each

keystroke Ki, we can obtain 5 candidates with lowest si
and then generate 56 = 15626 candidate passwords. Then
WindTalker sorts these passwords by their likelihoods in
ascending order. A successful password inference is defined
as that the real password is included in top N candidates. In
Fig. 11(a) ,we give the password inference accuracy under
top N candidates, where N ranges from 1 to 20. The result
is encouraging. It is shown that, given top 1 candidate,
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the inference accuracy is 41.2%. And the inference rate
can be significantly improved if given top 5 candidates or
top 10 candidates, which correspond to 69.6% and 77.4%,
respectively. It is also shown in Fig. 11(b) that, if given
enough top N candidates (e.g., set N as 60), the inference
accuracy can reach above 85%.

6 REAL-WORLD EXPERIMENT: MOBILE PAYMENT
PASSWORD INFERENCE TOWARDS ALIPAY

6.1 System Setup

To demonstrate the practicality of the WindTalker, we per-
form an experimental evaluation of password inference on
Alipay, a popular mobile payment platform on Both of An-
droid and iOS system. Alipay is the largest mobile payment
company in the world and has 450 million monthly active
user including 270 million mobile payment users [22]. As
shown in Fig. 12, we deploy a WindTalker system at a cafe-
like environment and release an authentication-free WiFi.
The AP (including Intel 5300 NIC and the antennas) is set up
behind the counter, which makes it less likely to be detected
visually. The victim is 1 meter away from our deployed WiFi
devices. When we collect the data, one volunteer walks pass
by the victim but none of volunteers walks between the
victim and the AP.

To simulate the real-world attack scenarios, the recruited
volunteers are required to access to this free WiFi access
point and perform the following three phases: 1) Online
Training Phase: the volunteers are required to input some
randomly generated numbers by following a similar way as
Text Captcha. This phase is designed to collect the user’s
input number and the corresponding CSI data to finish the
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data training. 2) Normal Use Phase: the volunteers perform
the online browsing or use the applications as a normal
user. 3) Mobile Payment Phase: when the users use the
online shopping applications, it will be ended with the
mobile payment. All of the online shopping and mobile
payments are secured with HTTPS protocol. According to
Alipay mobile payment policy, the mobile users must input
the password to finish an mobile payment transactions.
The goal of the attacker is to recover the mobile payment
password of the volunteers.

6.2 Operations of WindTalker
After the volunteers connect to the authentication-free WiFi
hotspot, WindTalker triggers ICMP based CSI Acquirement
Module to collect the CSI data at the sampling rate of 800
packets/s. WindTalker records the timestamp per one hun-
dred CSI data. Simultaneously, WindTalker utilizes Wire-
shark to capture and record WiFi traffic packets and their
corresponding timestamps. During the real-world experi-
ment, WindTalker collects WiFi traffic data and CSI data in
the online phase. After collecting the data, WindTalker infers
the user’s mobile payment password in the offline phase.

During collecting ICMP reply packets, WindTalker also
collects additional network traffic packets from users’ APPs.
As pointed out in [15] and [23], only some particular types
of packets (e.g., ICMP packets using “HT” rate) will be
measured by Linux 802.11n CSI Tool. In our real-world
experiments, CSI values will not be extracted from these
packets generated by user’s APPs. Besides, since CSI is the
physical layer information which reflects the wireless chan-
nel environment, the CSI measurements are irrelevant to the
types of network traffic packets. Thus even some addtional
packets were measured by Linux 802.11n CSI Tool, they will
only cause the CSI sampling rate vary slightly. Because we
can record the timestamp of each CSI value, thus we can
use the timestamps to reconstruct CSI stream to eliminate
the impact of sampling rate variation. Fig. 13 shows the CSI
waveforms reconstructed according to timestamps.

6.3 Recognizing the Sensitive Input Window
To determine the sensitive input window, WindTalker uti-
lizes Wireshark to collect the meta data (eg., IP address) of
the WiFi traffic during collecting CSI data. The meta data
collected by Wireshark is shown in Fig. 13(a). We can find
that in the experiment, Alipay applications route their data
to a server of some fixed IP address such as “110.75.xx.xx”.
These IP addresses are used by the Alipay service provider
and do not change for one to two weeks. With the traffic
meta data, as shown in Fig. 13(a), WindTalker obtains the
rough start time and end time of the sensitive input window
via searching packets whose destination is “110.75.xx.xx”.
Then, according to the timestamps of CSI data, WindTalker
locks the CSI data during this period of time.

6.4 CSI based Password Inference
Fig. 13(b) shows the original the 30th subcarrier CSI data
in Sensitive Input Window. After data preprocessing, Fig.
13(c) shows the first three principal components of CSI data
after PCA. It is found that in the real-world experiment
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Fig. 13. WindTalker in Case Study

that besides input payment password, victim may have
other operations such as selecting credit card for payment
in period of time of Sensitive Input. In order to handle
this situation, WindTalker only needs to find a continuous
keystroke of certain length. In our case, we are interested
in continuous 6-bit password input since Alipay chooses
6-digit mobile payment password. Thus after keystroke
extraction and recognition process, WindTalker is able to list
possible password candidates according to probability. The
top three password candidates in this case is 773919, 773619,
773916 while the actual password is 773919. We carry out the
real-world experiment ten times, each time the password is
different. Our experiment results show that the attacker can
successfully recover 6, 8 and 9 passwords if allowing to try
the password input for 5, 10 and 50 times (or Top 5, 10 and
50 candidates). This further demonstrates the practicality of
the proposed attack in the practical environment.

7 IMPACT OF VARIOUS FACTORS

There are many factors potentially affecting the CSI. The
performance of WindTalker is affected by various factors
such as relative position of AP and mobile device, CSI
sampling rate, keyboard layout, human movement and
temporal factors. Even clicking at the same key, the different
distance and direction between AP and the mobile device
may also lead to a different CSI. We will investigate the
impact of these factors on WindTalker in our experiments.

7.1 Distance
In a real scenario, the distance between the victim’s mobile
device and AP is not fixed. As shown in Fig. 14(a), the recov-
ery rate of WindTalker will decrease along with the increase
of the distance. However, it is observed that, even if the
distance between the antenna of WindTalker and victim’s
smartphone (i.e., Xiaomi) is enlarged to 1.5m, WindTalker
can still achieve keystroke inference accuracy of 83.5% in
terms of 10-fold cross validation, which is high enough for
launch keystroke inference. Fig. 14(b) shows that both of
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Fig. 14. Distance’s influence in WindTalker

CSI shape and degree will change under different distance
when pressing the same key. This indicates that WindTalker
needs to retrain dataset even for the same victim with
different distances. When the distance between antenna and
victim is too long, the multiple-path propagate will become
more complicated. Thus the collected CSI cannot reflect the
victims finger precisely and result in inaccurate inference
results. To partially solve these limitations, there are two
possible solutions. Firstly, the attacker can fix the location of
table and chairs, which will make the user’s position rela-
tively stable. The other solution is placing three antennas of
Intel 5300 NIC at different locations to enlarge the effective
range of WindTalker. Therefore, when the victim connects
to rogue WiFi, WindTalker could dynamically choose the
antenna which is closest to the victim to collect CSI data.

7.2 Direction
The relative direction between the victim and attacker may
seriously affect the CSI since different directions mean dif-
ferent multi-path propagation between the transmitter and
the receiver. Thus, we show the performance of WindTalker
under different directions. Note that the mobile device (i.e.,
Xiaomi in this experiment) is in front of victim. It is impor-
tant to point out that, for a right-handed user, WindTalker
shows a better performance when the AP is on the left side
of the victim. This is because it is easier for WindTalker to
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Fig. 16. Effect of CSI Sampling Rate

sense victim’s finger clicks and the hand motion. Fig. 15
shows the keystroke inference accuracy of WindTalker in
different direction in terms of 10-fold cross validation. It is
interesting that WindTalker can achieve a high performance
even the AP is deployed behind victims (i.e., 81%), which
means that the proposed CSI based keystroke inference can
work well even if the attacker is behind the user without
visually seeing the clicking actions. This represents one of
significant merits which cannot be achieved by any previous
work. In real-world, the attacker can adjust the position and
orientation of directional antenna to overcome the limita-
tions of distance and direction.

7.3 Smartphone Type

The experiments in Section 5 and Section 6 are implemented
on Xiaomi, Redmi and Samsung Note3 smartphone. To eval-
uate the impact of different smartphone types, we recruit ten
volunteers to generate 10 loop keystrokes on Xiaomi, Redmi
and Samsung Note3. All of these mobile phones run with
Android 5.0.2. When using all nine loops data, WindTalker
achieves the average classification accuracy of 93.5%, 88.3%
and 83.9% on Xiaomi, Redmi and Samsung Note3 respec-
tively. The experimental result indicates that the WindTalker
performance is affected by the smartphone type, because
different smartphones may have different relative positions
of antennas and working powers. Fortunately, the accuracy
of WindTalker on different smartphones are still acceptable
for password inference.

7.4 CSI Sampling Rate

The keystroke recognition accuracy depends on the sam-
pling rate of CSI. When the CSI sampling rate is high, there
is more information in the CSI waveform, which increases
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Fig. 17. Keystroke Recognition on QWERTY Keyboard

the keystroke recognition accuracy. Thus, we are interested
in how the CSI sampling rate influences the performance of
WindTalker. Fig. 16 shows the average classification accu-
racy of all volunteers with Xiaomi smartphone when vary-
ing the sampling rate from 100 packets/s to 800 packets/s.
The experiment procedures are the same with Section 5.2
and the antenna is placed at the best position as mentioned
in Section 7.1 and 7.2. From Fig. 16, we observe that the
classification accuracy improves when the sampling rate is
higher, but the improvement is not significant beyond the
sampling rate of 400 packets/s. For instance, with sampling
rate of 400 packets/s, the classification accuracy of Xiaomi
is 90.3%, which is only a slight drop compared to 93.5%
achieved for a sampling rate of 800 packets/s. Because
sampling rate of 400 packets/s is still enough to capture
the movement feature of keystroke. When sampling rate
reduces to 100 packets/s, the accuracy of Xiaomi reduces
significantly to 82.8%, as this sampling rate loses the de-
tailed feature of keystroke. In our experiment, we use the
sampling rate of 800 packets/s to achieve the best perfor-
mance of WindTalker. But when facing a high packet loss
rate situation, we can use the a lower sampling rate above
100 packets/s to achieve an acceptable performance.

7.5 Keyboard Layout

There are two different keyboard layouts which influence
the keystroke recognition accuracy. Besides the numeric
keyboard which is used in most online payment scenarios,
there is QWERTY keyboard on which a user can type
letters, numbers and special characters. The main difference
between the two keyboards is the key space. Comparing to
typing numeric keyboard, the hand movement tends to be
subtle when typing adjacent keys on QWERTY keyboard,
which makes recognizing keystrokes much more difficult
since the CSI waveforms become similar.

We are interested in how the QWERTY keyboard influ-
ences the recognition of keystroke. For simplicity, we just
focus on the digital input on the QWERTY keyboard. We
perform experiment on Xiaomi phone and the keyboard
layout is provided by Google input method. Fig. 17(a) shows
average classification accuracy on both numeric and QW-
ERTY keyboard. We observe that the accuracy of QWERTY
keyboard is 67.8%, which significantly drops compared to
93.5% of numeric keyboard. Fig. 17(b) is the confusion
matrix of QWERTY keyboard. We observe that most error
recognition happened between the adjacent keys. Although
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Fig. 18. Effect of human movement.

the accuracy of QWERTY keyboard is lowered than numeric
keyboard, but it still higher than the random guess.

7.6 Human Movement

In some cases, the CSI-based sensing may be affected by
the movement of other nearby human. Thus, we evaluate
the impact of human walking and human arm movement
on the performance of WindTalker. As shown in Fig. 18(a),
while WindTalker collecting the CSI data to infer the victims
keystroke, we recruit a volunteer to walk along four differ-
ent lines (L1, L2, L3, L4) respectively. The distances between
WindTalkers antenna and the midpoints of L1, L2, L3 and
L4 are 1 meter, 2 meters, 3 meters and 4 meters respectively.
The distance between antenna and the victim is 1 meter. We
totally conduct four experiments. In each experiment we ask
the victim to continuously generate keystrokes and collect
the corresponding CSI, at the same time, the volunteer walks
along one of the four lines with the speed of 0.5 m/s.
Fig. 18(b) shows the experimental result. When the distance
between antenna and the midpoint of walking mans trajec-
tory is larger than 2 meters, the keystrokes could be easily
found from the collected CSI waveforms. However, when
the distance is 1 meter (i.e., the walking mans trajectory
is very close to the victim), it is hard to extract keystroke
waveforms from collected CSI data. The results show that
the humans walking will bring additional multiple-path
effects into the wireless transmission. However, WindTalker
is still effective if only there is no human walking within 2
meters of the WindTalkers antenna.

Besides human walking, we also consider another sce-
nario in which a human stays at a fixed location but
waves his/her arms. We conduct four experiments. When
the victim continuously generating keystrokes, we ask the
volunteer stays at the midpoints (i.e., C1, C2, C3, C4 in Fig.
18(a)) of above four lines respectively and spins his/her arm
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Fig. 19. CSI waveforms of PIN number 1 on different days.

with the average speed of 0.91 cycle per second. As shown in
Fig. 18(c), when the distance between antenna and volunteer
is larger than 3 meters, the keystrokes could be recognized
from collected CSI data. When the distance is 1 meter (i.e.,
the victim is very close to another people), the keystrokes
is hard to be extracted. Therefore, WindTalker will work
normally only if there is no user waves his/her arms within
3 meters of the WindTalkers antenna.

7.7 Temporal factors
The temporal factors will also affect the performance of
WindTalker. Fig. 19 shows how CSI waveform changes on
different days. We can observe that these CSI shape patterns
look different. The reason is that in different days, the users
typing behaviour may be inconsistent and the surrounding
environment may change, which may affect the constructive
and destructive interference of several multi-path signals.
Therefore, in current state, for each keystroke inference,
WindTalker needs to update the users CSI profiles to ensure
its performance. We leave this limitation for future work.

8 COUNTERMEASURES

8.1 Basic Defense Strategies
8.1.1 Randomizing the Keyboard Layout
One of the most straightforward defense strategies is to
randomize the layouts of the PIN keyboard, such that the
attacker cannot recover the typed PIN number even if he can
infer the keystroke positions on the touchscreen. As pointed
out by [7], randomizing the keyboards is effective at the cost
of the user experience since the user needs to find every key
on a random keyboard layout for every key typing.

8.1.2 Changing Typing Gesture
For WindTalker, collecting the accurate CSI data is essential
for achieving high inference success rate. Thus the user can
intentionally change his typing gestures or clicking patterns
to introduce the unexpected interference to the CSI data.
For example, the randomized human behaviors (e.g., human
mobility) would introduce more impact on CSI than finger
click on wireless signals, which reduce the successful chance
of the adversary.

8.1.3 Refusing to Connect to Rogue WiFi
The most thorough defense strategy is refusing to connect
to rogue WiFi hotspot. For instance, [24] and [25] proposed
a method which can detect a rogue WiFi hotspot. These
detection systems suppose that both of the rogue hotspot
and the legitimate hotspot have the same SSID. However, if
the attacker uses a new SSID that is not observed before by
the detection system, it will fail either.
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Fig. 20. Obfuscation Defense Strategy

8.1.4 Blocking the ICMP Echo Request
Our CSI based typing inference requires collecting CSI data
with a high frequency. According to [26], the data received
in the echo message must be returned in the echo reply
message. It means that the victims device must reply to
the attackers WiFi hotspot when it received the ICMP echo
request. A countermeasure for the user is configuring the
firewall to detect and block the high-frequency ICMP echo
requests. But this countermeasure is rarely used in Android
smartphones, because it needs to be implemented at the
operation system level and the common users have no
access to it [27]. As far as we have tested in 3 mainstream un-
rooting smart phones(Xiaomi, Redmi and Samsung), none
of them have blocked this kind of ICMP echo request,
because it will forbid other hosts to ping the user device
and affect the user experience.

8.2 CSI Obfuscation Algorithm
In this subsection, we propose a novel obfuscation strategy
to defend against the CSI based side channel attacks. Our
goal is preventing the attackers from collecting the accurate
CSI data introduced by users password input. In the ideal
case, the strategy can be implemented and deployed at the
users side and can be triggered in a user-transparent way
as long as any sensitive input time window is observed.
This strategy does not need the user’s participation and thus
minimize its impact on the user experience.

8.2.1 Overview of the Basic Idea
The basic idea of the proposed defense strategy is intro-
ducing a randomly generated CSI time series sequence to
obfuscate the original one. As shown in Fig. 20, during the
sensitive input time window, when the attacker collects the
CSI data (or original CSI data) from the target user, the user
device can randomly generate some CSI data (or obfuscation
data) to obfuscate the original CSI data and thwart the side
channel attack. According to 802.11n standard [16], when
the user does not launch sensitive applications, the attacker
can obtain the CSI data by analyzing the training sequence
of the preamble of the WiFi packet obtained from the vic-
tims device. Without loss of the generality, the original CSI
between victim and attacker is estimated as

H1 =
Y1
X1

(9)
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where X1 is the training sequence on transmitter and Y1 is
the training sequence on receiver. In practice, both the trans-
mitter and receiver assume that the training sequence X1

will not change during the whole communication process.
During the password input progress for a specific mobile

payment application, (eg. Alipay), the defense strategy will
be launched. The attacker uses the ICMP requests to obtain
WiFi packets from the victim, and, at the same time, the
users device can also proactively sends the obfuscation
packets to the attacker. For instance, the training sequence
X1 in Equation.9 was changed into

X2 = ∆HX1 (10)

The revised training sequence will be received by at-
tacker as:

Y2 = H1X2 = H1∆HX1 = H2X1 (11)

From the attacks perspective, it is indistinguishable for the
original and obfuscation data. Because the attacker still uti-
lizes original training sequenceX1 to estimate CSI, therefore
the attacker would estimate victims CSI as H2 = H1∆H . It
means that the original CSI data will be masked by inserting
forged CSI data H2 into the original CSI sequence H1. Thus
the CSI based side channel attack can be thwarted because
the attacker cannot infer the users keystroke by analyzing
CSI data.

8.2.2 Experiment Evaluations
We perform an experiment to prove the effectiveness of
our proposed strategy. In the ideal case, it should be the
users device that generates the obfuscation data. In our
experiments, we adopt a mobile phone as the target device
and another phone as the obfuscation device to perform
the proof-of-concept experiments and evaluate the effec-
tiveness of the proposed defending strategy. In practice, to
implement this defense strategy in users devices, we can
use Software Defined Radios (SDR) to revise the training
sequence of mobile device [28].

In our experiment, both devices are connected to a WiFi
hotspot released by WindTalker. The WindTalker uses ICMP
based CSI Acquirement Model to obtain CSI data H1 from
the victim, and during this period, the victim continuously
types PIN numbers. When victim launches sensitive appli-
cation (e.g., Alipay), the obfuscation device continuously
sends packets (e.g., UDP packets) to WindTalker so that
the WindTalker receives mixed CSI data. Note that, the
obfuscation device is placed at different places to get a
different CSI estimated value H2.

The result is shown in Fig. 21. We can find that with-
out the involvement of obfuscation device, the WindTalker
works normally and the finger clicks are easily distin-
guished in CSI H1. With the involvement of obfuscation
device, the finger click patterns are obfuscated with the
forged CSI measurements H2. So the effectiveness of this
defense strategy is demonstrated. The [28], [29] and [30]
have discussed how to implement it in the SDR system. To
apply this method to mobile phone, the operation system
kernel of the phone should be revised [16], which is out of
the scope of this work. We will leave it for the future work.

Three distinguishable 
keystroke waveforms 

Two illegible keystroke 
waveforms due to 
obfuscation device

Fig. 21. The 4th Subcarrier Waveform in the Experiment

9 LIMITATIONS

In this section, we discuss the main limitations of
WindTalker. WindTalker’s high performance is achieved in
an experiment environment. However, if we try to apply
WindTalker in anytime and anyplace, we need to overcome
the limitations as follows.

Hardware Limitations. In WindTalker, we use Intel 5300
NIC and Linux 802.11n CSI Tool [15]. In our experiments,
it is observed that the system will crash when we perform
CSI data collection for iPhone or some versions of android
smart phones. This is because, according to the statement of
the CSI Tool, it is very easy to crash when one Intel 5300
NIC works with other NICs (e.g., an iPhone). However, our
implementation and evaluation on a wide range of smart
phones (including Xiaomi, Redmi and Samsung phones)
demonstrate the practicality of the proposed CSI based
keystroke inference method. We will leave the issues of
improving the compatibility of Intel 5300 NIC with a wider
range of mobile devices to our future work.

Fixed Typing Gesture. Currently, WindTalker can only
work for the situation that the victim can only touch the
screen with a relatively fixed gesture and the phone needs
to be placed in a relative stable environment (e.g., a table). In
reality, the user may type in an ad-hoc way (e.g., the victim
may hold and shake the phone, or even perform some other
actions while typing). We argue that is a common problem
for most of the side channel based keystroke inference
schemes such as [2], [8], [10]. This problem can be partially
circumvented by profiling the victim ahead or performing a
targeted attack by applying the relevant movement model
as pointed out by [8].

User-specific Training. WindTalker needs to extract the
keystroke samples from the victim before launching pass-
word inference attack. This requirement is a common as-
sumption for most of the side channel keystroke inference
attacks such as [2], [9], [31], [32], [33], [34]. To launch a real-
world attack, the attacker can consider the following two
strategies. Firstly, WindTalker could leverage some social
engineering methods to collect training data from victim.
For example, the attacker could implement online training
by mimicking a Text Captcha to require the victim to input
the chosen numbers. As shown in the Section 5.3, given
three training samples per key, WindTalker could achieve
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6-digit password inference accuracy of 69.6% under top
5 password candidates. The second strategy is using the
self-contained structures of collected CSI data. For exam-
ple, our follow-up work [35] proposes a non-training CSI
based keystroke inference system. In this system, the at-
tacker extracts the correlations between the CSI features
of keystrokes, and then maps the collected CSI data to a
word within a predefined dictionary. Applying this idea in
our 6-digital password inference scenario maybe a potential
solution, and we leave it for future work.

10 RELATED WORK

10.1 Free Public WiFi with Malicious Behaviors

Free Wi-Fi services provided by public hotspots are attrac-
tive to users in a mobile environment when their mobile
devices have limited Cellular connection. Existing works
[36], [37], [38], [39], [40], [41] have demonstrated it is feasible
to deploy a malicious Wi-Fi hotspot in a public area. For
example, an iPhone can turn itself into a Wi-Fi hotspot. If
the iPhone user changes the session ID to “Starbucks Free
Wi-Fi”, other people may connect their phones to the iPhone
while wrongly believe they are using free WiFi services from
a nearby Starbucks. In such a scenario, the attacker can
utilize the WiFi network traffic collected by the WiFi hotspot
to infer the user’s privacy information. Taylor et al. [42]
proposed methodology to fingerprint and identify Android
apps by analyzing the encrypted HTTPS/LTS traffic. Alan
et al. [43] proposed a method to identify mobile apps only
using the TCP/IP headers from the apps launch time traffic.
Finally, Conti et al. [44] presented a system that using
network traffic to identify the specific actions that a user
is performing on his/her mobile apps.

Compared with these previous works, our WinderTalker
utilizes both network layer traffic and physical layer CSI
information to infer the user’s sensitive information. In our
considered scenarios, attacker lures the users to connect
their devices to a fake access point. Then, the attacker
eavesdrops the WiFi traffic to identify the sensitive window
and selectively analyzes the CSI information to infer the
sensitive keystroke information.

10.2 Keystroke Inference Methods

Prior keystroke inference methods utilized the information
from various sensors and communication channels, such as
motion, camera, acoustic signals, and WiFi signals.

Motion: Owusu et al. [10] presented an accelerometer-
based keystroke inference method, which aims to recover
six-character passwords on smartphones. Later, Liu et al. [8]
applied a similar idea to the smartwatch scenario. Their ob-
jective is to track user’s hand movement over the keyboard
using the accelerometer readings from the smartwatch, and
the keystroke inference achieves 65% recognition accuracy.

Acoustic signals: Zhu et al. [5] presented a context-free
and geometry-based keystroke inference. They leverage the
microphones of a smartphone to record keystrokes’ acoustic
emanations and the experimental results show that more
than 72.2% of keystrokes can be accurately recovered. Liu
et al. [4] further proposed a keystroke snooping system
by exploiting the audio hardware to distinguish mm-level

position difference. The accuracy of their system can achieve
94%. These works could achieve high accuracy on both
digital and QWERTY keyboard. However, compared with
these works, WindTalker requires neither a fixed position
nor a close distance to the victim. Furthermore, WindTalker
can obtain the network traffic information, which improves
the practicality in real-world environments.

Camera based: Yue et al. [7] introduces a camera-based
keystroke inference using Google Glass or off-the-shelf we-
bcam. Shukla et al. [6] also presented a video-based attack
relies on the spatio-temporal dynamics of the hands during
typing. Sun et al. [34] use camera to record tablet backside
motion and infer the victim’s typing content.

WiFi signal based: Using WiFi signals to infer the
keystroke draws a large research attention because it offers
device-free and non-invasion advantages. Ali et al. [2] pro-
posed a keystroke inference systems called WiKey, which
uses the CSI waveform pattern generated by finger’s unique
motion to distinguish keystrokes on a external keyboard.
Zhang et al. [11] presented WiPass, which can work in
mobile device to detect the graphical unlock passwords.
Tan et al [12] also proposed WiFinger, which leverage
CSI from COTS device to capture the user’s fine-grained
finger gesture. Compared with our work, WiKey, WiPass
and WiFinger don’t utilize the network traffic information,
thus these schemes work on the OKI keystroke inference
model and they can not recognize the user’s sensitive input
window.

11 CONCLUSION AND FUTURE WORK

In this paper, we have proposed a novel side-channel attack
model named WindTalker, which can be used to infer a
victim’s mobile password via WiFi signals. WindTalker is
a cross-layer inference system, which utilizes both network
layer traffic information and physical layer CSI information.
Our experiments on Alipay shows that WindTalker can be
effective in recognizing the victim’s password on smart
phones. Compared with previous works, WindTalker nei-
ther deploys external devices close to the target device nor
compromises the target device. Furthermore, we proposed
the CSI obfuscation based countermeasure and performed
the experiment to prove the effectiveness of this counter-
measure method.
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