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Abstract

Network resource reservation systems are being developed
and deployed, driven by the demand and substantial bene-
fits of providing performance predictability for modern dis-
tributed applications. However, existing systems suffer limi-
tations: They either are inefficient in finding the optimal re-
source reservation, or cause private information (e.g., from
the network infrastructure) to be exposed (e.g., to the user). In
this paper, we design BoxOpt, a novel system that leverages
efficient oracle construction techniques in optimization and
learning theory to automatically, and swiftly learn the opti-
mal resource reservations without exchanging any private in-
formation between the network and the user. We implement
a prototype of BoxOpt and demonstrate its efficiency and ef-
ficacy via extensive experiments using real network topology
and trace. Results show that (1) BoxOpt has a 100% correct-
ness ratio, and (2) for 95% of requests, BoxOpt learns the
optimal resource reservation within 13 seconds.

1 Introduction

When facing a genie that only tells you whether it can grant
a wish or not, how can you find the best wish it can grant?

Although the question may sound like one from fairy
tales, people deal with such question in many real world sce-
narios. For example, modern distributed applications (e.g.,
(Zaharia et al. 2012; White 2012)) construct complex data
flows between end hosts, e.g., in data center networks. The
key to supporting these applications is the ability to provide
guaranteed network resources (i.e., bandwidth) for perfor-
mance predictability (Mogul and Popa 2012). As such, many
network resource reservation systems are developed and de-
ployed (Campanella et al. 2006; Guok and Robertson 2006;
Johnston, Guok, and Chaniotakis 2011; Riddle 2005; Zheng
et al. 2005; Sobieski, Lehman, and Jabbari 2004). However,
because of the underlying networks’ concern of revealing
sensitive information, existing reservation systems do not
provide applications with an interface to access informa-
tion of the underlying network infrastructure (e.g., topology,
links’ available bandwidth). Instead, networks only offer a
simple reservation interface for applications to submit re-
quests for reserving a specific amount of bandwidths for a
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set of flows: request(flow_set, bw_values)), and returns ei-
ther success or failure. A major concern of this design is
its inefficiency for the applications/users to find the optimal
amount of network resources to reserve. To further illustrate
the issues, consider the example in Figure 1, where a user
(e.g., application) wants to determine and reserve the max-
imum achievable bandwidth for two flows from S; to Dy,
and S, to Do, respectively. Using existing solutions that of-
fer only a simple reservation interface, finding the constraint
that both flows can collectively get only 100 Mbps of band-
width is already an instance of the NP-hard membership-
query based constraint acquisition problem (Bessiere et al.
2017), letting alone finding the optimal reservation for both
flows (e.g., 50 Mbps for each flow).

Each link: 100 Mbps

Figure 1: An example network topology: the routes of two
flows share bottleneck links, i.e., I3 and l4, hence they can
only collectively get a 100 Mbps bandwidth.

To address this problem, researchers have proposed sev-
eral solutions, but all of them suffer limitations, and vio-
late privacy requirements. For example, to determine opti-
mal bandwidth reservations, recent proposals depart from
the simple reservation interface, and require either networks
to reveal sensitive information to users (Soulé et al. 2014;
Subramanian, D’ Antoni, and Akella ; Heorhiadi, Reiter, and
Sekar 2016; Lee et al. ), or vice versa (Gao et al. 2016;
Gao et al. 2017; Xiang et al. 2018). These solutions are
therefore limited to settings where the level of trust between
the applications and the underlying network is high. These
solutions cannot be deployed in general settings as malicious
parties may use the exposed network information to identify
vulnerable links and launch attacks (e.g., DDoS).

In this paper, we explore the feasibility and benefits of
learning the optimal network resource reservation for the
user without exposing the private information of the network
(i.e., bandwidth capacity region) and the user (e.g., resource
orchestration policy) to each other. In particular, we tackle
the following question: How can a user learn the optimal



network resource reservation using only the simple reserva-
tion interface? This task is non-trivial due to the extremely
limited feedback (i.e., success/failure) provided by simple
reservation interface.

Our solution to this problem is BoxOpt, a novel learn-
ing system that automatically, and efficiently learns the op-
timal resource reservations for the user through the sim-
ple reservation interface, without exchanging any private
information between the network and the user (e.g., band-
width feasible region of the network and the resource or-
chestration policy of the user). Specifically, BoxOpt allows
users to include their resource reservation objectives as con-
cave utility functions of the requested resources (e.g., band-
widths) in the reservation requests. Upon receiving a reser-
vation request, BoxOpt models the simple reservation in-
terface of network resource reservation systems as a mem-
bership oracle over a polytope. It then expands oracle con-
struction techniques (Lovasz, Grotschel, and Schrijver 1993;
Lee, Sidford, and Vempala 2017) from optimization and
learning theory to construct a separation oracle through in-
voking the membership oracle in near O(n) iterations (n
being the number of flows), which when called upon will
accurately infer a search space in which the optimal reser-
vation vector lies. With such a separation oracle, BoxOpt
then constructs an optimization oracle based on ellipsoid
method, which can learn the optimal reservation vector
through O(n?) calls on the separation oracle.! In this way,
BoxOpt not only can learn the optimal resource reservation
efficiently, but also is privacy-preserving in that no private
information is exchanged between the user and the network.

The main contributions of this paper are as follows:

e We study the important problem of learning the optimal
network resource reservation through the simple reservation
interface of network resource reservation systems. In partic-
ular, we design BoxOpt, a novel, fast, automatic, privacy-
preserving learning system. To the best of our knowledge,
BoxOpt is the first working system that solves this problem,
and can be extended to other optimization problems.

e We model the simple reservation interface as a member-
ship oracle over a polytope, and expand oracle construction
techniques from optimization and learning theory to develop
an efficient optimization oracle in BoxOpt, which learns the
optimal resource reservation in near O(n?) of calls on the
membership oracle.

e We implement a prototype of BoxOpt and demonstrate
both its efficiency and efficacy through extensive experi-
ments using real topologies and traces. Results show that (1)
BoxOpt has a 100% correctness ratio, and (2) for 95% cases,
it can learn the optimal reservation within 13 seconds.

The remaining of this paper is organized as follows. We
present an overview of BoxOpt in Section 2. We give de-
tails on how BoxOpt efficiently learns the optimal network

"We choose the ellipsoid method because it is a classic cutting
plane method. However, the design of BoxOpt is modular and other
cutting plane methods, e.g., analytic center method (Atkinson and
Vaidya 1995) and random walk (Bertsimas and Vempala ), can also
be used to construct an optimization oracle from a separation ora-
cle.
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Figure 2: The architecture and workflow of BoxOpt.
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resource reservation only using the simple reservation inter-
face in Section 3. We present the evaluation results of Box-
Opt in Section 4. We discuss related work in Section 5 and
conclude the paper in Section 6.

2 Overview of BoxOpt

In this section, we first present the architecture and the work-
flow of BoxOpt. We then give a formal, mathematical for-
mulation of the key technical challenge in BoxOpt: how to
find the optimal network resource reservation through the
simple reservation interface.

2.1 Architecture

BoxOpt is composed of two components: an automatic
reservation optimization (ARO) module for the user, and a
network resource reservation (NRR) module for the network
(Figure 2). The two components interact with each other
through the simple reservation interface commonly used in
traditional network resource reservation systems.
Automatic reservation optimization module: The ARO
module is a private component belonging to the user, and is
composed of two sub-components: an ARO controller, and
an ARO scout.

The ARO controller is the main interface for the user to
submit the resource reservation requests. A request consists
of a set of n flows, F = {f1, f2,..., fn}, to reserve the
resources for, and a concave utility function util(x) to max-
imize, with x = [z1,29,...,2,] and each z; represent-
ing the available bandwidth that can be reserved for flow
fi € F. Example utility functions include total throughput
and priority-based total throughput. Given a user resource
reservation request, the objective of the ARO controller is to
infer the optimal resource reservation to maximize util(x).
The ARO controller achieves it with the assistance of the
ARO scout: Specifically, the ARO controller iteratively se-
lects a vector X of bandwidth values for F' (called reserva-
tion vector) and sends it to the ARO scout. For each reserva-
tion vector, the ARO scout returns a search space where the
optimal reservation vector lies in. With the inferred search
spaces returned by the ARO scout, the ARO controller grad-
ually converges to the optimal reservation vector that maxi-
mizes util(x).

The ARO scout is the main user entity interacting with
the NNR. For each X from the ARO controller, the ARO
scout infers a search space where the optimal reservation



vector lies in, and returns the inferred search space back to
the ARO controller. To infer the search space where the the
optimal reservation vector lies in, the ARO scout sends a se-
quence of reservation vectors to the NRR through the simple
reservation interface. As further described in Section 3 and
Section 4, for each reservation vector submitted from the
ARO controller, the ARO scout might submit tens or hun-
dreds of reservation vectors to the NNR to get an accurately-
inferred search space, potentially, leading to a high over-
head. As such, to reduce the total latency to find the optimal
reservation vector, the ARO scout is placed with the network
instead of the user. This design decision reduces the user-
network communication latency by 20x as demonstrated in
the evaluation section. More importantly, this design does
not expose the private information of the user (i.e., util(x))
to the network, as the ARO controller does not send such
information to the scout.

Network Resource Reservation Module: The NRR mod-
ule is a private component belonging to the network. Its pri-
mary role is to verify whether the reservation vectors sub-
mitted by the ARO scout can be satisfied. Upon receiv-
ing a reservation vector from the ARO scout, the NRR ex-
tracts the relevant constraints from the network. The con-
straints include both physical network constraints (e.g., if
two flows share a same link, their allocated bandwidths can-
not exceed the link’s available bandwidth), and network
policies (e.g., rate limiting, etc.) The constraints are cap-
tured as an abstraction of linear inequalities (Gao et al. 2016;
Xiang et al. 2018). For example, to capture the physical net-
work constraints, the NNR first retrieves the routes (i.e., se-
quence of traversed links) for each flow. Then, for each link
[ in the network, the NNR generates the following linear in-
equality to ensure that the allocated bandwidths to the flows
do not exceed the link’s available bandwidth:

Z z; < wy,Vf; that uses [ in this route,

where w; is the available bandwidth on link [. Consider-
ing the example in Figure 1, the NRR module generates the
following linear inequalities:

1 <100 Vi, € {112, 15,16},
xo < 100 Vi, € {l7,13,li1, lia},
x1 + 29 <100 VI, € {I3,14},
T1, 2,73 > 0.

ey

Then, the NRR generates additional linear inequalities to
represent the network’s internal traffic engineering policies,
such as load-balancing and bandwidth limiting. For exam-
ple, suppose the network wants to limit the total bandwidth
of flows f; and f> to be no more than 80 Mbps even if there
is no common link in their routes. Then a linear inequality
1 + zo + 23 < 80 is generated to represent this policy. Ge-
ometrically, the abstraction of linear inequalities represents
the bandwidth feasible region of the network for providing
bandwidths to a set of flows.

Finally, for each generated linear inequality, the NRR
checks if it is satisfied by the bandwidth values specified in
the reservation vector. If any inequality is violated, it returns
a FAILURE signal. Otherwise, it returns SUCCESS.
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2.2 Workflow

Having presented the basic components of BoxOpt, we now
briefly present its workflow to automatically compute and
reserve the optimal network resources for a set of flows as
follows (Figure 2):

e Step 1: The user submits a resource reservation request
for a set of flows F' to the ARO controller. The request also
includes a concave utility function util(x) of the bandwidths
of F.

e Step 2: In an outer loop, the ARO controller iteratively
selects reservation vectors to send to the ARO scout. The se-
lection of the reservation vectors is described in Section 3.4,
Algorithm 3. In return, for each reservation vector, the ARO
scout determines and replies with an inferred search space.

e Step 3: In an inner loop, upon receiving a reservation
vector from the controller, the ARO scout interacts with the
NRR, according to Algorithm 1 from Section 3.3, to infer the
next search space and send it back to the ARO controller.

The nested iteration of Step 2 and 3 stops when the ARO
controller converges to the optimal reservation vector maxi-
mizing util(x).

e Step 4: The ARO controller sends the optimal reserva-
tion vector to the NRR module to reserve the optimal re-
sources for the user.

e Step 5: The ARO controller confirms with the user that
the optimal network resource reservation has been success-
ful.

2.3 Key Challenge

Through the introduction of its architecture and workflow,
we show that BoxOpt is privacy-preserving by design: nei-
ther the user nor the network exposes the private information
(i.e., internal optimization objective of the user and the band-
width capacity region of the network) to the other party. As
such, the remaining key challenge for BoxOpt lies in Step
2 and 3: how can the ARO module interact with the NRR
module through the simple reservation interface to compute
the optimal network resource reservation?. To address this
challenge, we first give a formal, mathematical formulation.

Specifically, we first model the NRR module as a re-
source membership oracle. Without loss of generality, we
use Ax < b to denote the set of linear inequalities gener-
ated by the NRR module, and use K : {x|Ax < b,x > 0}
to represent the bandwidth feasible region for a set of flows
F'. In this way, we give the definition of resource member-
ship oracle:

Definition 1. [Reservation Membership Oracle (ReMEM)]
Given a reservation vector X, return YES if X € K, and
return NO otherwise.

ReM E M (%) accurately captures the interaction between
the ARO scout and the NRR module. Next, we formally de-
fine the problem of network resource reservation optimiza-
tion via simple reservation interface.

Problem 1 (Optimization via Membership Oracle). Find the
optimal solution to the following optimization problem

maximize util(x),

2



subject to,

Ax <b,
x > 0,

3
@

without the knowledge of A and b, but only using ReMEM
defined in Definition 1.

Maximizing util(x) subject to K : {x|]Ax < b,x > 0}
is a classic convex optimization problem. There has been a
rich body of literature on how to efficiently solve such prob-
lems (Boyd and Vandenberghe 2004). However, most of the
existing algorithms require the knowledge of the feasible re-
gion (in our case Ax < b). One may think of a strawman
to learn K through the ReMEM oracle, and apply the stan-
dard optimization techniques to find the optimal x. However,
finding the feasible region through a membership oracle is
NP-hard (Bessiere et al. 2017), making this strawman im-
practical. In contrast, as we will present next, BoxOpt resorts
to efficient oracle transformation techniques in optimiza-
tion and learning theory (Lee, Sidford, and Vempala 2017;
Lovasz, Grotschel, and Schrijver 1993) to solve this prob-
lem (i.e., efficiently learn the optimal resource reservation
via membership oracle).

3 Optimizing Network Resource Reservation
via Simple Reservation Interface

Having formally defined the key challenge for BoxOpt as
a problem of optimization via membership oracle, this sec-
tion discusses how we solve this problem. For presentation
clarity, this section starts by reviewing some concepts in op-
timization theory. Then, it presents the basic idea of our so-
lution, followed by its details.

3.1 Notations

Unless explicitly noted, we use v to denote a scalar and v
to denote a vector of n dimensions, where n is the number
of flows the user wants to reserve bandwidth for (see Sec-
tion 2.1). We use ||v]j2 = /Y v? to denote the Euclidean
norm of v, and use ||v||ooc = max |v;| to denote the max-
imum norm of v. We use B (m,n) = {x|||x — m|j; <
7n,x > 0} to denote the set of all positive vectors whose
Euclidean distance to m is at most 77, and use B, (m,n) =
{x]][x — ml|s < n,x > 0} to denote the set of all positive
vectors whose maximum norm distance to m is at most 7).

3.2 Basic Idea

Our approach to solve Problem 1 utilizes the equivalence
and polar relationships between different oracles in opti-
mization theory (Lovasz, Grotschel, and Schrijver 1993). In
particular, we focus on the relationships between ReMEM
with the following two oracles:

Definition 2. [Resource Separation Oracle (ReSEP)] Given
a reservation vector X, return YES if X € K, and otherwise
return a half space {y|p” (y — %) < 4} that contains K but
not X.

Definition 3. [Resource Optimization Oracle (ReOPT)]
Given a reservation request for a set of flows F' and the util-
ity function util(x), find x* € K that maximizes util(x).
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Algorithm 1: Resource Separation Oracle ReSFE P(X)
Selecte € (0,7],p € (0,1);
K+ B
if ReMEM returns YES for X then
| returnx € K ;
else if X ¢ B>(0, R) then
6 L return the half space {y|%” (y — %) < 0};

B W N =

wn

7 else

8 Ty 4 eré e%;

9 g < Subgradient(0, 11, 4¢, 3K);
return the half space

{ylg"(y — %) < (400 +1)p~ Riked };

Given that there exist efficient algorithms (e.g., ellipsoid
method) that can construct an optimization oracle through
invoking a separation oracle with a polynomial number of
iterations, if we can construct a separation oracle through a
polynomial number of calls to a membership oracle, we will
be able to solve Problem 1.

One may think classic half space learning techniques can
achieve such a construction of separation oracle via mem-
bership oracle. However, the problems are different. In half
space learning, the goal is to compute a hyperplane to sepa-
rate a set of given samples (in our case, the reservation vec-
tors) from two predefined classes. In contrast, the goal of
ReMEM to ReSEP construction is to compute a hyperplane
separating K and a reservation vector not belonging to K
by strategically choosing a minimal number of reservation
vectors to send to ReMEM.

Specifically, we develop our solution to Problem 1 in two
phases. First, we leverage recent progress on geometric al-
gorithms (Lee, Sidford, and Vempala 2017) to develop an
efficient algorithm that constructs ReSEP through invoking
ReMEM for a polynomial number of times. Specifically, our
algorithm expands the weak membership/separation oracle
construction in (Lee, Sidford, and Vempala 2017) to strong
membership/separation oracle construction. Second, we de-
velop an ellipsoid-method-based algorithm that constructs
ReOPT through local feasibility checks and invoking Re-
SEP for a polynomial number of times. Mapping these two
phases to Step 2 and 3 in the workflow of BoxOpt, we see
that the ARO scout is essentially the separation oracle Re-
SEP, and the ARO controller is the optimization oracle Re-
OPT (Figure 2). Next, we give the details of each phase.

3.3 From Resource Membership Oracle to
Resource Separation Oracle
To construct ReSEP from ReMEM, we first define two aux-

iliary functions on vector d € K given a reservation vector
X:

ax(d) < dj{nzpecK a, 5)
hz(d) + —ax(d)||X]|2 (6)

We see that given a vector d € K, d+ax(d) is the last vec-
tor on the line from d to d + % that is in K, and that —hx(d)



Algorithm 2: Computing the subgradient of hx(d)
Subgradient(d,r, 7, L)

Tri .

1 T2 <

VnL’
2 Randomly select y from Boo(d, 1) following a uniform
distribution;
3 Randomly select z from Bo (y, r2) following a uniform
distribution;
4 fori+1,...,ndo
5 Define line segment B (y, 72) N z + se;, where s € R
and e; is a vector whose elements are all zeros except
the ith one;
6 Denote the endpoints of this line segment as s; and t;,
respectively;
7 Evaluate hx(t:) and hx(s;) using binary search and
ReMEM;
s | Gi = %jx(s)
9 return g;

is the Euclidean distance from d to this point. Without loss of
generality, we assume that By (0,7) C K C Bj (0, R) for
some positive numbers r, R and such an assumption can be
trivially satisfied in practice. Extending the proof technique
in (Lee, Sidford, and Vempala 2017) for an n-dimensional
ball to only a partial ball on the first orthant, we get

R+0

Lemma 1. Given %, hx(d) is convex on K, and is £

Lipschitz in Bf (0,0) for0 < 6 < r.

With these auxiliary functions and a theorem that for any
Lipschitz function, it is linear on a small ball (Bubeck and
Eldan 2016), we can construct ReSEP by computing the sub-
gradient of hz(d) at d = 0, which can be computed by bi-
nary search and invoking ReMEM. The constructed separa-
tion oracle is presented in Algorithm 1, and the computation
of the subgradient of hx(d) is presented in Algorithm 2.

A key insight in Algorithm 1 is that it expands the ap-
plicability of similar construction process from weak mem-
bership/separation oracles to strong membership/separation
oracles (i.e., ReMEM and ReSEP). In particular, we have

Lemma 2. There is a random variable ¢ with expectation
E(¢) < 2n,/ % such thatVq € K,

hx(q) > hx(d) + &' (a—d) = ¢lla — || — 4nri L.
With this lemma, we show the correctness of Algorithm 1
in the following theorem.

Theorem 1. If % ¢ K, Algorithm 1 yields a half space con-
taining K but not X with probability 1 — p.

Proof. When % ¢ B3 (0, R), it is easy to see that the re-
turned half space {y|%(y) —% < 0} (Line 6 of Algorithm 1)
contains K but not X. When % ¢ K but X € By (0, R),
from Lemma 1, we know that hx(d) has a Lipschitz con-
stant of 3k on BJ (0, %). By selecting € € (0, 7] and setting
71 = rR™3¢3 (Line 1 and 8 of Algorithm 1, respectively),
we can get BL(0,2r1) C B5 (0, %). As such, we can apply
Lemma 2 and get that Vq € K

hz(q) > hx(0) + &7 - q — dllalec — 12071k, (7)
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1x € K and

Next, because X € B; (0, R), we have —
hx(—1%) = hx(0) — %112

1
hs(=—%) > hx(0) +&" -

Then we use Lemma 2 to get

1
——X— ?HS{HOO —12nr1k, (8)
K K

As such, we then get

g" 9)

Next, because ¢ € (0,7], X ¢ K and By (0,7) C K, we
have (1 — £)K C K. By definition of hx(d), we have

- X Z Hf(”g — ¢||5(||OC - 127’”’1,‘{2.

hx(0) = —(1 = S)[%l2 = — %2 + 5. (10)

Adding Equations (9) and (10) and then subtracting 2¢x on

the right hand side, we get
hs(0) + 87 - % > =X l0o — 12n71K% —en.  (11)

Next, we add Equation (11) to Equation (7) and get that
vq € K,

hx(@) > &"(a—%) — ¢llallec — dlI%[lo
—12nrik — 12nr1 k% — ex (12)
> gT(q—%) — 20R — 24nr1k* — k.

Vq € K, we have hx(q) < 0, and then we can have (Z) >

g(q — %), where ¢ is a random scalar independent of q that
satisfies

~ 12
E($) <4 —nR 4 24nm k% —en. (13)
™
Putting rq = rR™5€3 into Equation (13), we get
E($) < 40ne3 R3 k + ek. (14)
Further leveraging ¢ < r < R, we get
E(¢) < (40n + 1)e3 Rik. (15)

Then we can finish the proof using Equation (15) and
Markov inequality. O

In addition, observing Algorithm 1 and Algorithm 2, we
see that the bottleneck to construct ReSEP is to compute hx
using binary search and ReMEM (Line 4-8 in Algorithm 2).
As such, we give the following theorem on the complexity
of Algorithm 1.

Theorem 2. Algorithm 1 constructs the reservation sepa-
ration oracle (ReSEP) through an O(nlog R) calls on the
reservation membership oracle (ReMEM).

3.4 From Resource Separation Oracle to
Resource Optimization Oracle

Having constructed ReSEP from ReMEM, we next develop
an ellipsoid-method algorithm to construct ReOPT from Re-
SEP, which is summarized in Algorithm 3.

This algorithm adopts a binary search strategy to find the
largest util(x) that is feasible on K. In each main iteration
(Line 3-24), it constructs a feasible problem

wtil(X) > Unext,

K:Ax<b,x>0, (16)



and uses ellipsoid method to test if this problem is feasible.
One difference from the classic ellipsoid method is: when
evaluating if the center p of an ellipsoid E; is a feasible so-
lution, we first evaluate if p is feasible for util(x) > unewt,
and only invoke ReSEP if util(p) > wpeqe. This is be-
cause util(x) is kept at the ARO controller, where ReOPT
runs, but not shared to ARO scout, where ReSEP resides.
This would not affect the correctness of the ellipsoid method
for verifying the feasibility of Equation (16) because a half
space containing util(X) > .t Will also contain the fea-
sible region defined in Equation (16). In the meantime, the
privacy of user is also preserved.

Algorithm 3:
ReOPT (util(x)).

1 Compute the maximum and minimum of util(x) subject to
z; € [0, R] where ¢ = 1, ..., n and denote the value as
Umax and Umins

2 UL £ Umin, Ur < Umax;

3 while v; < u, do

4 Unext < (ul + UT)/2,

5 Build an ellipsoid Eo bounding B (0, R);

6 Vi < Vol(BSF(0,7)),i + 0;

7

8

9

Reservation Optimization Oracle

feasible + false;
while Vol(E:) > Vi do
p < center of Ej;;
if util(p) < Uncat then
L feasible + false;
H « {y|(Vutil(p))" (y — p) >=0};
else if ReSEP(p) returns a half space H then
| feasible < false;

else
X"« p;
break;

E; 1 < the minimum-volume ellipsoid containing
E,NH;
L i1+ 1;
if feasible == false then
L Ur <= Unext;
else
L UL < Uneaxts

feasible « true;

20

21
22

23
24

25 return x*;

We present the following theorem on the optimality and
efficiency of Algorithm 3.

Theorem 3. Algorithm 3 finds x* that maximizes util(x)
subject to K through an O(n?) calls on the reservation sep-
aration oracle (ReMEM ).

Proof. The complexity result in this theorem follows the
classic ellipsoid method. For the optimality claim, we ob-
serve that even if util(x) is concave, K is still a polytope. As
such, x* will be a vertex of this polytope. In this way, the op-
timality of Algorithm 3 can be proved in the same way as the
ellipsoid method optimally solves linear programming. [J
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Putting Theorems 2 and 3 together, we get the following
theorem on the optimality and efficiency of BoxOpt.

Theorem 4. BoxOpt finds x* that maximizes util(x) sub-
ject to K through an O(n?log R) calls on the reservation
membership oracle (ReMEM).

4 Performance Evaluation

We implement a prototype of BoxOpt and evaluate its per-
formance on an operational federation network supporting
large-scale distributed science collaborations, and using real
traffic traces from recent science experiments. We first de-
scribe our setup, followed by the detailed results.

4.1 Methodology

We evaluate the performance of BoxOpt on the topol-
ogy from LHC Open Network Environment (LHCONE), a
global science network consisting of 62 institutes (Martelli
and Stancu 2015). We randomly select a topology for each
institute from the Topology Zoo (Knight et al. 2011), and
then assemble the connections and topologies from previ-
ous steps into a unified large network. We replay the actual
trace from the CMS experiment (cms-dashb ), a main source
of traffic in LHCONE. We focus on a 48-hour trace starting
from December 14, 2017, consisting of 716 resource reser-
vation requests. The number of flows in each request varies
between 1 and 7. Because the CMS experiment is one of
the largest ongoing distributed scientific experiments with
complex, distributed analytics across tens of geographically
distributed locations, we believe the trace is representative
of complex data flow of modern distributed applications.

4.2 Results

In our experiments, we set I? and 7 in Algorithm 1 to be the
maximum and minimum of link bandwidth in the network
topology. We run extensive experiments by choosing differ-
ent values of € and p and different utility functions. In what
follows, we present the results of one setting: maximizing
total throughput when p = 0.001 and ¢ = ér. Results of
other settings are highly similar as this setting, hence are
omitted due to page limit.

Correctness of BoxOpt: For each reservation request, we
compare the optimal resource reservation computed by Box-
Opt with the optimal solution to the problem wtil(x) sub-
jectto K computed by a state-of-the-art optimization solver
(e.g., CPLEX (CPLEX 2018)). We find that in all 716 re-
quests, BoxOpt outputs the same optimal solution as the
solver does, i.e., BoxOpt has a 100% correctness ratio.
Efficiency of BoxOpt: As illustrated in Figure 2 (Section 2),
the main bottleneck of BoxOpt is the communication latency
between the optimization oracle at the ARO controller in-
voking the separation oracle at the ARO scout as the compu-
tation latency is ignorable. As such, we use the total commu-
nication latency to find the optimal resource reservation for
each request to represent the efficiency of BoxOpt. Specif-
ically, we assume the user is located at New York and the
network is in Los Angeles. For each invocation of ReSEP at
ARO scout, we assign it a round trip time (RTT) randomly
chosen from the statistic RTT data collected in (global-ping



). Then the communication latency to find the optimal re-
source reservation for a given request is the sum of all RTTs
incurred by corresponding ReSEP invocations.

Figure 3a plots the CDF of communication latency of all
requests in the experiment. We observe that for 95% of the
requests, BoxOpt is able to learn the optimal resource reser-
vation within 13 seconds. This demonstrates the efficiency
of BoxOpt to swiftly learn the optimal resource reserva-
tion via the simple reservation interface. Figure 3b plots the
statistics of the communication latency for different sizes of
reservation requests. The nonlinear increase of the latency
is consistent with conclusion in Theorem 3. However, com-
pared with the lasting time of network resource reservation
(e.g., hours and days) and the amount of data being trans-
mitted (e.g., TBs), BoxOpt is highly efficient.
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Figure 3: Efficiency of BoxOpt: total communication la-
tency to compute the optimal resource reservation.

Efficiency of ReOPT: We next study the efficiency of the
ReOPT oracle to learn the optimal resource reservation. To
this end, we count the number of ReSEP invocations (i.e.,
the bottleneck operation of the ReOPT oracle) for each re-
quest. Figure 4a gives the CDF of the number of ReSEP
invocations. We observe that for 95% requests, the ReOPT
learns the optimal reservation within 200 ReSEP calls. Fig-
ure 4b further breaks down the statistics based on the size of
requests. We observe that the nonlinear increase of ReSEP
invocations is consistent with Theorem 3 and Figure 3b.
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Figure 4: Efficiency of ReOPT: number of ReSEP invoca-
tions to learn the optimal resource reservation.

Efficiency of ReSEP: In the end, we study the efficiency of
the ReSEP oracle to infer the search space for ReOPT. To
this end, we count the number of ReMEM invocations (i.e.,
the bottleneck operation of the ReSEP oracle) for each re-
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Figure 5: Efficiency of ReSEP: number of ReMEM invoca-
tions to learn the optimal resource reservation.

quest. Figure 5a gives the CDF of the number of ReMEM
invocations. We observe that for 95% requests, the total
ReMEM invocations required is within 30000. This large
number demonstrates the necessity and benefits of putting
ReSEP (i.e., the ARO scout) with the network. Integrating
this observation from Figure 4a and Figure 3a, we can con-
clude that this design improves the efficiency of BoxOpt
(i.e., the communication latency) by 20 times. Figure 5b fur-
ther breaks down the statistics based on the size of requests.
We observe that the almost linear increase of ReMEM invo-
cations is consistent with Theorem 2.

5 Related Work

Many network resource reservation systems have been de-
veloped and deployed (Campanella et al. 2006; Guok and
Robertson 2006; Johnston, Guok, and Chaniotakis 2011;
Riddle 2005; Zheng et al. 2005; Sobieski, Lehman, and Jab-
bari 2004). However, existing systems either are inefficient,
or cause private information to be exposed. In contrast, Box-
Opt adopts a novel approach to efficiently learn the optimal
resource reservation through the limited feedback from the
simple interface provided by reservation systems.

One area closely related to our problem is constraint
learning (De Raedt, Passerini, and Teso 2018; Bessiere et al.
2017; Ruggieri 2012; Bessiere et al. 2004; Ruggieri 2013).
We refer readers to (De Raedt, Passerini, and Teso 2018)
for a comprehensive survey. Instead of learning all linear
inequalities that compose the bandwidth feasible region, in
BoxOpt, we show that the optimal solution to an optimiza-
tion problem can be learnt efficiently and accurately with-
out knowing any constraints. One future direction is to in-
tegrate constraint learning into BoxOpt to further accelerate
the learning of the optimal resource reservation.

BoxOpt leverages several powerful tools from optimiza-
tion theory (Lovasz, Grotschel, and Schrijver 1993; Boyd
and Vandenberghe 2004; Lee, Sidford, and Vempala 2017).
We expand the recent theoretical progress on efficient oracle
constructions to a broader scenario. To the best of our knowl-
edge, BoxOpt is the first working system that demonstrates
the feasibility and benefits of learning the optimal solution
of an optimization problem with only membership oracle. In
addition to network resource reservation, it also sheds light
for other areas such as multi-domain traffic engineering and
collaborative data analytics.



6 Conclusion

We design BoxOpt, a novel, automatic learning system to
efficiently learn the optimal resource reservations through
the simple reservation interface of network resource reser-
vation systems, without exposing the private information of
network or user. We demonstrate its efficiency and efficacy
through extensive evaluation using real network topology
and trace.
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