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ABSTRACT

The development of smart homes has advanced the concept of

user authentication to not only protecting user privacy but also

facilitating personalized services to users. Along this direction, we

propose to integrate user authentication with human-computer in-

teractions between users and smart household appliances through

widely-deployed WiFi infrastructures, which is non-intrusive and

device-free. In this paper, we propose FinдerPass which leverages

channel state information (CSI) of surrounding WiFi signals to

continuously authenticate users through finger gestures in smart

homes. We investigate CSI of WiFi signals in depth and find CSI

phase can be used to capture and distinguish the unique behavioral

characteristics from different users. FinдerPass separates the user
authentication process into two stages, login and interaction, to

achieve high authentication accuracy and low response latency si-

multaneously. In the login stage, we develop a deep learning-based

approach to extract behavioral characteristics of finger gestures

for highly accurate user identification. For the interaction stage,

to provide continuous authentication in real time for satisfactory

user experience, we design a verification mechanism with light-

weight classifiers to continuously authenticate the user’s identity

during each interaction of finger gestures. Experiments in real envi-

ronments show that FinдerPass can achieve 91.4% authentication

accuracy, and 186.6ms response time during interactions.

CCS CONCEPTS

• Security and privacy→Mobile and wireless security; •Net-

works → Home networks.
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1 INTRODUCTION

With the development of Internet of Things (IoT), smart household

appliances are increasingly pervasive and common in home envi-

ronments, making smart homes a practical realization. According to

a report [18], the deployment rate of smart household appliances is

32.0% in 2018, and expected to hit 53.1% by 2022. Smart household

appliances store various sensitive information such as personal

interests, hygiene habits, health status, which could facilitate a

variety of customized services. However, such potentially leaked

information could cause unauthorized access to personal data and

derivation of personal lifestyles. Thus, it is essential to provide

secure user access to smart appliances in home environments.

Personal Identification Number (PIN) [1] and biometric-based

approaches (e.g., fingerprint [4], voiceprint [28], face recognition

[15], etc.) are the most widely deployed user authentications. These

approaches are successful, but they only provide one-off user au-

thentication, and are not sufficient for scenarios where continuous

privacy protection is necessary. Moreover, biometrics are vulnera-

ble to replay attacks. To provide continuous protection, some works

[12, 25] explore the human-computer interactions between users

and appliances to implement continuous user authentication for

smart homes. But these methods require either wearable wrist sen-

sors or pre-deployed infrastructure, which are intrusive for users

and induce a high cost. Recently, WiFi-based user authentication

attracts considerable attention, because of the widespread deploy-

ment of WiFi infrastructures in indoor environments. Researches

[16, 27] utilize WiFi signals to distinguish users based on daily hu-

man activities. However, these approaches are only realized based

on coarse-grained movements (e.g., gaits, daily activities).

In smart homes, the fine-grained finger gesture rather than

coarse-grained human movements is a natural and common way of

human-computer interactions. Almost all information or service re-

quests to smart household appliances are issued by finger gestures

from users. Toward this end, our goal is to secure each request of

finger gestures, i.e., enable continuous user authentication based
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on each human-computer interaction, so as to achieve continu-

ous privacy protection. Recently, many works extend the usage

of WiFi signals rather than communications, such as indoor loca-

tion [26], recognition of human activities [24], and breathing rate

monitoring [10]. This inspires us to leverage WiFi signals for fin-

ger gesture-based user authentication, which is non-intrusive and

device-free. To implement the finger gesture-based continuous user

authentication through WiFi signals, we face several challenges in

practice. First, we should mitigate the always-existed interference

induced by unconscious finger motions in CSI of WiFi signals to ex-

tract robust features of finger gestures. Second, the authentication

system needs to be capable of accurately identify each individual

based on extracted unique behavioral characteristics for secure

access control. Finally, the user authentication should provide a

real-time response for satisfactory user experiences due to user

authentication integrated with human-computer interactions.

In this paper, we first investigate the feasibility of leveragingWiFi

signals for finger gesture-based user authentication in depth. By an-

alyzing Channel State Information (CSI) of WiFi signals induced by

finger gestures, we find that the behavioral characteristics of differ-

ent users can be presented in CSI phase of WiFi signals. Also, since

the user authentication is integrated with human-computer inter-

actions, we are inspired to maintain the real-time response during

each finger gesture-based user authentication for satisfactory user

experiences. Toward this end, we propose a finger gesture-based

continuous user authentication system, FingerPass, which leverages

CSI of WiFi signals to continuously authenticate users during fin-

ger gesture-based interactions. First, FingerPass pre-processes the

received CSI of WiFi signals and segments the signals into episodes

for every finger gesture through amplitude differential, and then

recognizes different finger gestures through Support Vector Machine

(SVM). To achieve high authentication accuracy and satisfactory

user experience simultaneously, the whole authentication process

of FingerPass is divided into two stages, i.e., the login and interaction

stages. The login stage identifies a user’s identity based on a spe-

cific login finger gesture from multiple registered users. In order to

ensure high user authentication accuracy in the stage, we propose a

deep learning-based approach, i.e., Long Short-Term Memory-based

Deep Neural Network (LSTM-based DNN), to mitigate the interfer-

ence induced by unconscious motions and further capture unique

behavioral characteristics of finger gestures from CSI phase of WiFi

signals for user identification. After a successful login, the user

can interact with the system in the interaction stage. To provide

continuous protection in real time, FingerPass verifies the user’s

identity during each interaction of finger gestures. We propose a

verification mechanism integrated with the lightweight Support Vec-

tor Domain Description (SVDD) to achieve the real-time continuous

authentication. Experiments demonstrate that FingerPass is reliable

for continuous user authentication in home environments.

We highlight our contributions as follow.

• We find that utilizing CSI phase of WiFi signals can authenticate

user’s identity based on each user’s finger gestures, and propose

a finger gesture-based user authentication system, FingerPass,

which utilizes CSI of WiFi signals to authenticate users based on

finger gesture interactions.

• We develop a deep learning-based method to mitigate the always-

existed interference induced by unconscious finger motions for

exploring robust sequential relationship of finger gestures, and

further extract unique behavioral characteristics underlying the

sequential relationship for user identification.

• We design a verification mechanism to secure each interaction of

finger gestures, i.e., enable continuous authentication for human-

computer interactions, which achieves real-time response and

high authentication accuracy simultaneously.

• We conduct experiments in home environments. The results

show that FingerPass can achieve an authentication accuracy of

91.4%, and a response time of 186.6ms during interactions.

2 RELATEDWORK

WiFi Signal-based Applications. Recently, WiFi-based sensing

attracts considerable attentions because of the wide deployment

of WiFi infrastructures in home environments. Previous studies

explore WiFi signals for crowd counting [30], breathing rate moni-

toring [10], indoor location [26], etc. Furthermore, due to the ability

of capturing subtle movement with CSI of WiFi signals, more recent

works propose to recognize human activity [23], even fine-grained

finger gestures [9, 21], through WiFi signals.

User Authentication. Personal Identification Number (PIN) [1]

is a common user authentication method, but it is easily leaked to

others. To overcome the vulnerability of PIN-based authentication,

previous works propose biometric-based authentications, such as

fingerprint [4], voiceprint [28], and face recognition [15], etc. How-

ever, these works are all vulnerable to replay attacks, which are

easy to carry out, requiring neither sophisticated equipment nor

specific expertise. Moreover, the biometric-based authentications

are not appropriate for continuous user authentication, due to poor

user experiences under frequent active authentications.

User Authentication for Smart Homes. Recent works [12,

25] realize user authentication based on human movements for

smart homes. These works either require users to wear intrusive

sensors or pre-deploy infrastructures to sense human activity for

user authentication. Such strong requirements hinder the wide de-

ployment of these works in practical home scenarios. More recently,

some works [16, 27] explore the widely-existedWiFi signals to iden-

tify the daily human activity (e.g., walking gait) to authenticate

users. However, these works are limited to coarse-grained activities

(e.g., walking), which cannot provide continuous authentication

during human-computer interactions.

Unlike existing works, our work aims to capture the unique

behavioral characteristics of fine-grained finger gestures during

human-computer interactions, for continuous user authentication

in smart homes, which is non-intrusive and device-free.

3 PRELIMINARY

In this section, we first describe the attack scenario in smart homes,

and then explore commodity WiFi for continuous user authentica-

tion with satisfactory user experiences.

3.1 Attack Scenario in Smart Homes

As the popularity of smart homes, smart household appliances

would not only store individual privacy, but also provide personal-

ized services for specific family members. Traditional user authen-

tication for smart household appliances is usually a one-off process,
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Figure 1: CSI Amplitude of two users when performing two

finger gestures.

i.e., authenticate user’s identity only once during login. However,

users usually do not log out such smart household appliances when

they are temporarily suspended. This may result in two representa-

tive attack scenarios in smart homes. The first scenario is that the

individual information may be leaked to adversaries. For example,

a malicious guest in the home may eavesdrop privacies of family

members from smart household appliances. The second scenario is

that the personalized services provided for specific users may be

mistakenly provided to other unsuitable users. For example, chil-

dren may interact with smart household appliances out of curiosity

during the absence of adults, which makes it possible for children

to use unsuitable services (e.g., adult movie, online shopping, etc.).

The traditional user authentication cannot provide a continuous

guarantee for privacy protection to prevent the two attack scenar-

ios. Therefore, it is necessary to secure each interaction between

users and smart household appliances, i.e., enable a continuous user

authentication during the use of smart household appliances.

3.2 Authentication Feasibility via Finger

Gesture Sensing using WiFi

The finger gesture is a natural and commonway of human-computer

interactions between users and smart household appliances. In

smart homes, WiFi infrastructures are widely deployed in home

environments. The Channel State Information (CSI) of WiFi signals

[5] describes the channel properties of a WiFi signal’s propagating

path, which can be utilized to recognize different finger gestures

through CSI amplitude [9, 21]. Hence, it is natural to first investi-

gate the feasibility of utilizing CSI amplitude of WiFi signals for

finger gesture-based user authentication.

To validate whether CSI amplitude can be used to distinguish

different users, we conduct an experiment involving two volunteers

in a lab. Each volunteer is required to perform two different finger

gestures (i.e., waving right and circling left) three times. There is a

wireless Access Point (TP-LINK-WDR5620) and a laptop (HP Pavil-

ion 14) equipped with Intel WiFi Link 5300 NIC. The distance be-

tween the AP and the laptop is 1m. The finger gestures are required

to be conducted in the middle of the two devices. Figure 1 shows

CSI amplitude at 20th subcarrier when two volunteers perform two

different finger gestures three times respectively. We can see that

there are significant differences on CSI amplitudes for the two finger

gestures, which is consistent with existing works[9, 21]. However,

the differences between different users are not distinct enough to

separate the curves, which indicates that the CSI amplitude cannot
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Figure 2: Relative phase of two users when performing two

finger gestures.

be used to distinguish different users. This is because subtle dif-

ferences between users are overridden by the differences between

different finger gestures. Specifically, a finger gesture blocks the

propagating path of WiFi signals between a transmitter and a re-

ceiver, which induces significant energy attenuation of received

WiFi signals. Thus, the CSI amplitude would change significantly

due to the energy attenuation. However, since the finger block-

age depicts the coarse-grained characteristics of finger gestures,

it would override the fine-grained behavioral uniquenesses of dif-

ferent users, i.e., the subtle differences between users cannot be

exhibited in CSI amplitude of WiFi signals.

In order to distinguish different users through CSI of WiFi sig-

nals, we consider another measure, i.e., CSI phase of WiFi signals,

which can express the movement of an object in the propagating

path of WiFi signals [23]. However, the absolute CSI phase has an

unpredictable offset due to hardware imperfection [29]. Hence, we

employ relative phase to eliminate the offset and further reveal

fine-grained behavioral characteristics. The relative phase at the

kth subcarrier can be represented as:

∠Ĥk = −
2π

λ
Δd, (1)

where Δd is the length difference of two transmitting paths, and

λ is the signal wavelength. The relative phase can reveal more

fine-grained behavioral characteristics due to the cm-scale λ [16].

To explore the feasibility of user authentication through CSI

phase of WiFi signals, we analyze the data collected from the previ-

ous experiment. Figure 2 shows the relative phase of WiFi signals

when the two volunteers perform the two finger gestures respec-

tively. Different from CSI amplitude, there are differences between

different users when performing the same finger gesture, which

can be used to distinguish different users. The result indicates that

utilizing CSI phase of WiFi signals is feasible to authenticate user’s

identity. This is because the differences between different users

mainly depend on behavioral characteristics, such as moving dis-

tance, speed, and orientation of a user’s fingers and palm. The

moving fingers and palm reflect WiFi signals, which would change

the length of a propagating path of the WiFi signals. Such a length

change of propagating path can be exhibited as CSI phase shift of

WiFi signals [2]. This indicates that the CSI phase of received WiFi

signals would express how fingers and palm move according to

users daily habits. Therefore, the phase shift induced by the path

length changes can depict the fine-grained behavioral characteris-

tics of users when performing finger gestures, which can be further

used to authenticate users identities.
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Through the analysis above, we find CSI phase of WiFi signals

can depict differences between different users due to the exhibition

of behavioral characteristics. Therefore, we employ CSI amplitude

to recognize different finger gestures, while leverage CSI phase to

authenticate users’ identities.

3.3 Finger Gesture-based Continuous User

Authentication in Real Time

As mentioned above, we aim to integrate user authentication into

the finger gesture-based interactions between users and smart

household appliances, i.e., enable continuous user authentication.

In such a scenario, the satisfactory user experience is an important

aspect of designing the user authentication system. When inter-

acting with smart household appliances, users always require a

real-time response of each interaction rather than waiting for a

long time. Thus, the continuous user authentication should meet

the real-time response requirement for the satisfactory user experi-

ence. To design the user authentication within a real-time response,

we first consider the workflow of a typical human-computer interac-

tion system with one-off user authentication. The first step of such

a system is an identification process of a user’s identity for user

login, which is actually a multi-class problem. After a successful

login, all subsequent services of the system are provided based on

the current login user’s identity. To extend the typical system to

continuous user authentication, we consider enabling a verification

process during each interaction, i.e., verify whether the current user

is the logged-in user or not. Thus, the user authentication during

interactions is actually a binary classification.

Toward this end, to simultaneously ensure continuous authenti-

cation and real-time requirements, thewhole authentication process

is considered as two stages, i.e., the login stage and the interaction

stage, which corresponds to user identification and verification

respectively. The login stage is a one-off user identification which

identifies a user’s identity based on a specific login finger gesture.

In the stage, there is almost no interaction request issued by users.

Hence, a relatively long response time for a high accuracy identifi-

cation would not suffer significant degradation of user experiences.

The interaction stage verifies the identity of the current user accord-

ing to each interaction of finger gestures. To ensure a satisfactory

user experience during interactions, the system should respond to

finger gesture interactions in real time.

In practice, challenges emerge when implementing the finger

gesture-based continuous user authentication through WiFi sig-

nals. First, the CSI phase of WiFi signals affected by finger gestures

contains not only behavioral characteristics, but also unconscious

motions that cannot represent the characteristics of users. Hence,

the unique features of behavioral characteristics should be extracted

for robust user identification during login. Second, in order to sat-

isfy user experience, user verification during interactions can be

achieved by a lightweightmethod for a real-time response. However,

using the lightweight method to verify users may affect authen-

tication performance due to the limitations of the method itself.

Thus, a verification mechanism should be explored for improving

the verification accuracy as well as ensuring the real-time response

during interactions.
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Gesture Recognition

Signals Segmentation 

 SVDD-based User 
Verification Mechanism

SVDD-based One-class 
Classifier Training 

SVDD 
Model

Register Stage

Signals Segmentation 

Signals 
Pre-processing 

Signals 
Pre-processing 

Login Stage

SVM-based Finger 
Gesture Recognition

User Identification and 
Spoofer Detection

LSTM-based DNN 
Feature Extraction

Signals Segmentation 

Signals 
Pre-processing 

User Verification
 for Interaction

User Identification 
for Login

Figure 3: Architecture of FingerPass.

4 SYSTEM DESIGN

In this section, we present the design of a finger gesture-based user

authentication system, FinдerPass , which leverages CSI of WiFi

signals to continuously authenticate users based on finger gestures

with high accuracy and real-time response in smart homes.

4.1 System Overview

Figure 3 shows the architecture of FingerPass, which includes a

register stage, a login stage, and an interaction stage. The register

stage is an off-line training process, and the login and interaction

stages are on-line authentication processes.

In the register stage, the system collects multiple finger gestures

from family members as the training data for model construction.

First, FingerPass processes the received WiFi signals to mitigate

multipath effects through Inverse Fast Fourier Transform (IFFT) and

Butterworth filter, and selects specific subcarriers which are sensi-

tive to movements. Then, the pre-processed signals are segmented

into episodes of finger gestures based on the amplitude differential

of in receivedWiFi signals. Afterward, FingerPass apply Long Short-

Term Memory-based Deep Neural Network (LSTM-based DNN) to

construct a DNN model for user identification during login. Finally,

Support Vector Domain Description (SVDD) is applied to construct

lightweight SVDD model for user verification during interactions.

In the login stage, FingerPass identifies a user’s identity based on

a specific login finger gesture. Specifically, FingerPass first processes

and segments signals, which is the same as that in register stage,

and then recognizes the login finger gestures through Support

Vector Machine (SVM) based on CSI amplitude. Next, FingerPass

extracts unique behavioral characteristics of the user from CSI

phase through LSTM-based DNN feature extraction, and applies

the trained DNNmodel for user identification and spoofer detection.

In the interaction stage, each finger gesture-based interaction is

first recognized as an interaction request, and then authenticated to

provide a security guarantee. Specifically, FingerPass first processes

and segments signals, then recognize finger gestures, which is sim-

ilar to that in the login stage. Then, a verification mechanism with

trained SVDD models is applied for continuous user authentication

during the finger gesture-based interactions.

4.2 Signal Pre-processing

In this section, we first describe how to mitigate multipath effects,

and then give the method of selecting sensitive subcarriers.
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Figure 4: Illustration of signals segmentation leveraging am-

plitude differential.

4.2.1 Multipath Mitigation. Except for the targeted finger, the

nearby moving objects (e.g., walking people) also reflect the omni-

directional WiFi signals, i.e., the multipath effect. Such a multipath

effect could interfere the received WiFi signals of finger gestures,

and thus reduce the robustness of the finger geature-based user

authentication. Therefore, it is necessary to mitigate the multipath

effect from received WiFi signals. The signal reflections from the

distant dynamic movements usually have longer propagation de-

lays before arriving at a receiver. Hence, we remove these signals

components with a large time delay to mitigate multipath effects

[21]. Specifically, given CSI of WiFi signals at each subcarrier in

the frequency domain, we obtain the power delay profile through

the n-point Inverse Fast Fourier Transform (IFFT). The previous

study shows indoor environments have the maximum delay less

than 500ns[7]. Hence, we remove the signal components with a

delay longer than 500ns in the power delay profile, which mitigates

multipath effects caused by distant dynamic movements. Note that

although the IFFT operation reduces the time resolution of received

WiFi signals, the mitigation of multipath effect based on IFFT con-

tributes more on resisting the interference from ambient moving

objects and improving the robustness of user authentication.

4.2.2 Subcarriers Selection. Although WiFi infrastructures usually

provide multiple subcarriers for communication (e.g., 30 subcarriers

of Intel WiFi Link 5300 NIC), not all of them contribute to capturing

human movements [16], due to the insensitivity to specific envi-

ronmental changes. In order to reduce the coverage of insensitive

subcarriers on unique features of finger gestures, FingerPass needs

to select sensitive subcarriers from the m subcarriers on CSI of

WiFi signals. Specifically, we select k subcarriers whose variance

values exceed mean variance values as sensitive subcarriers. For

each sensitive subcarrier, we use the proportion of variance values

wi as weights to combine each subcarrier so as to get a combined

sensitive subcarrier. GivenW =
∑k
i=1wi which represents the sum

of sensitive subcarriers’ variance values, the combined carrier H
is calculated as H =

∑k
i=1

wi

W Hi , where Hi denotes CSI of i
th sub-

carrier. The combined subcarrier with high sensitivity for finger

gestures could enhance the feature extraction of unique behavioral

characteristics from different users.

4.3 Finger Gesture Detection and Recognition

In this section, we describe the segmentation of CSI amplitude

of received WiFi signals to detect each finger gesture, and the

recognition of different finger gestures.

4.3.1 Signals Segmentation. Different finger gestures would induce

different values on CSI amplitude. The top part of figure 4 shows CSI

amplitude of WiFi signals induced by two different finger gestures.

Compared with the second finger gesture, the amplitude value

of the first finger gesture is not obvious, which is similar to the

white noises in CSI amplitude. This may results in that some finger

gestures cannot be detected, or some white noises in CSI amplitude

would be mistakenly detected as a finger gesture. However, we can

observe that CSI amplitude induced by different finger gestures all

have significant changes. Hence, we consider utilizing the amplitude

change for signals segmentation.

To depict the change of CSI amplitude, we define amplitude

differential, i.e.,

D(n) =

(n+1)L−1∑

t=nL

|(Ct+1 −Ct )| , n ∈ [0,N − 1], (2)

where D(n) denotes the amplitude differential of nth sliding win-

dow, L is the length of a sliding window,Ct is a CSI amplitude value

at time t , and N is the number of sliding windows. The bottom part

of figure 4 shows the amplitude differentials of two different finger

gestures. We can see that although the amplitude value of the first

finger gesture is not obvious, the amplitude differential of the finger

gesture is significantly different from that of white noises. Thus,

we can utilize the amplitude differential for signal segmentation

of finger gesture episodes. Specifically, FingerPass utilizes sliding

windows to compare the amplitude differential with a predefined

threshold for capturing the starting and ending point of a finger

gesture. The threshold can be obtained through empirical studies.

4.3.2 Finger Gesture Recognition based on SVM. As mentioned in

Section 3.3, the interaction between users and smart household

appliances requires a real-time response for a satisfactory user

experience. Existing works about finger gesture recognition based

on CSI of WiFi signals mainly employs Dynamic Time Warping

(DTW) [9, 21]. However, the computational complexity of DTW-

based recognition isO(Knm) [14], whereK is the number of known

finger gestures, n andm are the numbers of sampling points in the

matching finger gesture episodes respectively. Such a computational

complexity cannot meet the real-time requirement.

To meet the requirement of real-time response, we employ Sup-

port Vector Machine (SVM) [20] for finger gesture recognition.

Combined with a one-versus-one strategy, FingerPass constructs a

multi-classifier, whose computational complexity of finger gesture

recognition is O(K2n). Usually, the number of finger gestures is

limited in a human-computer interaction system, which leads to a

far smaller K than the number of sampling points n. Therefore, the
time consumption of the SVM-based method would be significantly

lower than that of DTW, which results in a faster response during

human-computer interactions for a satisfactory user experience.

4.4 User Identification through Deep Learning

for Finger Gesture-based Access Control

In smart homes, before a user interacts with smart household appli-

ances, FinдerPass should first obtain the identity credential in login
stage. The user authentication in the login stage can be considered
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as an identification problem, i.e., identify the user by a specific login

finger gesture, which is actually a multi-class problem.

As mentioned in Section 3.2, CSI phase of WiFi signals depicts

behavioral characteristics of each user through finger gestures. Dur-

ing performing a finger gesture, there always exist unconscious

finger motions, which can interfere the received CSI of WiFi signals.

Since the finger gesture is fine-grained movement, such a subtle in-

terference induced by the unconscious motions could significantly

affect the robustness of finger gesture-based user authentication.

To extract unique features from the behavioral characteristics for

robust user identification, it is necessary to reduce the interference

of these unconscious motions. Usually, a finger gesture exhibits

strong relationship between the previous and subsequent finger

motions, i.e., the sequential relationship. The unconscious motions

of finger gestures are different with normal sequential relationships,

i.e., they induce instant significant shifts, which are neither related

with previous motions, nor induce sequential effects to the sub-

sequent motions. Thus, we can extract unique features from each

user’s finger gestures and eliminate the impact of such unconscious

motions through the sequential relationships.

Feature Extraction. To utilize the sequential relationships in

CSI phase induced by finger gestures, we propose a three-layer

Long Short-term Memory-based Deep Neural Network (LSTM-

based DNN) to extract features of each user’s finger gestures for

robust user identification. Figure 5 shows the architecture of user

identification through the three-layer LSTM-based DNN.

In the proposed DNN model, each hidden layer consists of a Re-

current Neural Network (RNN) with LSTM units, which abstracts

the input as a set of feature representations. Traditional RNN only

maintains the short-term previous information, which leads to the

loss of sequential relationships that occurred long ago [3]. Thus,

traditional RNN cannot fully depict the unique features from behav-

ioral characteristics. In order to capture all previous information,

including long-term and short-term information of finger gestures,

we employ LSTM units [6] rather than the typical neural unit in

RNN for finger gesture-based user identification. For each hidden

layer, LSTM unit can map the input Z lt in time slot t and layer l

into a feature representation ft , i.e., ft = д(PZ
l
t + b), where д() is a

activation function, P is the weight matrix, b is a bias. The input

Z lt contains three informations, i.e., Z = [x lt ,h
l
t−1, c

l
t−1]

T , where

x lt is the current information, hlt−1 is the short-term information,

and clt−1 is the long-term information. Thus, RNN with LSTM units

retains both long-term and short-term previous information of fin-

ger gestures, which could express more sequential relationships of

finger gestures for robust user identification.

Given CSI phase profiles of a user’s finger gestures, each layer

of the DNN model contains an RNN Hi , which abstracts the input

into a set of feature representations as output. We first partition

the input CSI phase profiles X into N small fragments x(t). The
fragmented CSI phase profiles of finger gestures are represented as

X = [x(1), x(2), ..., x(N )], where x(t) is the fragmented CSI phase

profiles in time slot t (t ∈ [1,N ]). The inputs of the first layer are

the fragmented CSI phase profiles X of users’ finger gestures, and

the gesture-level features F1 can be extracted as output by H1(X )

in the first layer. Then, the output F1 of the first layer is fed to the

second layer.H2(F1) in the second layer further extracts the motion-

level features F2 (e.g., speed, angle, and time). Finally, H3(F2) in the

last layer takes the output F2 of the second layer as input, and

extracts the user-level features as an output O , which represents

user’s unique features and can be used for user identification.

User Identification. FingerPass employ the sigmoid function

[8] in output layer through the extracted features to identify a user’s

identity. When a user attempts to login, FingerPass calculates the

posterior probability P(Uk | O)with the output featureO of the user

and every registered user’s features. For output O of the current

user from user-level and each registered user Uk , the posterior

probability P(Uk | O) is calculated as:

P(Uk | O) =
P(O | Uk )P(Uk )

P(O | Uk )P(Uk ) + P(O | U k )P(U k )
, (3)

where P(Uk ) is the prior probability of user Uk , and P(O | Uk )
is the likelihood of the feature O given label Uk . The posterior

probabilities is under the constraints that 0 � P(Uk | O) � 1 and

P(Uk | O) + P(U k | O) = 1. Given K user classes, sigmoid function

outputs K posterior probabilities. With the objective function k =
argmaxk ∈K P(Uk | O), the user with featureO will be identified as

the userUk .
Spoofer and Unexpected Body Movements Detection. Ex-

cept for identifying the user’s identity from multiple register users,

FingerPass needs to detect unexpected spoofers in the login stage.

Through the proposed DNN, the subtle differences between finger

gestures of a spoofer and all registered users can be extracted, which

can be utilized for spoofer detection. Specifically, when a spoofer

attempts to login the system through a finger gesture, the features

of the spoofer are extracted by LSTM-based DNN. Since the feature

of spoofer would not match that of any registered user, the posterior

probability of spoofer in output layer should be significantly lower

than that of all registered users. Hence, we use a threshold to detect

spoofers. Specifically, we define scorek as the similarity between

the feature O of attempted login finger gesture and featuresUk of

all registered finger gestures, i.e., scorek = {1 | P(Uk | O) > λ, 0 |

P(Uk | O) <= λ}. If
∑K
k=1

scorek = 0, the attempted login user

with the feature O is identified as a spoofer. Such an approach is

also able to detect the unexpected body movements issued by the

user. Since the body movement is quite different from a valid finger

gesture, the features extracted by DNN would exhibit significant

differences. Therefore, even though an unexpected body movement

is recognized as a finger gesture, FinдerPass can further identify
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Figure 6: Verification accuracy under differentm.

such a body movement as a spoofer’s request, and thus trigger no

further permission and interaction response.

4.5 User Verification through SVDD for Finger

Gesture-based Interaction

To provide continuous privacy protection and consistent personal

services delivery, FingerPass should perform user authentication

during each interaction of finger gestures in the interaction stage.

As mentioned in Section 3.3, the system needs to ensure real-time

response so as to achieve a satisfactory user experience. Thus,

user authentication in the interaction stage can be simplified as a

verification problem, i.e., regards a current user as a valid user or

an invalid user, which is actually a binary classification.

Verification Mechanism. In order to ensure a real-time re-

sponse, we utilize a one-class classifier, Support Vector Domain

Description (SVDD) [22], to verify the current user’s identity. How-

ever, the SVDD classifier based on single finger gesture has lower

classification accuracy since it is a light-weight method. Usually,

a user tends to interact with smart household appliances multiple

times after the user successfully logins. Based on such an intuition,

we propose a verification mechanism, which leverages not only the

current finger gesture interaction, but also the previous finger ges-

tures that passed the verification during the ongoing interactions,

to continuously authenticate the user’s identity for each interaction.

Thus, the verification mechanism gradually improves the accuracy

of SVDD-based classifier as more interactions occur.

In the training process of SVDD-based classifier, FingerPass not

only trains single-gesture classifier for every single finger gesture,

but also splices finger gestures to train multi-gesture classifiers.

Specifically, we first align all CSI phases of finger gestures through

the interpolation method to make the input’s length consistent,

and then feed the aligned relative phases into the classifier for

training. Assume there are n finger gestures, i.e., д(0),..., д(n−1), Fin-
gerPass trains finger gesture classifiers for single finger gesture

and splicing finger gestures, i.e., for each finger gesture, Finger-

Pass trains n single-gesture classifiers, cд(0) ,..., cд(n−1) ; for the splic-

ing of two gestures, FingerPass trains n2 two-gesture classifiers,

cд(0)д(0) , cд(0)д(1) ,..., cд(0)д(n) , cд(1)д(0) ,..., cд(n−1)д(n−1) ; ... ; for the splic-
ing ofm finger gestures, FingerPass trains nm m-gesture classifiers,

cд(0)д(0) ...д(0) , cд(0)д(0) ...д(1) ,..., cд(n−1)д(n−1) ...д(n−1) . Through the train-

ing above, we can obtain
∑m
i=1 n

i =
n(1−nm )

1−n classifiers including

the single-gesture classifiers and the multi-gesture classifiers.

In the verification process, when a user performs the t th fin-

ger gesture interaction д(t ), FingerPass utilizes classifiers ofm − 1

previous finger gestures that passed the verification during the on-

going interactions combined with current finger gesture, i.e., cд(t ) ,

(c) Kitchen

UserLaptop Access Point

(a) Living Room (b) Bedroom

Figure 7: Experimental setup of three home environments.

cд(t−1)д(t ) ,..., cд(t−m+1)д(t−m+2) ...д(t ) , to getm preliminary verification

results. Then, FingerPass utilizes a voting mechanism that leverages

the results of each classifier to obtain a final user verification result.

Specifically, for each classifier, a user verification result μi ∈ {1, 0}

is obtained, where μi = 1 and μi = 0 denote a successful and un-

successful verifications respectively. Then, FingerPass votes on all

the results, and decides the final user verification result accord-

ing to the maximum voting results, i.e., result = {1 |
∑m
i=1 μi >

m
2 , 0 |

∑m
i=1 μi �

m
2 }, where result = 1 and result = 0 represent

successful and unsuccessful verifications respectively. Similar to

the unexpected body movement detection in the login stage, the

interaction stage can also recognize an unexpected body movement

as a spoofer’s request, due to the significant difference between a

valid finger gesture and the unexpected body movement.

The computational complexity of SVDD-based classifier is O(n),
where n is the size of each finger gesture sample. Consideringm− 1

previous finger gestures are utilized in our verification mechanism,

i.e,m classifiers are applied in total, the computational complexity

of user verification in the interaction stage is O(nm2). To explore

the optimal value ofm, we conduct experiments with data collected

from real environments. Figure 6 shows the verification accuracy

under differentm. Whenwe only use a single gesture to verify a user,

i.e.,m = 1, the verification accuracy is only 68.5%. As more previous

finger gestures are utilized, the verification accuracy first increases

and reaches the highest accuracy of 89.2% whenm is 3, and then

decreases due to over-fitting. Since the optimal valuem is much

less than n, the computational complexity of user verification in the

interaction stage can be regarded as O(n). Therefore, through the

SVDD-based verification mechanism with a small splicing number,

FingerPass can realize high user authentication accuracy and real-

time response in the interaction stage.

5 PERFORMANCE EVALUATION

In this section, we evaluate the performance of FingerPass in real

home environments.

5.1 Experimental Setup and Methodology

We implement FingerPass on a laptop, i.e., a HP Pavilion 14, which

is equipped with an Intel WiFi Link 5300 NIC for providing 30

subcarriers on CSI of WiFi signals. A commercial wireless access

point (AP), i.e., a TP-LINK-WDR5620, is employed as theWiFi signal

transmitter, which continuously emits the 802.11n WiFi signals. We

conduct the experiments in three different home environments, i.e.,

a living room, a bedroom, and a kitchen. The sizes of the three

rooms are 5.8m × 4.2m, 3.8m × 3.4m, and 3.4m × 2.2m respectively.

The distances between AP and laptop in the three rooms are 3.0m,

2.0m, and 1.0m respectively. Figure 7 shows the layouts of the AP,

laptop and other furniture in the three home environments.
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1) Wave Left 2) Wave Right 3) Wave Up 4) Wave Down

5) Circle Left 6) Circle Right 8) Zoom In7) Zoom Out

Figure 8: Illustration of eight different finger gestures.

We select 8 commonly used finger gestures, which are widely

used in human-computer interaction systems, as shown in figure 8.

Our experiments involve 7 volunteers. Since the average number of

people per family in the US is 3.14 [19], we ask 5 of the volunteers

as registered users in the experiments, and the rest 2 as spoofers,

which could meet the needs of most families. All of the volunteers

are required to perform finger gestures towards the laptop with a

distance of 0.5m. This is because users are natural to stand/sit in

front of the smart appliance (i.e., laptop in our experiment) during

the interaction between users and appliances.

We define several evaluation metrics:

• Response Accuracy. The probability that both the finger gesture

and user’s identity are recognized and authenticated correctly.

• Response Time. Assume the CSI of WiFi signals induced by a

user’s finger gesture is derived at time Te , and the time that the

system responds the user’s interaction is Tdev . The response time

of the system is defined as T = Tdev −Te .
• Confusion Matrix. Each row and each column of the matrix

denotes the ground truth and the authentication result of FingerPass

respectively. The ith -row and jth -column entry of the matrix shows

the percentage of samples that are authenticated as the jth user

while actually are the ith user.

• Authentication/Recognition Accuracy. The probability that a

user/finger gesture who is A is exactly identified as A.
• False Accept Rate. The probability that a user not a registered

user is authenticated as a registered user.

• False Reject Rate. The probability that a user not a spoofer is

authenticated as a spoofer.

5.2 Overall Performance

Figure 9 shows response accuracies in the login and interaction

stages. We can see that the average response accuracies of the login

and interaction stages are 91.3% and 88.6% respectively. The overall

response accuracy of FingerPass is 90.0%. This result demonstrates

that FingerPass can achieve satisfactory performance for both in-

teraction and authentication. Moreover, it can be observed that the

response accuracies in the three home environments are similar,

which indicates FingerPass is robust to different distances between

transmitter and receiver as well as different home environments.

Figure 10 shows CDFs of response time in the login and interac-

tion stages respectively. Note that the response time contains both

finger gesture recognition and user authentication. We can see that

for 85% finger gestures, the response times are less than 200ms in
the interaction stage, while that are in the range of [800, 1200]ms
in the login stage. Previous research validates that the latency of

[50, 200]ms in modern touch systems is an appropriate response

time for a satisfactory user experience [11]. Since the login stage
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Figure 9: Response accuracy

in different environments.

Figure 10: CDF of time in lo-

gin and interaction stages.
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curacy of FingerPass in inter-

action stage.

has no interaction requests, the relatively long response time would

not degrade user experiences. For the interaction stage, it achieves

a real-time response of touch system level, which satisfies good

user experiences of human-computer interaction.

5.3 Performance of User Authentication

Figure 11 shows the confusion matrix of FingerPass in the login

stage. We can see that FingerPass can achieve an average authenti-

cation accuracy of 93.3% in identifying the registered user, and that

of 90.0% in spoofer detection. The average accuracy of the login

stage in user authentication is 92.6% with a standard derivation of

4.43%. This indicates FingerPass can achieve a high accuracy of user

authentication in the login stage, which validates the reliability and

efficiency of user identification.

Figure 12 shows authentication accuracies of FingerPass in the

interaction stage under the three home environments. We can ob-

serve that FingerPass can achieve average authentication accuracies

of 91.3%, 89.8% and 89.2% under the three home environments re-

spectively, and the standard derivations are 1.6%, 1.7% and 1.3%

respectively. This result indicates that FingerPass can accurately

authenticate the logged-in user’s identity in the interaction stage.

Figure 13 shows false accept rates and false reject rates of Fin-

gerPass in the login stage under different environments. We can

see that the average false accept rate of FingerPass under the three

environments is only 3.5%, which demonstrates that FingerPass is re-

liable to identify a spoofer in the login stage. Moreover, the average

false reject rate under the three home environments is 3.8%, which

indicates that FingerPass hardly misidentifies a registered user in

the login stage, which ensures a satisfactory user experience.

Figure 14 shows CDFs of interaction numbers for misidentify-

ing a logged-in user and identifying a non-logged-in user in the

interaction stage. We see that over 90% non-logged-in users can be

authenticated within 3 interactions. It indicates that FingerPass is

not vulnerable to other users or spoofers, which demonstrates the
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Figure 17: Authentication accuracy under different impacts.

reliability of FingerPass. We also observe that when the interaction

numbers are below 10 times, about 90% users are still not mistak-

enly logged out by FingerPass, which indicates that the continuous

authentication rarely affects the normal use of the logged-in user.

5.4 Performance of Finger Gesture Recognition

To evaluate the performance of finger gesture recognition, we im-

plement the DTW-based method [9, 21] as a baseline, and compare

the recognition accuracy and response time between DTW-based

method and FingerPass. We can see from figure 15 that the aver-

age recognition accuracy of FingerPass is quite similar to that of

DTW-based method. FingerPass can achieve an average recogni-

tion accuracy of 88.7%, which indicates its reliability of interaction

through recognizing finger gestures. Moreover, from figure 16, it

can be observed that the average response time of FingerPass is

56.1ms , which meets the real-time requirement. But the response

time of the baseline is above 350ms , which exceeds the time range

for a satisfactory user experience (i.e., [50, 200]ms). The results

show that FingerPass can achieve high accuracy of finger gesture

recognition while satisfying the real-time requirement.

5.5 Performance under Different Impacts

Impact of Training Set Size. The size of the training set is the

number of users’ performing times of finger gestures for register-

ing. Too much performing times would affect user experiences in

the register stage. Figure 17(a) shows authentication accuracies in

the login and interaction stages with different training set sizes in

the three home environments. We can see that as the size of the

training set increases, the authentication accuracies first increase,

and then go stable in both stages. When users perform above 8

finger gestures for registering, FingerPass can achieve average au-

thentication accuracies of over 80% in the two stages. More finger

gesture performing times would not contribute an improvement in

authentication accuracy. Since the performing times of 8 is accept-

able for users, it demonstrates that the register stage of FingerPass

is also consistent with user experiences.

Impact of Sampling Rate. In our experiment, the laptop is

equipped with an Intel WiFi Link 5300 NIC as the WiFi signal

receiver, which can receive WiFi signals under a sampling rate

ranging in [10, 2000]Hz. To explore the appropriate sampling rates

for FingerPass, we evaluate the performance of FingerPass under

different sampling rates. Figure 17(b) shows the authentication

accuracy of the login and interaction stages in the three home envi-

ronments respectively. We can see that the authentication accuracy

of FingerPass first increases and then goes stable as the sampling

rate increases. When the sampling rate approaches 250Hz, Finger-
Pass can achieve an authentication accuracy of over 85% in the

three home environments respectively. Such a sampling rate is ca-

pable for most smart household appliances. Thus, FingerPass can

be widely applied for user authentication in smart homes.

Impact ofDistance betweenUser andReceivingAntennas.

To explore whether FinдerPass could achieve a satisfactory perfor-

mance in a comfortable interaction distance, we first investigate

the common interaction distances between user and appliances

for smart homes. Usually, smart TV has the longest interaction

distance, whose average size is 42.8 inches in 2017 [17], and the

distance between such a smart TV and users with the best viewing

experience is below 1.6m [13]. Hence, we conduct experiments to

explore the performance of FingerPass in the distance within 2.4m
that can meet the requirements for most appliances. Since the user

is required to experiment between the AP and the laptop, and the

distances between the two are fixed at 1m, 2m, and 3m respectively

in the three homes, the experimental distance range between user

and laptop in each home is set separately. Figure 17(c) shows the
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authentication accuracy under different distances between a user

and the laptop in the three homes. We can see that FingerPass can

achieve over 75% authentication accuracy when the distance is less

than 1.6m in the three homes. The result shows that FinдerPass
achieves satisfactory performance for comfortable interaction.

Impact of Ambient Persons. Since the multipath effect can-

not be completely eliminated, the existence of an ambient person

actually affects the performance of FingerPass. We study the per-

formance of FinдerPass under different orientations of an ambient

person, because the orientation of an ambient person has a greater

impact on WiFi signals’ transmission than the distance. The experi-

mental layout is set as shown in figure 7. We define the orientation

of an ambient person as the angle between AP and the ambient per-

son relative to the laptop. Specifically, the orientation of AP-laptop

connection is 0◦, and other orientations, i.e., [0◦, 360◦], are followed

through a counterclockwise rotation relative to the AP-laptop con-

nection. The current user is required to perform finger gestures

0.5m away from the laptop, and the distance between the ambient

person and the laptop is fixed as half of the distance between AP

and laptop, i.e., 0.5m, 1m, and 1.5m, in the three environments re-

spectively. Figure 17(d) shows the authentication accuracy of the

login stage and the interaction stage under different orientations of

the ambient person in the three home environments respectively.

We can see that the authentication accuracies on the orientations of

[40◦, 320◦] (i.e., relatively far away from the line-of-sight transmis-

sion of WiFi signals) are over 75% and remain stable. This shows

that FingerPass could achieve a satisfactory performance as long as

an ambient person is not so close to the line-of-sight transmission

of WiFi signals. However, the authentication accuracy significantly

degrade under the orientations of [0◦, 40◦] and [320◦, 360◦]. This is

because such orientations depict a relatively close distance between

the ambient person and the line-of-sight WiFi transmission, which

leads to an intense interference to the signal transmission. The

result indicates that FingerPass would not be significantly affected

during the existence of an ambient person in most orientations.

6 CONCLUSION

In this paper, we propose a finger gesture-based user authentication

system, FingerPass, which leverages CSI of WiFi signals to contin-

uously authenticate users during human-computer interactions.

First, we pre-process and segment CSI of WiFi signals through am-

plitude differential, and then recognize finger gestures by Support

Vector Machine. For highly accurate and real-time user authentica-

tion, FingerPass divides the whole authentication into two stages,

i.e., login and interaction stages. For the login stage, we propose a

deep learning-based approach, i.e., Long Short-Term Memory Deep

Neural Network, for highly accurate user identification. For the

interaction stage, to provide continuous user authentication in real

time, a verification mechanism with lightweight classifiers is pro-

posed to continuously authenticate the user during each interaction

of finger gestures. Experiments show that FingerPass is reliable for

continuous user authentication in smart homes.
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