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Abstract—Real-time abnormal driving behaviors monitoring is a corner stone to improving driving safety. Existing works on driving

behaviors monitoring using smartphones only provide a coarse-grained result, i.e., distinguishing abnormal driving behaviors from

normal ones. To improve drivers’ awareness of their driving habits so as to prevent potential car accidents, we need to consider a fine-

grained monitoring approach, which not only detects abnormal driving behaviors but also identifies specific types of abnormal driving

behaviors, i.e.,Weaving, Swerving, Sideslipping, Fast U-turn, Turning with a wide radius, and Sudden braking. Through empirical

studies of the 6-month driving traces collected from real driving environments, we find that all of the six types of driving behaviors have

their unique patterns on acceleration and orientation. Recognizing this observation, we further propose a fine-grained abnormal Driving

behavior Detection and iDentification system,D3, to perform real-time high-accurate abnormal driving behaviors monitoring using

smartphone sensors. We extract effective features to capture the patterns of abnormal driving behaviors. After that, two machine

learning methods, Support Vector Machine (SVM) and Neuron Networks (NN), are employed, respectively, to train the features and

output a classifier model which conducts fine-grained abnormal driving behaviors detection and identification. From results of extensive

experiments with 20 volunteers driving for another four months in real driving environments, we show thatD3 achieves an average total

accuracy of 95.36 percent with SVM classifier model, and 96.88 percent with NN classifier model.

Index Terms—Abnormal driving behavior, accelerometer, orientation sensor, support vector machine (SVM), neuron networks (NN)
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1 INTRODUCTION

ACCORDING to the statistics from World Health Organi-
zation (WHO), traffic accidents have become one of

the top 10 leading causes of death in the world [1]. Specifi-
cally, traffic accidents claimed nearly 3,500 lives each day in
2014. Studies show that most traffic accidents are caused by
human factors, e.g., drivers’ abnormal driving behaviors
[2]. Therefore, it is necessary to detect drivers’ abnormal
driving behaviors to alert the drivers or report Transporta-
tion Bureau to record them.

Although there has been works [3], [4], [5] on abnormal
driving behaviors detection, the focus is on detecting driver’s
status based on pre-deployed infrastructure, such as alcohol
sensor, infrared sensor and cameras, which incur high instal-
lation cost. Since smartphones have received increasing popu-
larities over the recent years and blended into our daily lives,
more and more smartphone-based vehicular applications [6],
[7], [8], [21] are developed in Intelligent Transportation Sys-
tem. Driving behavior analysis is also a popular direction of
smartphone-based vehicular applications. However, existing
works [9], [10] on driving behaviors detection using

smartphones can only provide a coarse-grained result using
thresholds, i.e., distinguishing abnormal driving behaviors
from normal ones. Since thresholds may be affected by car
type and sensors’ sensitivity, they cannot accurately distin-
guish the differences in various driving behavioral patterns.
Therefore, Those solutions cannot provide fine-grained iden-
tification, i.e., identifying specific types of driving behaviors.

Moving along this direction, we need to consider a fine-
grained abnormal driving behaviors monitoring approach,
which uses smartphone sensors to not only detect abnormal
driving behaviors but also identify specific types of the driv-
ing behaviors without requiring any additional hardwares.
The fine-grained abnormal driving behaviors monitoring is
able to improve drivers’ awareness of their driving habits as
most of the drivers are over-confident and not aware of their
reckless driving habits. Additionally, some abnormal driv-
ing behaviors are unapparent and easy to be ignored by driv-
ers. If we can identify drivers’ abnormal driving behaviors
automatically, the drivers can be aware of their bad driving
habits, so that they can correct them, helping to prevent
potential car accidents. Furthermore, if the results of the
monitoring could be passed back to a central server, they
could be used by the police to detect drunken-driving auto-
matically or Vehicle Insurance Company to analyze the poli-
cyholders’ driving habits.

According to [11], there are six types of abnormal driving
behaviors defined, and they are illustrated in Fig. 1.Weaving
(Fig. 1a) is driving alternately toward one side of the lane
and then the other, i.e., serpentine driving or driving in
S-shape; Swerving (Fig. 1b) is making an abrupt redirection
when driving along a generally straight course; Sideslipping
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(Fig. 1c) is when driving in a generally straight line, but
deviating from the normal driving direction; Fast U-turn
(Fig. 1d) is a fast turning in U-shape, i.e., turning round (180
degrees) quickly and then driving along the opposite direc-
tion; Turning with a wide radius (Fig. 3e) is turning cross an
intersection at such an extremely high speed that the car
would drive along a curve with a big radius, and the vehicle
sometimes appears to drift outside of the lane, or into
another line; Sudden braking (Fig. 3f) is when the driver
slams on the brake and the vehicle’s speed falls down
sharply in a very short period of time.

This work uses smartphone sensing and machine learning
techniques. By extracting unique features from the readings
of smartphone sensors, we can detect and identify the six
types of abnormal driving behaviors above. To realize a fine-
grained abnormal driving behaviors detection and identifica-
tion, we face the following great challenges. First, patterns of
driving behaviors need to be identified from readings of
smartphone sensors. Second, the noise of smartphone sensors’
readings should be removed. Finally, the solution should be
lightweight and computational feasible on smartphones.

In this paper, we first set out to investigate effective fea-
tures from smartphone sensors’ readings that are able to
depict each type of abnormal driving behavior. Through
empirical studies of the 6-month driving traces collected from
smartphone sensors of 20 drivers in a real driving environ-
ment, we find that each type of abnormal driving behaviors
has its unique patterns on readings from accelerometers and
orientation sensors. By extracting unique features from read-
ings of smartphones’ accelerometer and orientation sensor,
we first identify 16 representative basic features to capture the
patterns of driving behaviors, then generate 136 polynomial
features based on the 16 features, and obtain 152 features in
total. Then, we train those features through two machine
learning methods respectively, Support Vector Machine (SVM)
and Neuron Networks (NN), to generate a classifier model
which could clearly identify each of driving behaviors (i.e.,
the normal driving behaviors as well as the six types of abnor-
mal ones). Based on the classifier model, we propose an
abnormal Driving behavior Detection and iDentification sys-
tem, D3, which can realize a fine-grained abnormal driving
behaviors detection and identification in real-time using

smartphone sensors. Our prototype implementation ofD3 on

Android-based mobile devices verifies the feasibility of using

D3 in real driving environments.
We highlight our main contributions as follows:

� We identify 16 representative basic features and 136
polynomial features to capture the patterns of abnor-
mal driving behaviors by empirically analyzing the
6-month driving traces collected from real driving
environments.

� We use two machine learning method respectively,
SVM and NN, to train the features of driving behav-
iors and obtain a classifier model which can not only
distinguish abnormal driving behaviors from normal
ones but also identify specific types of abnormal
driving behavior.

� We propose a fine-grained abnormal driving behav-
iors detection and identification system, D3, to
perform real-time high-accurate abnormal driving
behaviors monitoring with smartphones. The fine-
grained system can inform drivers of their abnormal
driving behaviors which otherwise may be ignored
by them so as to improve their awareness of driving
habits.

� We conduct extensive experiments in real driving
environments. The result shows that in real driving
environments,D3 can identify specific types of abnor-
mal driving behaviors in real time with an average
total accuracy of 95.36 percent with SVM classifier
model, and 96.88 percent with NN classifiermodel.

The rest of the paper is organized as follows: The related
work is reviewed in Section 2. In Section 3, we analyze the
acceleration and orientation patterns of the six specific types
of abnormal driving behaviors from smartphone sensors’
readings. We present the design details of our abnormal driv-
ing behaviors detection and identification system, D3, in Sec-
tion 4. We evaluate the performance of D3 and present the
results in Section 5. Finally, we give the conclusion remarks in
Section 6.

2 RELATED WORK

In this section, we review the existing works on driving
behaviors detection, which can be categorized as follows.

Detection Using Pre-Deployed Infrastructure. Yeo et al. [3]
uses an EGG equipment which samples the driver’s EGG

Fig. 1. Six types of abnormal driving behaviors: (a) Weaving, (b) Swerving, (c) Sideslipping, (d) Fast U-turn, (e) Turning with a wide radius,
and (f) Sudden braking.

YU ET AL.: FINE-GRAINED ABNORMAL DRIVING BEHAVIORS DETECTION AND IDENTIFICATION WITH SMARTPHONES 2199



signals to detect drowsiness during car driving. Lee et al. [12]
uses infrared sensorsmonitoring the driver’s headmovement
to detect drowsy driving. Kaneda et al. [13] captures the driv-
er’s facial images using a camera to detect whether the driver
is drowsy driving by image processing. In [4], GPS, cameras,
alcohol sensor and accelerometer sensor are used to detect
driver’s status of drunk, fatigued, or reckless. However, the
solutions all rely on pre-deployed infrastructures and addi-
tional hardwares that incur installation cost. Moreover, those
additional hardwares could suffer the difference of day and
night, badweather condition and highmaintenance cost.

Detection Using Smartphone Sensors. To eliminate the need
of pre-deployed infrastructures and additional hardwares,
recent studies concentrate on using smartphones to detect
abnormal driving behaviors. In particular, [14] uses acceler-
ometers, magnetometers and GPS sensors to determine
whether high-risk motorcycle maneuvers or accidents
occur. [15] uses accelerometers, gyroscopes and magneto-
meters to estimate a driver’s driving style as Safe or Unsafe.
Dai et al. [9], Fazeen et al. [10] use accelerometers to detect
drunk driving and sudden driving maneuver, respectively.
The works are similar in that they perform a coarse-grained
driving behavior detection which uses some thresholds to
find out abnormal driving behaviors. Nevertheless, thresh-
olds may be affected by car type and sensors’ sensitivity so
that they cannot accurately distinguish the differences in
various driving behavioral patterns. Therefore, none of
existing works can realize fine-grained identification.

Our work uses smartphone sensing and machine learn-
ing techniques to realize a fine-grained abnormal driving
behaviors detection and identification. Although machine
learning technique already is used to some activity recogni-
tion work [18], [19], [20], our work is first to identify driving
activities using machine learning technique. In [18], [19],
[20], since activities are instantaneous, pattern of activities is
simple. So features of activities’ pattern would be identified
easily. However, in real driving environments, since the
time duration of some driving behavior is long, not instanta-
neous, such as Weaving, the system need to determine the
beginning and ending of the driving behavior first. Extract-
ing and selecting effective features of each type of abnormal
driving behavior would be more complex.

3 DRIVING BEHAVIOR CHARACTERIZATION

In this section, we first describe the data collection process
for driving behavior samples from real driving environ-
ments. Then we analyze patterns of each type of driving
behavior from smartphone sensors’ readings.

3.1 Collecting Data from Smartphone Sensors

We develop an Andriod-based App to collect readings from
the three-axis accelerometer and the three-axis orientation
sensor. We align the two coordinate systems in the smart-
phone and in the vehicle by making the accelerometer’s y-
axis along the moving direction of the vehicle. Therefore,
we could monitor the vehicle’s acceleration and orientation
by retrieving readings from the smartphone’s accelerometer
and orientation sensor.

We collect traces from the accelerometers and orientation
sensors’ readings on 20 drivers with distinct vehicles from
Jan. 11 to July 12, 2014. Each driver fixes a smartphone along

with a Car Digital Video Recorder (DVR) in his/her vehicle
within daily natural driving. The smartphone and Car DVR
record the sensors’ readings and all objective driving behav-
iors, respectively. The 20 drivers keep collecting data in their
daily driving, including commute towork, shopping, touring
and so on. Those 20 drivers live in different communities and
they have different commute routes. On average, each driver
may drive 60 to 80 kilometers per day. 20 smartphones of five
different types are used in our data collection, i.e., Huawei
Honor3C, ZTE U809, SAMSUNG Nexus3, SAMSUNG
Nexus4 and HTC sprint, four devices for each type. After
that, we ask nine experienced drivers to watch the videos
recorded by theCarDVR and recognize all types of abnormal
driving behaviors from the 6-month traces, i.e., Weaving,
Swerving, Sideslipping, Fast U-turn, Turning with a wide radius
or Sudden braking. In total, we obtain 4,029 samples of abnor-
mal driving behaviors from the collected traces, which is
viewed as the ground truth of abnormal driving behaviors.

3.2 Low-Pass Filtering

Due to environmental dynamics, there are many high fre-
quency noises in our collected raw data which has an impact
on analyzing the dynamics of different driving behaviors.
Thus we conduct low-pass filtering to the collected raw data
first to remove the high frequency noise and yet capture the
statistical features presented in the traces. There are various
low-pass filters that have different performances. In this
paper, we experiment with three low-pass filters in our data-
set, i.e., simple moving average filter (SMAF), dynamic expo-
nential smoothing filter (DESF) and Gaussian filter (GF) [16],
and compare their performances to finally select one that effi-
ciently eliminate high frequency noises while preserving the
effective dynamics of different driving behaviors to the
utmost extent. Fig. 2 shows an example including the raw
acceleration reading from smartphones’ accelerometer and
the resulted accelerations after applying the three low-pass
filters. It can be seen that SMAF cannot perfectly remove high
frequency noises andGF cannot preserve effective features of
driving behaviors. Compared with the rough trend of the
acceleration preserved by SMAF and GF, DESF is able to not
only return the nicely fitted curve but also preserve effective
features of different driving behaviors. This is because DESF
is an exponential smoother that changes its smoothing factor
dynamically according to previous samples. Hence, we select

Fig. 2. Raw acceleration and the resulted acceleration after applying
SMAF, DESF, and GF.
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DESF as the low-pass filter used in ourD3 to remove high fre-
quency noises as well as preserve the effective dynamics of
driving behaviors to the utmost extent.

3.3 Analyzing Patterns of Abnormal Driving
Behaviors

After high frequency noises are removed in the collected
data using the low-pass filter, we can analyze the accelera-
tion and orientation patterns of each type of abnormal driv-
ing behaviors. Let accx and accy be the acceleration on x-axis
and y-axis, respectively. Let orix and oriy be the orientation
on x-axis and y-axis, respectively.

3.3.1 Weaving

Fig. 3a shows the acceleration and orientation patterns of
weaving from an accelerometer and orientation sensor’s
readings. We observe from this figure that there is a drastic
fluctuation on accx and this fluctuation continues for a
period of time, while accy keeps smooth. Thus, both the
standard deviation and the range of accx are very large and
the time duration is long. The mean value of accx is around
zero. In addition, the orientation values have similar pat-
terns as acceleration values.

3.3.2 Swerving

Fig. 3b shows the acceleration and orientation patterns of
swerving. Since swerving is an abrupt, instant behavior, the
time duration is very short. When swerving occurs, there is
a great peak on both accx and orix. Thus, the range and stan-
dard deviation of both accx and orix are large, and the mean
value is not near zero. In addition, both accy and oriy are flat
during swerving.

3.3.3 Sideslipping

Fig. 3c shows the acceleration and orientation patterns of side-
slipping. When sideslipping occurs, accy falls down sharply.
Thus, the minimum value and mean value of accy are nega-
tive, and the range of accy is large. In addition, accx in sideslip-
ping is not near zero. If the vehicle slips toward the right side,
accx would be around a positive value,while if left, then nega-
tive. The mean value of accx thus is not near zero. When it
comes to orientation, there are no obvious changes.Moreover,
since sideslipping is an abrupt driving behavior, the time
duration is short.

3.3.4 Fast U-turn

Fig. 3d shows the acceleration and orientation patterns of
fast U-turn. When a driver turns right or left fast in U-shape,
accx rises quickly to a very high value or drops fast to a very
low value, respectively. Moreover, the value would last for
a period of time. The standard deviation of accx thus is large
on the beginning and ending of a fast U-turn, the mean
value of accx is far from zero and the range of accx is large.
When it comes to accy, there are no obvious changes. More-
over, orix would pass over the zero point. Specifically, orix
would change either from positive to negative or from nega-
tive to positive, depending on the original driving direction.
Thus, the standard deviation and value range of orix would
be large. The mean values in first half and second half of
orix would be of opposite sign, i.e., one positive and the
other negative. It may take a period of time to finish a fast
U-turn, so its time duration is long.

3.3.5 Turning with a Wide Radius

The acceleration and orientation patterns of turning with a
wide radius are shown in Fig. 3e. When turning at an

Fig. 3. The acceleration and orientation patterns of the six types of abnormal driving behaviors from an accelerometer and an orientation sensor’s
readings.
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extremely high speed, accx sees a high magnitude for a
period of time, while the accy is around zero. Thus, the
mean value of accx is far from zero and the standard devia-
tion of accx is large. When it comes to orientation, orix sees
a fluctuation, while oriy keeps smooth. The standard devia-
tion of orix thus is relatively large, and the mean value of
orix is not near zero since the driving direction is changed.
It may take a period of time to finish a turning with a wide
radius, so the time duration is long.

3.3.6 Sudden Braking

Fig. 3f shows the acceleration and orientation patterns of
sudden braking. When a vehicle brakes suddenly, accx
remains flat while accy sharply downs and keeps negative
for some time. Thus, the standard deviation and value range
of accx are small. On accy, the standard deviation is large at
the beginning and ending of a sudden braking and the
range of accy is large. Moreover, there are no obvious
changes on both orix and oriy. Since sudden braking is an
abrupt driving behavior, the time duration is short.

3.3.7 Normal Driving Behavior

Normal driving behavior means smooth and safe driving
with few and small fluctuations. Since there are few drastic
actions in a normal driving behavior, the values on both
accx and accy are not very large. So the mean, standard devi-
ation, maximum and minimum values in acceleration on
x-/y-axis are near zero. When it comes to orientation, a nor-
mal driving behavior presents smooth most of time. So the
standard deviation and range of orientation are small.

Based on the analysis above, we find that each driving
behavior has its unique features, e.g., standard deviation,
mean, maximum, minimum, value range on accx, accy, orix
and oriy, as well as the time duration. Therefore, we could
use those features to identify specific types of abnormal
driving behaviors using machine learning techniques.

4 SYSTEM DESIGN

In this section, we present the design of our proposed sys-
tem, D3, which detects abnormal driving behaviors from
normal ones and identifies different abnormal types using

smartphone sensors. D3 does not depend on any pre-
deployed infrastructures and additional hardwares.

4.1 Overview

In our system, D3, abnormal driving behaviors could be
detected and identified by smartphones according to read-
ings from accelerometers and orientation sensors. Fig. 4

shows the architecture ofD3. The whole system is separated
into offline part-Modeling Driving Behaviors and online part-
Monitoring Driving Behaviors.

In the offline part, Modeling Driving Behaviors, D3 trains
a classifier model using machine learning techniques
based on the collected data, which could identify specific
types of driving behaviors. In the Feature Extracting, effec-
tive features are extracted from specific types of driving
behavioral patterns on acceleration and orientation. After-
wards, the features are trained in the Training and a
classifier model would be generated which can realize

fine-grained identification for various types of driving
behaviors. Finally, the classifier model is output and
stored to Model Database.

The online part, Monitoring Driving Behaviors, is installed
on smartphones which senses real-time vehicular dynamics
to detect and identify abnormal driving behaviors. D3

first senses the vehicles’ acceleration and orientation by
smartphones’ accelerometers and orientation sensors. After
getting real-time readings from the accelerometer and the
orientation sensor, the Coordinate Reorientation is performed
to align the smartphone’s coordinate system with the vehi-
cle’s using the method in [6], [7], [21]. Then, in the Cutting
Driving Behavioral Patterns, the beginning and ending of a
driving behavior are found out from accelerometer and ori-

entation sensor’s readings. Afterwards, in Identifying, D3

extracts features from patterns of the driving behaviors,
then identifies whether one of the abnormal driving behav-
iors occurs based on the classifier model trained in Modeling
Driving Behaviors. Finally, if any of the abnormal driving
behaviors were identified, a warning message would be
sent to receivers by the Alerting.

4.2 Extracting and Selecting Effective Features

In D3, we use machine learning techniques to identify fine-
grained abnormal driving behaviors. The process of feature
extraction and selection is discussed in the following.

4.2.1 Feature Extraction

When machine learning algorithms are processed, represen-
tative tuple of features rather than raw data is a more effec-
tive input. Thus, it is necessary to extract effective features
from driving behavioral patterns. According to the analysis
in Section 3, each driving behavior has its unique patterns
on accx, accy, orix, oriy and time duration (t). The main dif-
ference between various driving behaviors lies in the maxi-
mum, minimum, value range, mean, and standard
deviation of accx, accy, orix and oriy and t. Therefore, those
values can be used as features for training. However, not all
of them are equally effective for abnormal driving behav-
iors’ detection and identification.

4.2.2 Feature Selection

In order to select the really effective features, we analyze the
collected traces. Fig. 5 shows some of the effective features
which distinguish abnormal driving behaviors from normal

Fig. 4. System architecture.
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ones and distinguish weaving from the other five abnormal
driving behaviors.

Fig. 5a shows the difference between normal and abnor-
mal driving behaviors in a two-dimensional features tuple
(i.e., rangeacc;x and rangeacc;y). It can be seen that the two fea-
tures can clearly discriminate normal and abnormal driving
behaviors. Therefore, we manage to distinguish abnormal
driving behaviors from normal ones with only two features.

In fact, additionally to the two features shown in Fig. 5a,
some other combinations of a two-dimensional features
tuple (i.e., any 2 out of t, maxori;x, maxori;y, sori;x, sori;y, sacc;x,
rangeacc;x,minacc;y and rangeacc;y) also manage to distinguish
abnormal driving behaviors from normal ones.

Although we can distinguish abnormal driving behaviors
from normal ones using a two-dimensional features tuple,
we fail to differentiate the six types of abnormal behaviors
from each other only using two-dimensional features. As the
example shown in Fig. 5a, the six types of abnormal driving
behaviors are mixed with each other. Nevertheless, they
could be differentiated pairwise with a two-dimensional fea-
tures tuple. In other words, although the six abnormal driv-
ing behaviors cannot be differentiated from each other at the
same time, any two among them can be differentiated intui-
tively by a two-dimensional features tuple. Taking weaving
for example (see Figs. 5b, 5c, 5d, 5e, and 5f), weaving can be
distinguished from the other five abnormal driving behav-
iors using a two-dimensional features tuple. For instance, in
Fig. 5b, weaving and swerving can be discriminated from
each other using sori;y and sacc;x. Similarly, other abnormal
driving behaviors can also be pairwise discriminated using
two-dimensional features tuples.

Based on the collected traces, we investigate all possible
pairwise cases. In each case, we find out several effective
features conductive to distinguishing one driving behavior
from another. Finally, we identify 16 effective features that
are able to capture the patterns of different types of abnor-
mal driving behaviors, as listed in Table 1.

In depth analysis, we find that, in some cases, the decision
boundary, i.e., the boundary that divides two types of

Fig. 5. Some effective features for identifying normal driving behavior from abnormal ones and weaving behavior from other five abnormal driving
behaviors.

TABLE 1
Basic Features

Feature Description

rangeacc;x subtraction of maximumminus minimum
value of accx

rangeacc;y subtraction of maximumminus minimum
value of accy

sacc;x standard deviation of accx
sacc;y standard deviation of accy
sori;x standard deviation of orix
sori;y standard deviation of oriy
macc;x mean value of accx
macc;y mean value of accy
mori;x mean value of orix
mori;y mean value of oriy
macc;x;1 mean value of 1st half of accx
macc;x;2 mean value of 2nd half of accx
maxori;x maximum value of orix
maxori;y maximum value of oriy
minacc;y minimum value of accy
t time duration between the begining and the

ending of a driving behavior
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abnormal driving behaviors into seperate areas, is some form
of a circle or an ellipse, such as the boundary in Figs. 5c and
5d. In these cases, it is better to add some polynomial features
to build a better classifier model so that it could distinguish
the two abnormal driving behaviors with a non-linear deci-
sion boundary. Taking Fig. 5c for example, we have two basic
features macc;x and rangeacc;y to distinguish weaving samples
from sideslipping samples. Since the expected decision
boundarywhich distinguishes the two types of samples looks
similar to a circle that weaving samples are in the circle and
sideslipping samples are outside the circle. In this case, we
need some polynomial features rather than only the basic two
features, macc;x and rangeacc;y, to generate such a circular

boundary through machine learning. Thus we generate three

additional polynomial features, m2
acc;x, range2acc;y and

macc;x � rangeacc;y to build a better classifiermodel.

We only add quadratic items as new features and
omit the higher order ones (e.g., the cubic features m3

acc;x,

range3acc;y, m2
acc;x � rangeacc;y, macc;x � range2acc;y and some

more higher order ones.) This is because first quadratic
items (i.e., squared or product items) are able to generate
circular decision boundary. And second, although higher
order items can also generate circular decision boundary, it
may lead to over fitting phenomenon after learning from
the training set. In other words, we may get an over fitting
classifier model that suits every sample perfectly in the
training set but have low performance for newly coming
samples in the test set or in real time.

Based on the above analysis, we select 152 features in
total to build a classifier model. Among the 152 features, 16
are basic features as listed in Table 1, next 16 are the squared
versions of the basic features, and the rest are the products
of any two different basic features.

4.3 Training a Fine-Grained Classifier Model to
Identify Abnormal Driving Behaviors

After feature extracting, we obtain a tuple of features for each
driving behavior. Then a classifier model is trained based on
the tuples for all driving behaviors through machine learn-
ing techniques [17] to identify various driving behaviors. We
use two multi-class machine learning methods, i.e., Support
VectorMachine [18], [19] andNeural Networks to train the clas-
sifier model. For each driving behavior, the input into SVM
is in the form of < 16-dimensional features, label> , where
the 16-dimensional features are the basic features tuples
obtained from the Feature Extracting and the label is the type
of the driving behavior. The input into NN is in the form of
< 152-dimensional features, label> , where the 152-dimen-
sional features are the basic as well as polynomial features
mentioned in Section 4.2.

4.3.1 SVM

The cores in SVM are the kernel and the similarity function. A
kernel is a landmark, and the similarity function computes the
similarity between an input example and the kernels. Spe-
cifically, assume that our training set contains m samples,
and each sample are 16-dimensional (i.e., the 16-dimen-
sional features), denoted by

xðiÞ ¼ ðxðiÞ
1 ; x

ðiÞ
2 ; . . . ; x

ðiÞ
16 Þ; i ¼ 1; 2; . . . ;m; (1)

where xðiÞ is the ith sample, and x
ðiÞ
j means the jth feature of

xðiÞ. When SVM starts, all input samples (xð1Þ; xð2Þ; . . . ; xðmÞ)
are selected as kernels, recorded as lð1Þ; lð2Þ; . . . ; lðmÞ. Note

that xðiÞ ¼ lðiÞ for i ¼ 1; 2; . . . ;m. Afterwards, for each sam-
ple, SVM computes its similarity between the kernels by

f
ðiÞ
j ¼ e

�jjxðiÞ�lðjÞjj
2s2

2

; i; j ¼ 1; 2; . . . ;m; (2)

where f
ðiÞ
j is the similarity between input sample xðiÞ and the

kernel lðjÞ, s is a parameter defined manually, and

jjxðiÞ � lðjÞjj2 is the distance between xðiÞ and lðjÞ calculated by

jjxðiÞ � lðjÞjj2 ¼
X16
k¼1

ðxðiÞ
k � l

ðjÞ
k Þ2; i; j ¼ 1; 2; . . . ;m: (3)

In SVM, m 16-dimensional input samples (i.e., xð1Þ;
xð2Þ; . . . ; xðmÞ) would be converted into m m-dimentional

similarity features (i.e., fð1Þ; f ð2Þ; . . . ; fðmÞ), since for each xðiÞ,
the similarity between xðiÞ and any lðjÞ in lð1Þ; lð2Þ; . . . ; lðmÞ are
calculated by Equation (2). With the new features f =

(f ð1Þ; fð2Þ; . . . ; f ðmÞ), a cost function JðuÞ (see Equation (4)) cal-
culated from f would beminimized to find optimal u

JðuÞ ¼ C
Xm
i¼1

yðiÞcost1ðuT f ðiÞÞ þ ð1� yðiÞÞcost0ðuT f ðiÞÞ þ 1

2

Xm
j¼1

u2j ;

(4)

where C is a parameter defined manually, yðiÞ is the label of
ith input example (i.e., the label of xðiÞ), uT means u trans-
pose and

cost1ðuT f ðiÞÞ ¼ log
1

1þ e�uT fðiÞ

� �
;

cost0ðuT f ðiÞÞ ¼ log 1� 1

1þ e�uT fðiÞ

� �
;

(5)

and

uT f ðiÞ ¼ u1f
ðiÞ
1 þ u2f

ðiÞ
2 þ � � � þ umf

ðiÞ
m : (6)

The classifier model is finally determined by the optimal u.
In a word, SVM trains the inputs and then output a classifier
model which conducts fine-grained identification to the six
types of abnormal driving behaviors.

In SVM, the similarity or distance between two sampling
points are used to determine whether the two sampling
points belong to the same abnormal driving behavioral
type. If the 136 polynomial features are used as inputs in
addition to the 16 basic features, it heavily increases the
computational cost of building the classifier model, but can-
not obviously improve the performance. Hence, we only
use the 16 basic features as input and it is unnecessary to
use the additional 136 polynomial features.

4.3.2 NN

NN method mimics the learning process of a human brain,
which is it accepts a group of inputs and then do some com-
putations through a series of neurons to output results. The
NN method performs better as the number of features
increases. In the NN algorithm, there are several layers, and
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each layer has several computational units or neurons to do
various computations based on the inputs from the former
layer. The first layer is also known as the input layer, in our
method, there are 152 neurons in the first layer, and each
neuron contains the value of a feature. The last layer is
known as the output layer, there are 7 units in the output
layer, each represents a type of driving behavior (i.e., 6
abnormal type and 1 normal type). The layers between input
and output layers are called hidden layers. Assume there are

L hidden layers (i.e., hð1Þ; hð2Þ; . . . ; hðLÞ) and in each hidden

layer there are S units (e.g., in hð1Þ, there are units named

h
ð1Þ
1 ; h

ð1Þ
2 ; . . . ; h

ð1Þ
S ).

The ith units in first hidden layer can be calculated
through:

h
ð1Þ
i ¼ gðQð1Þ

i;0x0 þQ1
i;1xð1Þ þ � � � þQ

ð1Þ
i;152x152Þ; i ¼ 1; 2; . . . ; S;

(7)

where Qð1Þ is a S � 153 dimensional matrix of weights that
controls function mapping from input layer to the first hid-
den layer, x is a 153 dimensional vector that contains the
152 features and one bias bit x0 ¼ 1, and gðÞ is a computa-
tional function in any unit in the hidden layers (i.e., also
called activation of the unit), where

gðzÞ ¼ 1

1þ e�z
; (8)

where z is the input of gðÞ and z is Q
ð1Þ
i;0x0 þQ1

i;1xð1Þ þ � � � þ
Q

ð1Þ
i;152x152 in Equation (7).

After we obtain the values in the units in the first layer,
we can forward propagate the values and obtain the units
in the next hidden layer until we reach to the last layer. The
unit i in ðjþ 1Þth hidden layer h

ðjþ1Þ
i can be calculated based

on the units in jth layer according to

h
ðjþ1Þ
i ¼ gðQðjþ1Þ

i;0 h
ðjÞ
0 þQ

ðjþ1Þ
i;1 h

ðjÞ
1 þ � � � þQ

ðjþ1Þ
i;S h

ðjÞ
S Þ;

i ¼ 1; 2; . . . ; S;
(9)

where Qðjþ1Þ is a S � ðS þ 1Þ dimensional matrix of weights
that controls function mapping from layer j to layer jþ 1,

h
ðjÞ
1 , h

ðjÞ
2 , . . ., h

ðjÞ
S is the units’ values in layer j and also act as

inputs into layer jþ 1 and h
ðjÞ
0 is a bias bit additionally in

the input from layer j to layer jþ 1 which is equal to 1. gðÞ
is the same function as in Equation (8).

The units in the output layer can be calculated from the
units in the Lth hidden layer:

h
ðoutÞ
i ¼ gðQðoutÞ

i;0 h
ðLÞ
0 þQ

ðoutÞ
i;1 h

ðLÞ
1 þ � � � þQ

ðoutÞ
i;S h

ðLÞ
S Þ;

i ¼ 1; 2; . . . ; 7:
(10)

After we obtain the values in the output layer, we are able to
calculate the cost function in NN as following:

JðQÞ ¼ � 1

m

�Xm
i¼1

X7
k¼1

y
ðiÞ
k logðhQðxðiÞÞÞk

þ ð1� y
ðiÞ
k Þlogð1� ðhQðxðiÞÞÞkÞ

�
;

(11)

where m is the number of samples in the training set, y
ðiÞ
k is

the label of the ith sample (i.e., if the ith sample belongs to

kth abnormal type, y
ðiÞ
k ¼ 1, otherwise 0), xðiÞ is the ith sam-

ple in the training set and ðhQðxðiÞÞÞk is the value of kth out-

put unit on input xðiÞ. ðhQðxðiÞÞÞk is a function of parameter
Q, and Q can be obtained by unrolling all matrices between
layers in the network and then concatenate all of them. In
NN algorithm, we can find an optimal Q which minimizes
the cost function JðQÞ. The classifier model then can be built
based on the optimal Q.

4.4 Detecting and Identifying Abnormal Driving
Behaviors

After we obtain a classifier model, we are able to detect
and identify abnormal driving behaviors in real driving
environments using the model. In order to identify cur-
rent driving behavior using the model, we should input
features extracted from patterns of a driving behavior. D3

thus need to determine the beginning and ending of the
driving behavior first, i.e., cutting patterns of the driving
behavior. Fig. 6 shows the readings from a smartphone’
accelerometer and orientation sensor on x-axis and y-axis
in a one minute driving, which contains a weaving behav-
ior. In Fig. 6, the weaving behavior is sensed from its
beginning to ending.

The method of sensing the beginning and ending of a
driving behavior is proposed based on an analysis on the
acceleration and orientation patterns of all types of driving
behaviors. Specifically, when an abnormal driving behavior
begins, the standard deviation of either the acceleration or
the orientation values sharply rise to and keep a relatively
high value until the driving behavior ends, while in most
normal driving behaviors, the standard deviation always
presents as low and smooth. Moreover, during an abnormal
driving behavior, the magnitude of acceleration on either x-
axis or y-axis presents an extremely high value, as illus-
trated in Section 3. But when driving normally, the magni-
tude of accelerations seldomly reaches to such a high value.

Therefore, It is simple but effective that we monitor the
standard deviation of acceleration and orientation as well as
the magnitude of acceleration of the vehicle from smart-
phone sensors to cut patterns of driving behaviors. In
real driving environments, we retrieve readings from
smartphones’ accelerometers and orientation sensors and

Fig. 6. The acceleration and orientation patterns of one minute driving
behaviors.
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then compute their standard deviation as well as mean value
in a small window. If a vehicle is under normal driving, D3

compares the standard deviation and the mean value with
some thresholds to determine whether an abnormal driving
behavior begins. The window size and thresholds can be
learned from the collected data. After the beginning of a driv-

ing behavior is found out,D3 continues to check the standard
deviation and mean value to determine whether the driving
behavior ends.

After cutting patterns of a driving behavior, effective fea-
tures can be extracted from the driving behavioral patterns
and then sent to the classifier model. Finally, the model out-
puts a fine-grained identification result. If the result denotes
the normal driving behavior, it is ignored, and if it denotes
any one of abnormal driving behaviors, D3 sends a warning
message.

The warning message will be sent both to the driver
and to some remote receivers. The drivers can be aware of
their bad driving habits from the warning messages along
their driving, so that they can make targeted corrections
of their bad driving habits, helping to prevent potential
car accidents. Furthermore, the identification results can
be passed back to a remote central server. On that case,
the remote server can call the police automatically once a
traffic accident occurs, which may save lives in case the
victims have difficulty doing so by themselves (i.e., in
case they lose consciousness or cannot move). In addition,
the automatic recorded warning messages along with the
specific car/driver may help identifying the driver in hit-
and-run accidents. Those warning messages stored in the
central server may also help the vehicle insurance com-
pany to analyze the policyholders’ driving habits, so that
the insurance company may offer a more preferential car
insurance policy to drivers with good driving habits, and
a harsh policy to those with a long history of warning
message lists.

4.5 Complexity Analysis

We assume that the amount of real-time sensing data from
accelerometer and orientation is N . The calculation over-

head ofD3 can be divided into the following parts.
Building the Classifier Model: The classifier model (either

with SVM or NN machine learning algorithm) is built off-
line and it is built only once so that it does not contribute to
the computational complexity of real-time identification
process.

Low-pass Filtering: Low-pass Filtering needs linear
computational complexity with the amount of real-time
sensing data from accelerometer and orientation, N . In
other words, it has a complexity of OðNÞ.

Feature Extracting: Extracting features from each input
data needs constant computation. Hence, for N inputs, it is
OðNÞ.

Identification by the Classifier Model: The computation from
one input features tuple to an output identification result in
the model is constant. Thus, forN input tuples, it has a com-
plexity of OðNÞ.

Based on the above analysis, the computational complex-
ity of D3 is OðNÞ to detect and identify different abnormal
driving behaviors.

5 EVALUATIONS

In this section, we first present the prototype ofD3, then eval-

uate the performance ofD3 in real driving environments.

5.1 Prototype

We implement D3 as an Android App and install it on
smartphones (listed in Section 3.1). Fig. 7 shows the user

interface of D3 and testbeds in vehicles. D3 is running by
20 drivers with distinct vehicles in real driving environ-
ments to collect the data for evaluation. Meanwhile, Car
DVRs are used to record driving behaviors and 9 experi-
enced drivers are asked to recognize abnormal driving
behaviors as ground truth. After a 4-month data collection
(i.e., July 21 to Nov. 30, 2014, using the same method of
collecting data as described in Section 3.1), we obtain a test
set with 3141 abnormal driving behaviors to evaluate the

performance of D3.

5.2 Metrics

To evaluate the performance of D3, we define the following
metrics based on the True Positive (TP), True Negative
(TN), False Positive (FP) and False Negative (FN).

� Accuracy: The probability that the identification of a
behavior is the same as the ground truth.

� Precision: The probability that the identifications for
behavior A is exactly A in ground truth.

� Recall: The probability that all behavior A in ground
truth are identified as A.

� False Positive Rate (FPR): the probability that a behav-
ior of type Not A is identified as A.

In the following sections, we investigate the impact of
various factors toD3 and present the details.

5.3 Overall Performance

The performance ofD3 is evaluated by three levels, i.e., total
accuracy, detecting abnormal versus normal driving behav-
iors and identifying fine-grained driving behaviors.

5.3.1 Total Accuracy

Total accuracy is the ratio of correct identifications to total
identifications, containing identifications for the six types of
abnormal driving behaviors as well as the normal. The total
accuracy for each driver is evaluated respectively in Table 2.
It can be seen that all of the 20 drivers achieve high total

Fig. 7. User interface ofD3 and testbeds.
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accuracies. Among the 20 drivers, the lowest total accuracy
is 92.44 percent with SVM classifier model, and 93.56 per-
cent with NN classifier model. On average, D3 achieves a
total accuracy of 95.36 percent with SVM classifier model,
and 96.88 percent with NN classifier model.

5.3.2 Detecting the Abnormal versus the Normal

In this level, we treat all types of abnormal driving behav-
iors as one type (i.e., Abnormal), and merely identify
whether a driving behavior is abnormal or normal. As is
shown in Table 3, D3 performs so excellent that almost all
abnormal driving behaviors are identified. In other words,

D3 could identify abnormal driving behaviors versus nor-
mal ones with a recall of 99.84 percent with SVM, and 99.92
percent with NN. In addition, none of normal driving
behaviors is identified as abnormal one, i.e., with 100 per-
cent precision and 0 FPR using either SVM or NN classifier
model.

5.3.3 Identifying Abnormal Driving Behaviors

D3 also realizes fine-grained identification, i.e., discrimi-
nates Weaving, Swerving, Sideslipping, Fast U-turn, Turning
with a wide radius and Sudden braking. Table 3 shows the
identification results. With SVM classifier model, the accu-
racy for identifying each of the six abnormal driving behav-
iors is no less than 94 percent, the precision is above 85
percent, and the recall is more than 70 percent. And with

NN classifier model, D3 achieves an accuracy of no less

than 95 percent, a precision of above 90 percent and a recall
of more than 85 percent. The FPRs for identifying all types
of abnormal driving behaviors are no more than 2 percent
with both SVM and NN classifier models. The results show

thatD3 is an high-accurate system to identify various abnor-
mal driving behaviors.

Moreover, we evaluate FPRs of identifying specific
abnormal types. Fig. 8 shows a box-plot of the FPRs for each
type of abnormal driving behaviors and the overall FPR
with SVM and NN classifier models. As is shown in the
figure, with SVM classifier model, the highest FPR of identi-
fying specific abnormal type is less than 2.5 percent and the
overall FPR is around 0.9 percent. With NN classifier model,
the highest FPR is less than 2 percent and the over all FPR is
no more than 0.8 percent, which shows thatD3 could imple-
ment fine-grained identification with few false alarms. In

addition, D3 performs better when identifying weaving,
sideslipping, turning with a wide radius and fast U-turn
than identifying swerving and sudden braking. This is
because the patterns of the former ones are more distinct
than that of the latter. However, the performance of identi-
fying swerving, sideslipping and turning with a wide
radius is more stable than identifying other abnormal driv-
ing behaviors since they have smaller standard deviations.
This is because the patterns of the former ones are more sta-
ble than that of the latter.

According to the analysis above, D3 with both SVM
and NN classifier models can achieve high performance
in identifying different driving behaviors. It has a good

TABLE 2
Total Accuracy in 20 Drivers’ Experiments

Dirver 1 2 3 4 5

Total Accuracy (%) SVM NN SVM NN SVM NN SVM NN SVM NN
98.66 98.72 96.43 98.23 95.29 96.40 95.61 95.58 97.13 96.91

Driver 6 7 8 9 10

Total Accuracy (%) SVM NN SVM NN SVM NN SVM NN SVM NN
94.55 96.37 97.83 98.49 99.07 98.52 98.37 99.12 92.44 95.35

Driver 11 12 13 14 15

Total Accuracy (%) SVM NN SVM NN SVM NN SVM NN SVM NN
93.46 95.31 96.30 99.24 94.02 96.10 99.59 98.67 91.35 94.23

Driver 16 17 18 19 20

Total Accuracy (%) SVM NN SVM NN SVM NN SVM NN SVM NN
94.50 96.21 92.86 93.56 94.68 96.48 95.49 97.44 95.43 96.57

TABLE 3
Accuracy Evaluation

Behavior Accuracy(%) Precision(%) Recall(%) FPR(%)

SVM NN SVM NN SVM NN SVM NN

Normal 99.84 99.92 98.80 99.22 100.00 100.00 0.19 0.10
Abnormal 94.81 96.23 100.00 100.00 99.80 99.67 0.00 0.00
Weaving 98.43 98.56 92.55 95.67 87.87 92.25 0.63 0.33
Swerving 97.94 98.33 92.29 95.47 94.15 95.20 1.39 0.76
Sideslipping 98.60 98.49 87.96 90.50 71.43 88.34 0.37 0.08
Fast U-turn 98.49 98.78 85.71 92.73 76.00 86.55 0.54 0.29
Turning with a wide radius 98.68 98.67 89.30 93.61 92.72 92.58 0.86 0.82
Sudden braking 95.74 97.23 97.88 98.56 99.04 99.77 1.93 0.74
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total accuracy which is over 95 percent, an excellent per-
formance in discriminate abnormal type from normal
type (i.e., an accuracy of over 99 percent) and a good per-
formance in identifying six different abnormal types.
Moreover, compared with SVM classifier model, the NN

classifier model helps D3 to achieve a relatively better
performance.

5.4 Impact of Training Set Size

According to Section 3.1, we collect the traces for totally
4,029 abnormal driving behaviors for training. The training
set size (i.e., the number of training samples) may have an
impact on the training results so that it may affect the per-
formance of D3. We thus evaluate the impact of the training
set size. The results with SVM classifier model are shown in
Fig. 9, and with NN classifier model are shown in Fig. 10.
From the figures, we observe that the more training samples

there are, the better performance D3 has. With SVM classi-
fier model, when we use 280 training samples for turning
with a wide radius, sideslipping, 300 sudden braking sam-
ples, 350 swerving samples and 380 training samples for

fast U-turn and weaving, respectively, D3 could identify
each specific type of driving behavior with an accuracy
close to 100 percent. With NN classifier model, when we
use 250 training samples for turning with a wide radius, 300
sideslipping, 350 sudden braking and swerving samples

and 400 training samples for fast U-turn and weaving,

respectively, D3 could identify each specific type of driving
behavior with an accuracy close to 100 percent. In order to

guarantee the performance of D3, we use as many training
samples as possible.

5.5 Impact of Traffic Condition

The traffic conditions may affect the drivers’ driving
behaviors and further affect the performance of D3. We
analyze traces during peak time and off-peak time respec-
tively to evaluate the impact of traffic conditions. Fig. 11
shows the accuracies of identifying specific types of
abnormal driving behaviors during peak and off-peak

time. It can be seen that D3 achieves good accuracy dur-
ing both time periods, and the accuracy in off-peak time
is slightly higher than that in peak time. Such results are
consistent with both SVM and NN classifier models. This
is because during peak time, the vehicles perform less
drastic actions due to traffic jams. So some abnormal driv-
ing behaviors present restrained patterns during peak
time. Different types of abnormal driving behaviors thus
are much easier to be mistaken by each other and even be
mistaken as normal driving behaviors. Nevertheless,

Fig. 8. Box plot of FPR of identifying specific types of driving behaviors.

Fig. 9. Total accuracy under different sizes of training set with SVM
classifier model.

Fig. 10. Total accuracy under different sizes of training set with NN
classifier model.

Fig. 11. Accuracy under different traffic conditions.
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during off-peak time, the patterns of all types of driving
behaviors are performed more obvious. So different types
of abnormal driving behaviors are more distinguishable.
Moreover, the results with NN classifier model are sightly
better than that with SVM classifier model.

5.6 Impact of Road Type

Drivers could perform abnormal driving behaviors on high-
way or local road, thus we further investigate the impact of
the two road types on the performance of D3. Fig. 12 shows
how road types affect the accuracy of identifying various

types of abnormal driving behaviors. It can be seen that D3

achieves good accuracy both on highway and local road,
but the accuracy is slightly higher on highway than that on
local road. Such results are consistent with both SVM and
NN classifier models. This is because the better road condi-
tion on highway could reduce the fluctuations caused by
bumpy surfaces. Since highway is more smooth and has
less slopes compared with local road, there are less distur-
bances then. In addition, there are less curves and no traffic
light stops on the highway, so when driving normally on
the highway, drivers have less chance to perform drastic

actions. As a result, D3 can achieve a better performance on
highway than that on local road. Moreover, the results with
NN classifier model are sightly better than that with SVM
classifier model.

5.7 Impact of Smartphone Placement

Smartphones could be arbitrarily placed in vehicles, we
thus investigate the impact of smartphone placement. In
our experiments with 20 vehicles, smartphones are fixed on
instrument panel, cupholder on the center console, front
passenger seat, or left rear passenger seat, where smart-
phone sensors’ y-axis is aligned along the moving direction
of vehicles, or on arbitrary placement (i.e., smartphones are
put in the driver’s pocket and its pose could be arbitrary).
Figs. 13 and 14 show the CDF of FPRs of fine-grained identi-
fications under different smartphone placements with SVM
and NN classifier models. It can be seen that D3 can achieve
low FPRs under all smartphone placements, which shows

D3 performs excellent wherever the smartphone is placed
in a vehicle. Although there is slightly higher FPR under

arbitrary placement because of errors in the coordinate
reorientation process, a FPR of less than 2 in 90 percent
of the cases with SVM classifier model and less than 1 in
90 percent of the cases with NN classifier model is still a
good result.

5.8 Impact of Smartphone Sensors’ Sampling Rate

In D3, keeping collecting sensing data from smartphones
at a high sampling rate may result in heavy energy con-
sumption. Since energy consumption is an important
issue on smartphones, we prefer to a lower sampling

rate in order to make D3 more energy efficient. A low
sampling rate, however, could have impact on the identi-

fication accuracy of D3. We thus further investigate the
impact of lowering smartphone sensors’ sampling rate

on the accuracy of D3.
Our original dataset is obtained using a sampling rate of

300 Hz. In order to obtain additional datasets with different
sampling rates, we regularly drop some samples in the orig-
inal dataset. For example, For a 150 Hz-sampling rate data-
set, every other sampling point is discarded from the
original dataset. Fig. 15 shows the CDF of the FPRs (False
Positive Rate) for each type of the six abnormal driving

Fig. 12. Accuracy under different road types. Fig. 13. CDF of FPR under different smartphone placements with SVM
classifier model.

Fig. 14. CDF of FPR under different smartphone placements with NN
classifier model.
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behaviors using different sampling rates from 300 to 25 Hz.
All of the FPRs under different sampling rates are calcu-
lated based on the NN classifier model. It can be seen that
the FPRs of swerving, sideslipping and sudden braking
raise as the sampling rate decreases, while the FPRs of
weaving, turning with a wide radius and fast U-turn do not
significant change as the sampling rate decreases. This is
because swerving, sideslipping and sudden braking are
instant driving behaviors that continue a very short period
of time, which may lead to lack of samples under a low sam-
pling rate. However, it can be seen from the figure that we
can reduce the sampling rate to at least 100 Hz, which guar-
antees the accuracy for identifying all abnormal driving
behaviors to be over 95 percent.

We further perform an experiment to test the energy con-
sumption of D3 using our power meters [22]. All Apps and
services (e.g., GPS or network) are closed during the experi-
ment. Each time, three smartphones of the same type are

fixed in a car for 2 days, one not running D3 in standby

mode, one running D3 under a sampling rate of 300 Hz and

one runningD3 under 100 Hz. All smartphones are using the
NN classifier model to identify different driving behaviors
in this experiment. Fig. 16 shows the energy consumption in
the five types of smartphones (mentioned in Section 3.1)
under the three conditions mentioned above. The energy

consumption of the devicewithout runningD3 is normalized
to 100 percent. It can be seen from the figure that the energy
consumption is significantly reduced under 100 Hz-sam-
pling rate comparedwith 300 Hz-sampling rate.

Based on the analysis above, we finally employ a sam-
pling rate of 100 Hz in D3, which enables D3 to guarantee
the accuracy for identifying all abnormal driving behaviors
to be over 95 percent, and significantly reduce the energy

consumption ofD3.

6 CONCLUSION

In this paper, we address the problem of performing abnor-
mal driving behaviors detection (coarse-grained) and identi-
fication (fine-grained) to improve driving safety. In
particular, we propose a system, D3, to detect and identify
specific types of abnormal driving behaviors by sensing the
vehicle’s acceleration and orientation using smartphone sen-
sors. Compared with existing abnormal driving detection

systems,D3 not only implementes coarse-grained detections
but also conducts fine-grained identifications., i.e., Weaving,
Swerving, Sideslipping, Fast U-turn, Turning with a wide radius
and Sudden braking. To identify specific abnormal driving

Fig. 15. CDF of FPR using different sampling rates for each type of abnormal driving behaviors.

Fig. 16. Energy consumption on five types of devices with D3 under dif-
ferent sampling rates and without runningD3.
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behaviors, D3 trains a multi-class classifier model through
Support VectorMachine andNeuronNetworks based on the
acceleration and orientation patterns of specific types of driv-
ing behaviors. To obtain effective training inputs, we extract
16 basic features and 136 polynomial features from driving
behavioral patterns collected from the 6-month driving
traces in real driving environments. The extensive experi-
ments driving in real driving environments in another 4

months show thatD3 achieves high accuracywhen detecting
and identifying abnormal driving behaviors.
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