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Abstract: Wireless sensor networks (WSNs) are widely applied in industrial manufacturing systems.
By means of centralized control, the real-time requirement and reliability can be provided by WSNs
in industrial production. Furthermore, many approaches reserve resources for situations in which
the controller cannot perform centralized resource allocation. The controller assigns these resources
as it becomes aware of when and where accidents have occurred. However, the reserved resources
are limited, and such incidents are low-probability events. In addition, resource reservation may
not be effective since the controller does not know when and where accidents will actually occur.
To address this issue, we improve the reliability of scheduling for emergency tasks by proposing
a method based on a stealing mechanism. In our method, an emergency task is transmitted by
stealing resources allocated to regular flows. The challenges addressed in our work are as follows:
(1) emergencies occur only occasionally, but the industrial system must deliver the corresponding
flows within their deadlines when they occur; (2) we wish to minimize the impact of emergency
flows by reducing the number of stolen flows. The contributions of this work are two-fold: (1) we
first define intersections and blocking as new characteristics of flows; and (2) we propose a series of
distributed routing algorithms to improve the schedulability and to reduce the impact of emergency
flows. We demonstrate that our scheduling algorithm and analysis approach are better than the
existing ones by extensive simulations.
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1. Introduction

Wireless sensor network (WSN) technology is widely applied in process industries because of its
advantages of low cost and ease of use [1]. Industrial standards such as WirelessHART [2], WIA-PA [3]
and ISA 100.11a [4] have been developed to facilitate the popularization of wireless technology. System
reliability and real-time performance are two important indicators for industrial networks. Industrial
WSNs must satisfy certain requirements regarding the systems’ real-time performance and reliability
when they are used in industrial systems as the communication media [5,6]. To achieve the requirements
of high real-time performance and reliability, industrial networks (such as vehicle production line, port
logistics dispatching) adopt centralized control mechanisms and allocate resources (slot and channel)
before the system begins operation.

Various kinds of flows co-exist in industrial networks. Some flows have long periods or occur
only occasionally, e.g., alarms, accidents and emergencies [7]. The existing methods typically allocate
resources without distinguishing or reserving resources for these flows [8]. However, such an approach
cannot guarantee the schedulability of emergency flows and consequently leads to a waste of resources.
For example, Figure 1 shows an industrial network for the manufacturing of cement; the sensor nodes
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transmit wirelessly (dotted lines), and the other devices (sink node, gateway and controller) transmit
by wired connection (solid line). When an accident occurs, such as excessive pressure, we must
forward it to the sink node before its deadline. Sensor nodes are deployed around the factory and
monitor each piece of equipment. When an emergency occurs at node V2, the emergency packet must
reach the controller before its deadline or the quality of the cement will decline. Intuitively, a good
result can be achieved if we transmit the emergency task immediately and abandon all other flows
when an accident occurs. However, before an emergency actually occurs, nobody knows when and
where it will happen. To achieve immediate priority for emergencies, all nodes in the network would
need to listen at all times for occasional accidents. In addition, the controller would be required to
allocate paths for all possible accident nodes. Obviously, this is impractical in a WSN for the following
reasons: (1) the network has limited channels and transmission resources, and it must still satisfy the
performance requirements under no-accident conditions; (2) it is not desirable to abandon all regular
flows since they also serve useful purposes in the factory; and (3) wireless sensor nodes cannot afford
high energy overheads. Hence, it is not only meaningful, but also very urgent to study how to cope
with emergencies or accidents in industrial WSNs.

Figure 1. An example of an emergency.

This work systematically investigates the handling of occasional emergency tasks in industrial
WSNs, which is a critical issue in many applications, but has thus far received little attention in the
existing work. The main challenges are as follows: (1) emergencies occur only occasionally, but the
industrial system must deliver the corresponding flows within their deadlines when they occur; and (2)
we wish to minimize the impact of emergency flows by reducing the number of stolen flows. In this
study, we propose a series of distributed methods that address both the schedulability and impact of
flows triggered by emergencies or unpredictable accidents. We list our contributions as follows:

1. We propose an optimal algorithm for emergency flows (optimal path scheduling algorithm
(OPSA)); by iterating over all scenarios, the controller can determine the optimal path for an
emergency flow. However, because the network is centrally controlled, the source node of the
emergency flow needs to upload its information and wait for a response from the network
controller. The real-time performance of OPSA is poor. Then, we propose a series of algorithms
(such as stealing-first scheduling algorithm (SfSA), lazy stealing scheduling algorithm (LSSA)) to
try to improve system performance.

2. We define intersection (such as the intersection nodes or overlap nodes of several flows) and
blocking (such as the delay caused by insufficient transmission resources) as new characteristics
of flows. The definitions of intersection and blocking will be introduced later.

3. We prove that the shortest path is not always the fastest path for an emergency flow triggered by
an unpredictable accident.
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4. We analyze the transmission time from B0 to the intersection node on the path of flow i and obtain
the optimal path as the one that satisfies Equation (10) with the minimum number of intersections
in Pis.

5. We propose an algorithm (optimal benefit-based stealing scheduling algorithm (OBSSA)) that can
determine optimal paths for emergency flows. The optimal path in the current study is the path
that allows an emergency task to arrive at its destination before its deadline with the minimal
impact. Furthermore, we prove that the performance of OBSSA is no less than OPSA when we do
not consider the overhead of uploading and downloading.

The remainder of the article is organized as follows. The related works are discussed in Section 2.
Section 3 presents the system model of an industrial WSN. Section 4 studies scheduling methods for
handling unpredictable accidents and proposes several heuristic algorithms. OBSSA is proposed in
Section 5. The evaluation of our approaches is presented in Section 6. Section 7 is the conclusion.

2. Related Works

Real-time performance and reliability are two critical indicators for industrial WSNs.
The algorithms of scheduling and analysis methods of schedulability have been widely studied
with respect to these indicators [9–12]. The work in [13] studies the characteristics of WirelessHART
and formulates a real-time transmission scheduling problem by end-to-end analysis. Furthermore,
they also prove its NP-hardness. The work in [14] maps real-time periodic flows scheduling in a
WirelessHART network to the scheduling of real-time multi-cores. Based on the above two works, [15]
reviews recent advances on two fronts: (1) real-time scheduling and analytical methods for obtaining
real-time performance in industrial wireless sensor and actuator networks (WSANs); and (2) the CPS
(cyber-physical system) co-design of wireless control systems. Haibo Zhang et al. [16] investigated
the link-scheduling problem for TDMA-based convergecast, with the aim of minimizing the time
consumption of convergecast operation. The work in [17] improves the reliability by means of graph
routing. However, none these works considers the differences in the level of criticality between flows.
When an emergency flow occurs, it will be treated as a regular flow and miss its deadline.

To improve the reliability of industrial networks, several methods to address critical data flows
have been proposed. The work presented in [18] improves the performance for critical data flows by
the algorithms of slot assignment, and the work reported in [19] presents similar methods. With the
introduction of the concept of a mixed-criticality system [20,21], the schedulability of highly critical
data flows in industrial networks can be improved by switching the system into high-criticality mode.
Xi Jin et al. [22] proposed an end-to-end delay analysis approach for a mixed-criticality industrial
network based on the fixed-priority policy. The work in [8] proposes a scheduling algorithm for
a mixed-critical industrial system that guarantees the satisfaction of reliability requirements and
real-time performance. Although these previous works differentiate among flows with different
critical levels, they do not consider the possibility of accidents or emergencies occurring in the system.
Furthermore, we must consider the overhead of system switching and the influence of giving many
low criticality flows. The work in [7] presents the first systematic method of incorporating emergency
alarms into WPC (wireless process control). Based on event-based communication and slot stealing,
the authors of this work propose efficient real-time predictable emergency communication protocols.
Building on this work, Jing Li et al. [23] present the RTWS (real-time work stealing) platform, an
extension to the widely-applied Cilk Plus concurrency platform. RTWS is mainly used to improve the
performance of soft real-time systems. Since the scheduling in the wireless network is different from
that in multi-cores, RTWS does not apply to our system (hard real-time industrial network system).
However, these works do not consider the possibility of unpredictable accidents or emergencies in the
system. That is, there is no corresponding response for unpredictable accidents.

Therefore, existing works cannot cope with unpredictable accidents or emergencies. When these
kinds of flows miss their deadline, the disaster of error must occur. To improve the reliability of
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industrial WSNs and avoid unexpected disasters, it is urgently necessary to develop a reliable
scheduling method to resolve this issue.

3. System Model

Reliability and real-time performance are the most important criteria for industrial
networks [24,25]. When an accident occurs in a physical plant, such as a person entering a dangerous
zone, the system must stop the corresponding machine by sending an emergency task to ensure that
person’s safety. In such a situation, the most critical concern is to guarantee the timely transmission of
the emergency task to the centralized controller. Hence, we consider an industrial system model as
follows. The model consists of a gateway, a centralized controller and an industrial WSN (as shown in
Figure 1). Based on state-of-the-art industrial network standards [2,3,26], our design has the following
salient features: (1) a limited network size; (2) a MAC layer running a multi-channel TDMA protocol;
and (3) an IEEE 802.15.4 physical layer that allows per-time-slot channel hopping.

In our design, the sensors constitute a multi-hop wireless mesh network by communicating
through a multi-hop WSN. The sensory data are forwarded to the centralized controller as their
destination. The set of sensor nodes is denoted by N = {n1, n2 . . . }. The sink node Nsink is the
destination for all flows. There are 16 non-overlapping channels in our physical layer, which is the
same as the IEEE 802.15.4 protocol. The number of channels in our model is denoted by M and satisfies
1 ≤ M ≤ 16 [27].

The flow in our model is defined as an end-to-end communication between a source and a
destination. There are two kinds of data flows in our model: periodic regular flows and aperiodic
emergency flows (for naming consistency, we refer to an occasional emergency task as an emergency
flow). For regular flows, packets are generated periodically. Emergency flows are triggered sporadically.
An emergency flow is more important than a regular flow. We take gas monitoring as an example: the
regular flows are CO2, O2 and the emergency flow is CO. When there are CO leakages, the system
must forward the information of the toxic leakage to its deadline in time, or a disaster may occur.
We consider a flow set that contains r regular flows and e emergency flows, which is denoted by
F = {R1, R2 . . . Rr, E1, E2 . . . Ee}. The characteristics of a flow in our system are denoted by {c, d, t, p},
where c is the number of transmission hops (the number of hops in this paper is the number of links
from the source node to its destination); d is the packet deadline (d is also the packet arrival time when
all slots are assigned by the network controller); t is the period of the flow; and p is the path, which
stores the sensor nodes through which the packet is transmitted. Hence, for any flow i, we can describe
it as follows. The flow generates packets with a period of ti, via ci hops on the routing path pi, and it
forwards each packet to its destination before di.

We define an emergency flow as a predictable emergency flow when it is generated at a particular
location and transmitted over a prescribed path (such as alarms or the other devices for which errors
or accidents may occur). The characteristics of predictable emergency flow are {C, D, P}, where C is
the number of transmission hops, D is the deadline of the emergency flow and P is the path; otherwise,
the emergency flow is unpredictable and could be generated with the source node of any regular flow
as its source node. Hence, we let A denote the source of such an emergency flow, and we let B denote
the next hop of that emergency flow. Then, an unpredictable emergency flow can be characterized by
{A, D}. To clarify the actual execution time, we use C to denote the actual number of transmission
hops from the source to the destination. Since the packet can be transmitted by one hop in each
transmission slot, we can use the actual number of transmission hops C to represent the transmission
time, and the unit of C is the slot. For both predictable and unpredictable emergency flows, such a
flow can be scheduled when the number of slots required for the transmission of the emergency flow
to its destination is no more than D.

Previous research has mainly focused on predictable emergency flows, and the most common
approach is to reserve or pre-allocate resources for these flows. However, this method is only applicable
to predictable emergency flows. In addition, the probability of these emergency flows is very low;
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consequently, the resources allocated to predictable emergency flows are wasted when no emergency
flows are triggered. To achieve both the consideration of unpredictable emergency flows and more
efficient utilization of resources (channels and slots), we introduce a stealing mechanism. In this
stealing mechanism, the centralized controller allocates resources to sensor nodes only for regular
flows under the assumption that there are no emergency flows. The resources considered are as follows.

1. In which time slots a sensor node can send and receive messages.
2. Which channel can be used when a sensor node sends a message.
3. Which channel can be used when a sensor node receives a message.
4. Which flow a transmitted message belongs to and the location of the current node on that

flow’s path.
5. When a message transmitted by a node can reach its destination.

A superframe consists of schedules with the same period [27], and the deadline of any packet that
is generated by a regular flow that must lie within a superframe. That is, the flow can be scheduled only
when its packet can reach the destination before its deadline. Hence, superframes repeat periodically,
allowing regular flows to be transmitted successfully (the length of the superframe in our model is
the lowest common multiple of the periods of all regular flows and is denoted by T). However, this
scenario holds only when only regular flows are present in the network. When an emergency flow is
triggered, it must be transmitted to the destination before its deadline. Then, the stealing mechanism
comes into effect. A packet that is generated by an emergency flow can steal resources allocated to
regular flows, as shown in Figure 2.

(a) Transmission route, (b) Resources allocation for each flow,

(c) Resources allocation in one superframe, (d) Stealing slots,

Figure 2. An example of the stealing mechanism.

There are two regular flows and one emergency flow in this example, with the flow characteristics
in Figure 2a–c, showing the resource allocation for regular flows. CH is the abbreviation of channel,
and there are two channels (CH1 and CH2). Since no resources have been allocated for the emergency
flow, it can steal slots that are allocated to regular flows to ensure its schedulability. Hence, as shown
in Figure 2d, E1 steals three slots. This stealing mechanism causes R2 to miss its deadline in the
first period.

From this example, it is not difficult to see that it is very important to develop a reasonable method
by which emergency flows can steal resources. Since almost all of the data in the industrial system are
useful (for example, temperature is not a critical parameter in many situations; however, it has a great
effect in some accidents playing the role of assistant analysis). An unreasonable stealing method may
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cause the system’s acceptance ratio to significantly decline. If E1 were to use CH2 in Time Slot 3, both
R1 and R2 would be discarded. Obviously, we want the system to have a high acceptance ratio.

A rate-monotonic (RM) scheduling scheme is the state-of-the-art technique for the allocation
of flow priority in real-time systems. A flow’s priority is inversely proportional to its period. Thus,
for flows i and j, the priority of flow j is higher than that of flow i when ti > tj. As stated in our
previous work, although an emergency flow does not have a period, we allocate the highest priority to
emergency flows when they are present.

In the industrial system, we attach great importance to the schedulability of the system (whether
the system is schedulable or not). Then, the concept of a schedulable flow set is defined as follows.
When only regular flows exist in the network, the flow set is schedulable if all flows can meet
their deadlines. When an emergency flow is present, the flow set is schedulable if all emergency
flows can meet their deadlines. Since emergencies occur only occasionally, we assume that at most,
one emergency flow will simultaneously exist in the network. Furthermore, our work is a kind of
scheduling method to improve the schedulability of emergency flow based on the existing network;
hence, we do not consider the deployment and connectivity (these issue should be considered in the
existing network design phase).

4. Scheduling for Unpredictable Accidents

We describe the maximum acceptance rate scheduling problem based on the above system model
as follows. Given the flow set F and the network, our objective is to schedule transmissions with the
limited network resources (time slot and channel) such that the flow set can be scheduled. In addition,
when an emergency flow is triggered, we want to maximize the acceptance ratio for regular flows
under the condition that the emergency flow is schedulable. As Figure 2 shows, the emergency flow
can be forwarded to its destination with the minimal impact by means of a suitable stealing mechanism.

In this section, we first formulate the problem. Then, we propose our optimal algorithms for
reducing the impact of emergency flows.

4.1. Problem Statement

Before the system begins operation, the controller will allocate resources for each regular flow.
Nodes in the network forward packets via multi-hop transmission. When the resources are not enough,
the flow with low priority must be delayed or even miss its deadline. Given a network routing, two
kinds of delays might be generated in the system, which can be summarized as follows:

1. Channel contention: Across the entire network, each channel can only be allocated to one
transmission in the same slot.

2. Transmission conflicts: Each node can perform only reception or transmission of one packet in
each slot. Hence, when two transmissions conflict, the transmission that belongs to the lower
priority flow must be delayed for the higher priority one.

For regular flows, their transmission resources are allocated by the network controller. Each
regular flow is allocated an RM scheme. If several flows have the same RM priority, the controller
will assign priorities by the flow’s ID. The priority of a transmission is equal to the priority of its flow.
The controller sends these allocations to each node. The set of slots for packets sent by node k in one
superframe is denoted by Wk = {w(i, j)k}, where i is the flow ID and j is the transmission index.
Hence, w(i, j)k is the slot in which the j-th transmission on flow i is sent from node k. Let us present
an illustrative example based on Figure 2. For R2, the second time for which Node 7 sends a packet
on R2 is in the sixth slot; hence, w(2, 2)7 = 6. Wk is arranged in ascending order, and initially, j = 0;
the set of slots for packet forwards from node g to the destination in one superframe is denoted by
Rg = {r(i, j)g}. The time slot in which packet j generated by flow i reaches the destination is denoted
by r(i, j). We also illustrate this by Figure 2. For R2, the second time for which Node 4 receives a
packet generated by R2 is in the sixth slot; hence, r(2, 2)4 = 6. The set of nodes on flow i is denoted
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by Hi = {h(i, q)}, and k = h(i, q), where i is the flow ID and k is the q-th node on flow i. Then, the
location of node k on the path of flow i can be obtained when k = h(i, q); if k /∈ Hi, then node k is not
on the path of flow i. In the previous example based on Figure 2, both Node 7 and Node 4 are on R2;
hence, h(2, 1) = 7 and h(2, 2) = 4.

Since no resources are allocated for emergency flows, when an emergency flow is triggered,
it must steal resources allocated for regular flows. Any regular flow from which resources are stolen
must miss its deadline. In addition, although the emergency flow has the highest priority, it cannot
steal resources arbitrarily. The stealing behavior results only in the takeover of previously-allocated
time slots or the corresponding receiving node might miss receiving the packet, which would cause the
emergency flow to miss its deadline. We let S denote the number of stolen flows; then, our objective is
min{S} with limited resources.

min{S},
s.t. C ≤ D.

(1)

4.2. Optimal Path Scheduling Algorithm

In this subsection, we propose the OPSA for a conventional centralized network. The key idea
is that by iterating over all scenarios, the controller determines the optimal path for an emergency
flow. We characterize the path by {speed, S}, where speed is the transmission time from the source
node of the emergency flow to the destination and S is the number of stolen flows. Emergency flow E
is generated at node A (A ∈ N) and is released in time slot Slot (Slot < T). The controller can always
determine the optimal path by traversing all possible scenarios, and then, the controller sends this
information to each node. Regardless of where and when the accident occurs, the emergency flow can
always be transmitted on the optimal path.

The pseudo-code for OPSA is shown in Algorithm 1. When an emergency occurs at node A,
we initialize S and speed and upload the information concerning the emergency to the controller
(Lines 1–4). Then, the controller searches for a path and updates {speed, S} through iteration
(Lines 5–10), where r is the number of regular flows. The optimal path is obtained by comparing
S for each path that satisfies speed ≤ D and returning the {speed, S} that satisfies min{S}. Then,
the emergency flow is transmitted on the optimal path (Lines 11–15).

The time complexity of OPSA is O(r2). However, because the network is controlled in a centralized
manner, the source node of the emergency flow needs to upload its information and wait for a response
from the network controller. Obviously, the real-time performance of OPSA is poor.

Algorithm 1 Optimal path scheduling algorithm.

Input: the flow set F;
Output: the optimal path, {speed, S};
1: an emergency occurs at node A;
2: S← 0;
3: speed← 0;
4: upload emergency information to the controller;
5: for i = 1 to r do
6: for j = 1 to r do
7: determine the number of paths n from the source node A to the destination;
8: update {speed, S} for each path;
9: end for

10: end for
11: for i = 1 to n do
12: find the optimal path that satisfies min{S} and speed ≤ D;
13: return the optimal path and the corresponding {speed, S};
14: end for
15: download the optimal path to node A, then transmit the emergency flow on this path;
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To address this issue, we consider a series of approaches to achieving distributed path selection
with an acceptable time complexity and real-time performance. The objective is to select a path for the
emergency flow that guarantees the network’s schedulability with a lower time complexity and higher
real-time performance than OPSA. To achieve this goal, we choose a path for the emergency flow in a
distributed manner and make decisions based on the information available at the current node.

4.3. Stealing-First Scheduling Algorithm

In this subsection, we propose a trivial algorithm called the stealing-first scheduling algorithm
(SfSA). In SfSA, the emergency flow has the highest priority and can steal all resources from regular
flows at the current node. The emergency flow obeys a first-fit stealing mechanism, meaning that the
emergency flow will steal resources in the next time slot.

The pseudo-code for SfSA is shown in Algorithm 2. Before the algorithm starts, we input the
number of channels, M; the flow set, F; the information of each node; and the characteristics of the
emergency flow. The outputs are the schedulability of the emergency flow and the number of stolen
flows, S. When an emergency flow is triggered, the arrival time and the number of stolen flows S
are stored (Lines 1–3). Then, the emergency flow packet is transmitted from the source node A to the
destination based on a first-fit sending slot principle (Lines 4–14). Node A checks its set of sending
slots and finds the first sending slot that satisfies w(i, j) ≥ Slot, where Slot is the current time slot, and
then calculates the remaining time D− (w(i, j)− Slot) (Lines 5–6). If the remaining time is less than
zero, the emergency flow will miss its deadline, and a value of ‘unscheduled’ is returned; otherwise,
the next-hop node for which A is scheduled to transmit in time slot w(i, j) becomes the next target
of the emergency flow, which means that the slot is stolen from the original flow. Hence, the target
node hi updates its source in the next loop, and the number of stolen flows is incremented by one
(Lines 7–13). When the packet generated by the emergency flow reaches its destination, the system
returns the total number of stolen flows (Lines 14–15).

Algorithm 2 Stealing-first scheduling algorithm.

Input: the flow set F; each node’s information, Wg and Rg for g ∈ N and Hi for i ∈ F; the deadline D
of the emergency flow and its source A;

Output: the schedulability of the emergency flow and the acceptance ratio for regular flows;
1: Query the sending slots and next-hop destinations at node A;
2: Slot← the arrival time of the emergency flow;
3: S← 0;
4: while (A! = destination) do
5: w(i, j)← the first transmission slot in WA that satisfies w(i, j) ≥ Slot at node A;
6: D ← D− (w(i, j)− Slot);
7: if D < 0 then
8: return unscheduled;
9: break;

10: else
11: A← h(i, qi + 1);
12: end if
13: S← S + 1;
14: end while
15: return S;

The number of iterations of the while loop beginning at Line 4 is O(n); hence, the time complexity
of Algorithm 2 is O(n).

4.4. Lazy Stealing Scheduling Algorithm

For the consideration of emergency situations, we proposed SfSA in the previous subsection.
However, this algorithm may result in a low acceptance ratio for regular flows. In addition, the first-fit
sending slot principle cannot guarantee the schedulability of an emergency flow, when the first
available choice does not provide the most direct path. We present an example of SfSA based on
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Figure 3. The characteristics of emergency flow E1 are {a1 = 6, d1 = 4}. Then, E1 will transmit on the
path of R1 based on the first fit policy, and the transmission time is five. Since 5 > 4, E1 will miss its
deadline. Hence, in this subsection, we propose the lazy stealing scheduling algorithm (LSSA) with
the objective of enhancing both the schedulability and the acceptance ratio. Several rules are imposed
in LSSA:

1. When seeking schedulability, the emergency flow prioritizes stealing resources from a flow from
which resources have already been stolen.

2. The emergency flow stops stealing once it becomes schedulable.
3. The emergency flow prioritizes stealing resources from the most suitable flow. We define the most

suitable flow as the one that satisfies:

min{∆i + (w(i, j)B − tcurrent)}, i ∈ F, (2)

where ∆i is the distance from the current node to the destination on the path of flow i, tcurrent is
the current time slot and B is the current node.

4. When the distance from the current node to the destination is the same for several flows,
the emergency flow prioritizes stealing from the flow that is scheduled for the first transmission.
We evaluate the distance by comparing the number of hops from the current node to
the destination.

Figure 3. An example of stealing-first scheduling algorithm (SfSA).

By means of the first two rules, we increase the network acceptance ratio by reducing unnecessary
stealing. The system stores the set of flows from which resources have been stolen as Θ. When an
emergency flow can be scheduled, it will stop stealing and transmit on its current path; otherwise,
it will prioritize choosing a path in Θ.

According to the third rule, the emergency flow will prioritize stealing the flow that is most
suitable rather than the one that is the first to be transmitted. In LSSA, suitability is a relative value,
which means that the emergency flow will choose the path that is quickest and nearest to the destination
at the current node. Finally, if there are several paths with the same distance, the emergency flow will
steal resources from the flow that is to be sent first according to Wi. Obviously, the emergency flow
will arrive at its destination when ∆i is equal to zero.

The pseudo-code for LSSA is shown in Algorithm 3. The inputs and outputs are the same as for
SfSA. When an emergency flow E is triggered at an arbitrary node A, node A queries the relevant
information and initializes the stolen flow set Θ (Lines 1–3). The stealing mechanism in LSSA follows
the rules presented above. First, it is determined whether the emergency flow E can be scheduled. If E
can be scheduled, it will stop stealing, and a value of ‘scheduled’ will be returned (Lines 4–7). If not, it
is determined whether there is a flow in Θ that satisfies di ≤ D. If so, then flow E takes the place of
this flow (Lines 8–10). If none of the flows in Θ satisfies di ≤ D, then Equation (2) is used to select a
target flow from which resources have not already been stolen (Lines 11–12). When there are several
paths with the same suitability, the one that is scheduled for transmission in the earliest slot is selected
(Lines 13–18). When the emergency flow arrives at its destination, the algorithm returns the number of
flows from which resources have been stolen. If no flow satisfies di ≤ D, then a value of ‘unscheduled’
is returned (Lines 19–27). The time complexity of Algorithm 3 is O(n).
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Algorithm 3 Lazy stealing scheduling algorithm.

Input: the flow set F; each node’s information, Wg and Rg for g ∈ N and Hi for i ∈ F; the deadline D
of the emergency flow and its source A;

Output: the schedulability of the emergency flow and the acceptance ratio for regular flows;
1: Query the information of node A;
2: Slot← the arrival time of the emergency flow;
3: Θ← ∅
4: while (A! = destination) do
5: if the emergency flow can meet its deadline on the current path then
6: return scheduled;
7: break;
8: else
9: if ∃Rh(i,qi+1) ∈ Θ satisfies di ≤ D then

10: A← h(i, qi + 1);
11: else
12: i← the path satisfies min{∆i + (w(i, j)B − tcurrent)}, i ∈ F;
13: if ∃(cj − qj) == (ck − qk) then
14: i← the next transmission between j and k;
15: i join Θ;
16: A← h(i, qi + 1);
17: end if
18: end if
19: Slot ++;
20: if Slot > D then
21: return unscheduled;
22: break;
23: end if
24: end if
25: end while
26: S← the length of Θ;
27: return S;

5. Optimal Benefit-Based Stealing Scheduling Algorithm

In LSSA, the flow from which resources will be stolen is chosen using Equation (2). However, this
may cause the emergency flow to not take the most direct route when there is a shortcut available on a
path that initially appears longer. In Figure 4, when an emergency flow occurs at Node 13, Equation (2)
would lead to the selection of the red path; however, the shortest path is Node 13 → Node 10 →
Node 8→ Node 5→ Node 1.

To address this issue, we propose the optimal benefit-based stealing scheduling algorithm (OBSSA)
to avoid indirect routes and transmission congestion. Through real-time path selection, OBSSA can
improve the schedulability of emergency flows.

We introduce OBSSA based on three considerations: (1) we first define intersections and blocking
and analyze the characteristics of the network accordingly; (2) based on these network characteristics,
we propose a method that can guarantee that an emergency flow will arrive at its destination before its
deadline (although our method cannot schedule an emergency flow when there is no path that can
transmit the packet to its destination before its deadline); and (3) we design a data structure for the
additional memory overhead.

Definition 1. (Intersection) Consider a node k that is on the path of flow Fi and is also on the path of flow Fj.
If node k is the start or end of an overlap between the paths of Fi and Fj, then node k is an intersection between Fi
and Fj; if node k is not the start or end of such an overlap, it is not an intersection. The intersection information
is stored on node k.

In Figure 5, two flows intersect at Node 3–Node 5. The overlap starts and ends at Node 3 and
Node 5, respectively; hence, these nodes are intersections between F1 and F2. However, Node 4 is not
an intersection (since Node 4 is neither the start nor the end of the overlap).
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Figure 4. An example of indirect routing.

Figure 5. An example of intersections.

We let {λ, ξ} denote the number of intersections on the path of a flow and their locations, where
ξ is a node set that stores each intersection’s location. Then, we can extend the set of characteristics
of each regular flow to {c, d, t, p, λ, ξ}. For R3 in Figure 4, there are two intersections, at the first
and second hops on the path, Node 10 and Node 8. Hence, λ = 2 and ξ = 1, 2 in this situation.
For simplicity, we assume here that two flows will have at most one intersection; however, our method
can be used directly in systems with an arbitrary number of intersections.

The pseudo-code for intersection identification (II) is shown in Algorithm 4. Given the
characteristics of each regular flow, we update the intersections using II.

When emergency flow E cannot be scheduled on the current path and is transmitted to an
intersection, it must make a decision regarding which path to follow. There are j choices of possible
paths when j regular flows crossing at node B. Obviously, E will prioritize choosing a path that can
reach the destination before its deadline. We mainly study the situation in which no path can be
clearly confirmed to be capable of forwarding E to its destination before its deadline. Since an accident
may occur at any source node and in any time slot, we cannot pre-assign an optimal path for an
emergency flow. However, the emergency flow may miss its deadline if it selects its path only by
choosing the largest λ at node B. Thus, we should consider both the remaining time slots and the
remaining intersections.
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Algorithm 4 Intersection identification.

Input: E;
Output: update the characteristics of each regular flow;
1: for each flow Fi do
2: for each flow Fj, i 6= j do
3: if node k ∈ Fi, node k ∈ Fj, and node k is the start or end of the overlap between Fi and Fj then
4: k join ξi;
5: λi ++;
6: end if
7: end for
8: end for
9: return the characteristics of each regular flow;

Lemma 1. Given a number of input paths Ω and a number of output paths ω at intersection node B, Ω ≥ ω.

Proof. We prove this lemma by contradiction. The number of input paths Ω at intersection node
B is the number of input flows, and it is easy to obtain form node B. Suppose that the number of
output paths is larger than the number of input flows, that is, Ω < ω. Then, there must be at least one
additional path that is useless. However, the controller will not allocate transmission slots for nodes to
compose such a path, which contradicts the given condition. Hence, given a number of input paths Ω
and a number of output paths ω at intersection node B, Ω ≥ ω.

Lemma 2. Given a network in which time slots are allocated for regular flows, the shortest path is not always
the fastest path for an emergency flow triggered by an unpredictable accident.

Proof. We prove this lemma by an example. In Figure 4, the shortest path from Node 13 to the
destination, Node 1, is Node 13→ Node 10→ Node 8→ Node 5→ Node 1. The emergency flow E1

could arrive at the same time as R3 by simply stealing R3’s resources instead of taking the shortest
path; then, it would reach the destination by d3. However, if the period of regular flow R1 is longer
than that of R3 and a packet from R1 has just been sent from Node 8 to Node 5, then the transmission
of the emergency flow from Node 8 to Node 5 will be blocked for an entire period t1. In this case, if the
emergency flow takes the shortest path, then E1 will ultimately reach the destination after (2 + t1 + 2)
slots, and it is easy to find that (2 + t1 + 2) > t3 ≥ d3. Hence, the shortest path is not always the fastest
path for an emergency flow triggered by an unpredictable accident.

We define the phenomenon of blocking of an emergency flow as follows.

Definition 2. (Blocking) Blocking is the phenomenon in which an emergency flow cannot be transmitted from
the current node to the next-hop destination because there are no sending resources available. For the current
node k, the one-hop blocking time on path i is:

ℵk
i = w(i, j)k − tcurrent. (3)

Since we represent the intersection information for a flow as {λ, ξ}, we can use the notation ξk to
express that node k is the (ξk)-th intersection on the path of flow i. Then, we can obtain the number of
remaining intersections for flow i, αk

i , as follows:

αk
i = λi − ξk

i . (4)

Obviously, it is difficult to select an optimal path based only on blocking and intersections. It is
not always a good decision for an emergency flow to steal resources from flow i when node k has the
smallest ℵk

i and the largest αk
i on the path of flow i. For example, in Figure 6, the emergency flow must

miss its deadline by selecting the path based only on blocking and intersections. Obviously, there
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exists one path Node 10 → Node 5 → Node 2 → Node 1 that can guarantee the schedulability of E1.
To improve the schedulability of the emergency flow and guarantee that it will be transmitted on an
optimal path, we treat intersection nodes as beacon nodes. Each beacon node stores the information
of all intersections, which is denoted by {W, H}. Hence, a path can be selected based on a long-term
prediction of the end-to-end delay.

Figure 6. An example for selecting the path based only on blocking and intersections.

When an emergency flow packet is forwarded at intersection node B0, we first search for a path
that satisfies r(i, j) ≤ D (find a flow that can meet the emergency flow’s deadline). Then, we evaluate
the number of time slots required for the emergency packet to be transmitted from B0 to the intersection
node on the path of flow i (Bi); this transmission time is denoted by ϕ(B0, i). The optimal path can be
determined as follows:

ϕ(B0, i) + r(i, j)Bi ≤ D. (5)

The optimal path is the one with the minimum number of stolen flows from B0 to Bi. This means
that the optimal path can guarantee the emergency flow’s schedulability with the minimum number
of stolen flows.

We use a list data structure to store the intersection information, as shown in Figure 7. There
are six elements, where slot1 is the first time slot for transmission through the intersection for the
flow corresponding to the row; the corresponding arrival time is arrive1; and period1 is the flow’s
period. Similarly, slot2, arrive2 and period2 represent the same information for the flow corresponding
to the column.

Figure 7. Data structure.

Theorem 1. When an emergency packet is transmitted to an intersection, it can obtain the time slot for the
transmission of the next packet to another intersection.

Proof. When an emergency packet is forwarded to an intersection in any time slot tcurrent, the node
will look for information on other intersections. Then, it can obtain the time slot for the transmission of
the next packet to another intersection as follows:{

r(i, 1)− tcurrent mod ti r(i, 1) ≥ tcurrent mod ti

ti − (tcurrent mod ti − r(i, 1)) r(i, 1) < tcurrent mod ti.
(6)

When r(i, 1) ≥ tcurrent mod ti, this means that the next packet has not passed the intersection,
and the waiting time is r(i, 1)− tcurrent mod ti; otherwise, the intersection will wait for the packet to
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be released from the source node, and the next packet will reach it ti − (tcurrent mod ti − r(i, 1)) slots
later. Hence, when an emergency packet is transmitted to an intersection, it can obtain the time slot for
the transmission of the next packet to another intersection.

Theorem 2. We let Pis = {B0, B1, . . . Bk . . . } denote the intersection set for the forwarding of an emergency
packet from the current intersection node B0 to the destination. Then, the transmission time ϕ(B0, i) is:

ϕ(B0, i) =
i−1

∑
k=0

(ℵBk + tBk→Bk+1), Bk ∈ Pis, (7)

where tBk→Bk+1 is the transmission time from Bk to Bk+1. Since Bk and Bk+1 are on the path of the same flow,
tBk→Bk+1 is easy to obtain.

Proof. The emergency packet is blocked at B0 for ℵB0 time slots, and it is then forwarded on the path
from node B0 to B1. Since B0 and B1 are on the path of the same flow, we can obtain tB0→B1 as:

(w(g, j)B1 − w(g, j)B0). (8)

The transmission time from node B0 to B1 is:

(ℵB0 + tB0→B1). (9)

The remaining transmission processes are the same as that from B0 to B1. Hence, we can obtain
the transmission time ϕ(B0, i).

Theorem 3. The optimal path is the one that satisfies:

i−1

∑
k=0

(ℵBk + tBk→Bk+1) + r(i, j)Bi ≤ D, Bk ∈ Pis (10)

with the minimum number of intersections in Pis. We let ε denote the minimum length of Pis. The number of
stolen flows is ε + 1.

Proof. If a path satisfies Equation (10), this means that the emergency packet could be scheduled on
that path. However, there may be several paths that satisfy Equation (10). We select the path with the
minimum number of intersections in Pis during the stealing process. The emergency packet changes
flow paths at each intersection. Hence, the number of stolen flows is ε + 1.

We propose OBSSA to select the path for an emergency flow based on Equation (10), and the
pseudo-code for OBSSA is shown in Algorithm 5.

Theorem 4. The performance of OBSSA is no less than OPSA even though the overhead of the upload and
download in OPSA is not taken into account.

Proof. We prove this theorem by contradiction. Then controller generates the control flow at the
beginning of superframe. Hence, the response time of upload and download in OPSA is much bigger
than the emergency flow’s deadline. To analyze the performance of OBSSA, we do not consider the
unacceptable overhead in OPSA. When the emergency flow can be scheduled by OPSA, there is at
least one optimal path that allows the emergency flow to arrive at its destination before its deadline
with the minimal impact (S). If the performance of OBSSA is less than OPSA, OBSSA cannot guarantee
the schedulability or the number of stolen flows in OBSSA is more than in OPSA, which contradicts
Equation (1) and Theorem 3. Hence, the performance of OBSSA is no less than OPSA even though the
overhead of the upload and download in OPSA is not taken into account.
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Algorithm 5 Optimal benefit-based stealing scheduling algorithm.

Input: the flow set F; each node’s information, Wg and Rg for g ∈ N and Hi for i ∈ F; the deadline D
of the emergency flow and its source A;

Output: the schedulability of the emergency flow and the acceptance ratio for regular flows;
1: query the information of node A;
2: Slot← the arrival time of the emergency flow;
3: Θ← ∅
4: while (A! = destination) do
5: if the emergency flow can meet its deadline on the current path then
6: return scheduled;
7: break;
8: else
9: if ∃Rh(i,qi+1) ∈ Θ satisfies di ≤ D then

10: A← h(i, qi + 1);
11: else
12: i← the path that satisfies min{ai

ℵk
i

αk
i−1
}, i ∈ F;

13: if ∃(cj − qj) == (ck − qk) then
14: i← the next transmission between j and k;
15: i join Θ;
16: A← h(i, qi + 1);
17: end if
18: end if
19: Slot ++;
20: if Slot > D then
21: return unscheduled;
22: break;
23: end if
24: end if
25: end while
26: S← the length of Θ;
27: return S;

Complexity Analysis

In this subsection, we analyze the complexity of OBSSA. Obviously, the time complexity is O(n).
Regarding the space complexity, we store the information on each intersection using an F-order matrix
M. The numbers of rows and columns of the matrix is equal to the number of flows. Mij = 0 if Fi and
Fj are disjoint with each other; otherwise, Mij is the ID of the intersection node. The information on Fi
and Fj is also stored in Mij, such as the first transmission time slot and the period.

Since any two flows have at most one intersection, the maximum number of intersections is:

F(F− 1)
2

. (11)

Since the length of the data structure is six, the total number of elements is:

6F(F− 1)
2

= 3F(F− 1). (12)

Hence, the space complexity of storing all intersection information is S(F2) = 3F(F− 1). In other
words, we improve the scheduling performance by increasing the space complexity by an acceptable
amount. Considering the typical size of an industrial network (usually fewer than 100 nodes) [13,27],
the additional space required to store the intersection information represents an acceptable increase in
space complexity even when the number of intersections is unconstrained.

6. Experiment

In this section, we present experiments conducted to evaluate the performance of our proposed
methods. Since there is no similar previous research about stealing mechanisms in industrial WSNs,
we compare our methods (OBSSA and SfSA) with the traditional RM scheme without stealing [28] and
with the shortest path Dijkstra algorithm [29] in terms of both the schedulability ratio and the number
of stolen flows. The schedulability ratio can be obtained by z

Z , where Z is the number of executions,
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and z is the number of success executions. Since OPSA has a long response time, we do not consider
OPSA in this section (OPSA has a long response time for uploading the emergency flow information
and downloading the optimal path calculated by the network controller; this response time is much
longer than a regular flow’s transmission time). Some simulation parameters are summarized in
Table 1. In considering the features of industrial networks, our experiment runs under a multi-channel
TDMA protocol, and the number of nodes in the network is less than 100. The number of channels in
the simulations is m = 16; without loss of generality, the variation range of the number of nodes is
from 30–80; based on the number of nodes, the number of flows in our experiment is from 13–18.

Table 1. Simulation parameters.

Parameter Description

n the number of nodes
d transmission range
U network utilization
ui flow i ’s utilization
F the number of flows

To illustrate the applicability of our approach, several test cases were randomly generated for
each parameter configuration. The network gateway is placed in the center of playground area A,
and the other sensors are deployed around the gateway randomly. When setting the transmission
range as d = 40 m, the number of nodes n and the playground area A should satisfy [30]:

n
A

=
2π

d2
√

27
. (13)

Two nodes can communicate with each other when the distance between each other is less than
d; they are adjacent nodes. We can obtain the network topology by randomly connecting the nodes
from each source node to the destination. If some source nodes cannot be connected to the destination,
their locations are randomly generated again. Notably, the paths in typical industrial networks are
connected randomly and are not the shortest paths [13,27].

In order to control the workload of the entire network, we use the utilization u in our
simulations. The network utilization is specified to obtain flow sets, U = ∑ ui(U < 1), and the
UUniFastalgorithm [31] is used to generate each flow’s utilization, ui (ui =

ci
ti

). The result generated
by the UUniFast algorithm follows a uniform distribution, which is neither pessimistic nor optimistic
for the analysis [31].

Figure 8 shows an example of one test case. In this example, in accordance with the actual
situation, we set the number of nodes to n = 50, the number of flows to F = 15 and the network
utilization to U = 0.3. The deadline for the emergency flow in this case is four. The three sets of
values on the x axis, from left to right, represent the number of stolen flows, the transmission path
length and the actual number of transmission slots. From the first set of values, we can find that the
traditional RM scheme needs to steal resources from only one flow for transmission, whereas both
OBSSA and the Dijkstra algorithm steal from three flows. SfSA, in this case, needs to steal from nine
flows to transmit the emergency packet to the destination. The Dijkstra algorithm uses only two hops
because it is a shortest path algorithm. Obviously, the lengths of the transmission paths for the different
algorithms satisfy S f SA > OBSSA > RM > Dijkstra. However, only OBSSA can meet the deadline
of the emergency flow, using 3 < 4 slots. This is because OBSSA dynamically selects the transmission
path at each intersection depending on current conditions. When the packet can be scheduled on
the current path or on the path of a flow from which resources have already been stolen, it will stop
stealing from new flows. In this case, when the deadline of the emergency flow is eight, OBSSA will
degrade into the RM scheme.
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Figure 8. An example of one test case.

To compare the performances of these scheduling algorithms, we now consider test cases of
varying sizes. Figure 9 shows the relationship between the schedulability ratio and the number of
nodes for F = 15 flows and network utilizations of U = 0.4 and U = 0.5. Numbers of nodes between
N = 30 and N = 80 are considered. This node scale is realistic because in typical industrial WSNs,
a WirelessHART network with one gateway comprises 50–80 field devices. Figure 9 illustrates that
the schedulability ratios of all scheduling algorithms decrease with an increasing number of nodes.
However, our scheduling algorithm OBSSA can maintain a high schedulability ratio at the cost of a
small amount of storage space. This is because the emergency packet can always choose an optimal
path at each intersection to guarantee or improve its timely forwarding to its destination. As the
number of nodes increases, the number of intersections decreases. Hence, the schedulability ratio of
OBSSA declines. When the system storage space is limited and is not enough to store intersection
information, the system can use SfSA as an alternative means of achieving an acceptable schedulability
ratio. This is because in a system that uses the RM strategy, a flow with a smaller period always
has a higher priority. Therefore, the emergency packet can arrive at its destination within a short
time. However, the packet may miss its deadline in some situations when it does not select the most
direct path, as shown by the example in Figure 4. The schedulability ratios of the traditional RM
scheme and the Dijkstra algorithm are lower than those of OBSSA and SfSA. Furthermore, these two
methods suffer faster performance degradation. The reason is that neither the RM scheme nor the
Dijkstra algorithm consider the time factor for the emergency flow when choosing paths. Hence,
neither can achieve a high schedulability ratio. When the network utilization is increased from U = 0.4
to U = 0.5, the schedulability ratios of all scheduling algorithms decrease more rapidly. However,
the schedulability ratio of OBSSA remains at an acceptable level.

(a)

Figure 9. Cont.
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(b)

Figure 9. The relationship between the schedulability ratio and the number of nodes. (a) F = 15,
U = 0.4; (b) F = 15, U = 0.5.

Figure 10 shows the relationship between the schedulability ratio and the number of flows for
N = 50 nodes and network utilizations of U = 0.4 and U = 0.5. Numbers of flows between F = 13 and
F = 18 are considered. The results are similar to those presented in Figure 9. The schedulability
ratios of both the RM scheme and the Dijkstra algorithm are continuously decreasing. By contrast,
the schedulability ratio of OBSSA increases with an increasing number of flows, whereas the
schedulability ratio of SfSA initially increases and then begins to decrease when the number of
flows reaches approximately 15 or 16 (since the test cases were generated randomly, the peak values
are not the same between the two utilization cases). The reason is that as the number of flows increases,
the number of intersection nodes also increases, which increases the number of links available to
transmit emergency packets. Hence, the schedulability ratio of OBSSA increases with an increasing
number of flows. As the number of flows continues to increase, more packets must be transmitted via
long detours. Thus, the schedulability ratio of SfSA begins to trend downward.

Figure 11 shows the relationship between the schedulability ratio and the network utilization
for F = 15 flows and N = 70 nodes. Levels of network utilization between U = 0.2 and U = 0.7
are considered. Obviously, OBSSA has the highest schedulability ratio for each level of network
utilization. This is because for a given network topology and routing, the controller can abstract the
transmission information of the intersections as shown in Figure 7. With this information downloaded
to each intersection, OBSSA can dynamically choose the optimal path. However, the schedulability
of the system decreases with increasing network utilization. When there is no path that can reach
the destination before the deadline of the emergency flow or when the source of the emergency flow
needs a long time to reach the optimal path, the schedulability ratio of OBSSA degrades. Additionally,
the schedulability ratios of the Dijkstra algorithm and the RM scheme are very low; emergency flows
are difficult to schedule when U > 0.4 (the schedulability ratio is lower than 0.2).
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(a)

(b)

Figure 10. The relationship between the schedulability ratio and the number of flows. (a) N = 50,
U = 0.4; (b) N = 50, U = 0.5.

Figure 11. The relationship between the schedulability ratio and the network utilization.

To compare the number of stolen flows when an emergency flow is scheduled for each scheduling
algorithm, we extended the deadline of the emergency flow to each algorithm’s arrival time in each
test case. This is also a very important consideration for real-world applications because regular flows
can provide assistance in analyzing an accident. Figures 12–14 show the relationships between the
number of stolen flows and the network parameters, namely the number of nodes, the number of flows
and the network utilization. Since SfSA is a locally optimal algorithm and needs to steal resources
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from many flows to reduce the waiting time regardless of whether the current path permits arrival at
the destination in time, SfSA has the largest number of stolen flows. By contrast, the RM scheme steals
only one path because it transmits only on the originally-chosen path. The numbers of stolen flows
under OBSSA and the Dijkstra algorithm are always similar and much smaller than the number for
SfSA. This is because when the emergency flow can be scheduled, OBSSA stops stealing new flows.
Hence, the number of stolen flows in OBSSA increases only slowly. This shows that OBSSA not only
has a higher schedulability ratio, but also a lesser impact on regular flows.

(a)

(b)

Figure 12. The relationships between the number of stolen flows and the number of nodes. (a) N = 50,
U = 0.4; (b) N = 50, U = 0.5.

(a)

Figure 13. Cont.
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(b)

Figure 13. The relationships between the number of stolen flows and the number of flows. (a) F = 15,
U = 0.4; (b) F = 15, U = 0.5.

(a)

(b)

Figure 14. The relationships between the number of stolen flows and the network utilization.
(a) N = 50, F = 15; (b) N = 70, F = 15.

7. Conclusions

Reliability and real-time performance are the most important characteristics of industrial WSNs.
By means of centralized control, WSNs can provide real-time performance and reliability in industrial
production. In standards such as WirelessHART, reliable graph routing approaches are adopted to
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improve the reliability of industrial system. However, such a centralized controller cannot effectively
respond to emergencies, and emergency packets may miss their deadlines. To address this issue,
we improve the reliability of scheduling for emergency tasks by proposing a method based on a
stealing mechanism. In our method, an emergency task is transmitted by stealing resources allocated
to regular flows. The challenges addressed in our work are as follows: (1) emergencies occur only
occasionally, but the industrial system must deliver the corresponding flows within their deadlines
when they occur; and (2) we wish to minimize the impact of emergency flows by reducing the number
of stolen flows. The contributions of this work are as follows:

1. We propose an optimal algorithm for emergency flows (OPSA); by iterating over all scenarios,
the controller can determine the optimal path for an emergency flow. However, because the
network is centrally controlled, the source node of the emergency flow needs to upload its
information and wait for a response from the network controller. The real-time performance of
OPSA is poor. Then, we propose a series of algorithms (such as SfSA, LSSA) to try to improve
system performance.

2. We define intersection (such as the intersection nodes or overlap nodes of several flows) and
blocking (such as the delay caused by insufficient transmission resources) as new characteristics
of flows.

3. We prove that the shortest path is not always the fastest path for an emergency flow triggered by
an unpredictable accident.

4. We analyze the transmission time from B0 to the intersection node on the path of flow i and obtain
the optimal path as the one that satisfies Equation (10) with the minimum number of intersections
in Pis.

5. We propose an algorithm (OBSSA) that can determine optimal paths for emergency flows.
The optimal path in the current study is the path that allows an emergency task to arrive at
its destination before its deadline with the minimal impact. Furthermore, we prove that the
performance of OBSSA is no less than OPSA when we do not consider the overhead of uploading
and downloading.

We demonstrate that our method and analysis approach significantly outperform existing ones by
extensive simulations.

Future work will further analyze the relationship between the behavior of OBSSA/SfSA and
the number of flows. Since the performance of OBSSA under different scheduling policies (Earliest
Deadline First, Rate Monotonic, Fixed Priority, and so on) is different, we will also seek to study how
to improve reliability by optimizing the scheduling policy based on OBSSA for industrial WSNs.
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