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A B S T R A C T

Crowd-sensing enables to collect a vast amount of data from the crowd by allowing a wide variety of sources to
contribute data. However, the openness of crowd-sensing exposes the system to malicious and erroneous
participations, inevitably resulting in poor data quality. This brings forth an important issue of false data
detection and correction in crowd-sensing. Furthermore, data collected by participants normally include
considerable missing values, which poses challenges for accurate false data detection. In this work, we propose
DECO, a general framework to detect false values for crowd-sensing in the presence of missing data. By applying a
tailored spatio-temporal compressive sensing technique, DECO is able to accurately detect the false data and
estimate both false and missing values for data correction. Through comprehensive performance evaluations,
we demonstrate the efficacy of DECO in achieving false data detection and correction for crowd-sensing
applications with incomplete sensory data.

1. Introduction

The increased computational power and sensing capabilities of
mobile devices (e.g., smartphones and tablets), along with cloud
computing technology have made possible a new pervasive data
collection paradigm - crowd-sensing (also known as participatory
sensing) (Christin et al., 2011). This new data collection paradigm
leverages individuals to collect and share sensory data from surround-
ing environments using their data collection devices such as smart-
phones, thus achieving cost-effective and large-scale data gathering
(Reddy et al., 2010). Authors in Kuznetsov et al. (2010) and Grosky
et al. (2007) give a broader definition: crowd-sensing refers to any
mechanism by which individuals in the general public collect, share
and analyze local sensory data. For example, people may share
temperature sensors from their homes, or entities share private sensor
networks for environmental monitoring. In this work, we use the
broad-sense definition to refer to the crowd-sensing. Many crowd-
sensing applications have emerged in recent years, including environ-
ment, transportation and civil infrastructure monitoring (Dutta et al.,
2009; Kanjo, 2010), health and fitness monitoring (Lin et al., 2012),

urban and social sensing (Ahn et al., 2010), radiomap construction in
WiFi fingerprinting (Jun et al., 2013; Luo et al., 2014), and automatic
inference of indoor semantics (Luo et al., 2015). Crowd-sensing also
finds a wide range of applications for industrial sensing intelligence
(Muntés-Mulero et al., 2013), such as for large-scale monitoring in
modern industrial plants, targeting at improved productivity and
increased workplace safety (Huo et al., 2015).

The inherent openness of crowd-sensing systems enables ubiqui-
tous data collection by allowing anyone to contribute data. However, it
also exposes the systems to malicious and erroneous participations.
The sensory data contributed by crowd are not always reliable, since
they can submit fake data to earn rewards without performing the
actual sensing task (Talasila et al., 2013). Malicious users may
purposely contribute false data for their own benefits. For example,
in the real-time traffic monitoring, selfish users may report the false
traffic jam alerts so as to divert the traffic on roads ahead for
themselves. A leasing agent may intentionally generate fictitious low
noise readings to promote the rental housing in a particular region
(Huang et al., 2010). In addition, attackers may compromise the
mobile devices to provide faulty sensor readings (Saroiu and
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Wolman, 2010). Another category of false data (i.e., unintentional false
data) stems from the failures of certain algorithms or built-in sensors
on mobile devices. For instance, location, as one of the crucial contexts
for crowd-sensing, is often inaccurately estimated in real-world sys-
tems (Jun et al., 2013). As a result, the same openness characteristic of
crowd-sensing can threaten its success and impact the quality of
services. In particular, the false data problem is one of the critical
issues that affect the proper operation of crowd-sensing systems.

Techniques have been developed to achieve data integrity and
correctness (Amintoosi and Kanhere, 2013; Wang et al., 2013;
Kurasawa et al., 2014). However, no system has been presented as a
general approach to detect and correct false data for crowd-sensing.
There are a few existing solutions such as introducing the reputation
management (Amintoosi and Kanhere, 2013; Wang et al., 2013) or
providing hardware-based security to avoid cheating in crowd-sensing
(Akshay Dua and Bulusu, 2009). The reputation based false data
avoidance monitors the behaviour of participants and assign them
reputation scores. However, reputation based approach is still vulner-
able to collusion and Sybil attacks. On the other hand, even the
participating users are trustworthy, it is still difficult to guarantee the
correctness of all collected data, such as the unintentional false data.
More recently, Kurasawa et al. (2014) pointed out that data collected
by crowd usually include considerable missing values in practical
crowd-sensing systems. They proposed a method to estimate missing
values using a recursive regression model. The incompleteness of
sensory data poses several challenging issues for accurate false data
detection. Different from Kurasawa et al. (2014), the main objective of
this work is to detect false values in crowd-sensing in the presence of
non-negligible missing data. Our idea is to employ the spatio-temporal
compressive sensing (ST-CS) technique (Roughan et al., 2012) to
reconstruct the sensory data given an incomplete and partially
inaccurate dataset. We check data consistency with co-located partici-
pants, and detect potential false data from misbehaving or erroneous
participants.

In this work, we present a generalized false data detection and
correction (DECO) framework, which is designed to detect incorrect data
and perform possible correction with high probability in crowd-sensing
environment. The contributions from this work are summarized as
follows:

• Distinctive from existing works, we focus on false data detection
considering the presence of considerable missing data in crowd-
sensing. To address this challenge, we propose to exploit ST-CS
technique, which can achieve an effective data reconstruction for
high data-loss scenarios.

• Considering the spatial proximity of participants cannot be directly
derived from the potentially inaccurate reported location informa-
tion in practical crowd-sensing systems, we present a method to
infer spatial adjacency of participants based on multidimensional
sensor readings.

• We develop a general false data detection and correction algorithm
by applying a tailored ST-CS technique for crowd-sensing. To the
best of our knowledge, there are few other efforts applying ST-CS
techniques for false data correction in crowd-sensing.

• Experimental case study and empirical evaluations done based on
public dataset demonstrate the efficacy of DECO in achieving false
data detection and correction for crowd-sensing applications with
incomplete sensory data.

The rest of this paper is organized as follows. We survey previous
work in Section 2. Section 3 describes the system model and motiva-
tions behind this work. Section 4 elaborates the design of DECO

framework in details. Section 5 provides evaluation results by applying
DECO in crowd-sensing-based WiFi fingerprinting and crowd-sensing
environment monitoring applications. Finally, conclusions are drawn
in Section 6. A short conference paper (Cheng et al., 2015) containing

some preliminary results of this paper has appeared in IEEE/ACM
IWQoS 2015.

2. Related work

Crowd-sensing has attracted extensive attentions in recent years. A
large part of existing research efforts focus on proposing different
crowd-sensing applications. The CarTel system (Bret et al., 2006)
collects, processes, delivers, analyzes, and visualizes data from sensors
located on mobile units (i.e., mobile phones and in-car embedded
devices), which can be used for traffic mitigation, road surface
monitoring and hazard detection. CommonSense (Dutta et al., 2009)
is a crowd-sensing system collecting air quality data. LiveCompare
(Deng and Cox, 2009) can facilitate price comparison of grocery items
through participants using their camera phones to snap a photograph
of the price tag of their product of interest. Authors in Kanjo (2010)
proposed NoiseSPY, a participatory sound sensing system that allows
users to collaboratively explore a city-scale noise levels in real-time.
BeWell (Lin et al., 2012) assists individuals in maintaining a healthy
lifestyle by keeping track of their everyday behaviors. MetroTrack (Ahn
et al., 2010) presents a mobile-event tracking system to track mobile
targets through collaboration among local sensing devices. Crowd-
sensing-based WiFi fingerprinting has also received considerable
attention during the past several years due to its potential efficacy to
reduce the cost of radiomap construction (Rai et al., 2012; Yang et al.,
2012; Wang et al., 2012; Kong et al., 2015; Luo et al., 2014). Recently,
crowd-sensing-based industrial intelligence (Huo et al., 2015) has been
proposed for large-scale collaborative monitoring to improve efficiency
and security industrial environment. Authors in Huo et al. (2015)
proposed the concept of “workers as sensors”, which monitor industrial
working spaces, e.g., measuring the concentration of toxic gas and
reporting emergency events in real time to administrators.

Privacy preserving and incentive mechanism in crowd-sensing have
attracted considerable attention in the literature. Privacy concern
matters since sensor data contributed by crowd normally includes
personally identifiable spatial-temporal stamps (Christin et al., 2011).
The authors in De Cristofaro and Soriente (2013) introduce a privacy-
enhanced infrastructure for crowd-sensing. The success of crowd-
sensing is strongly dependent on users’ enthusiasm for participating
to provide sufficient and reliable sensory data (Luo and Tham, 2012).
During the data collection, a user may consume his own private
resources including device battery, computation power, privacy and
manual effort. Therefore, many crowd-sensing incentive mechanisms
are designed to encourage the general public to provide quality data
(Lee and Hoh, 2010; Restuccia and Das, 2014; Luo et al., 2014).

Despite a plethora of research on crowd-sensing, there are a
number of challenges in developing a practical crowd-sensing system.
In particular, providing data correctness and trustworthiness is an
important aspect for the proper functions of knowledge inference and
incentive distribution in crowd-sensing. To motivate the voluntary
collection of high quality data, reputation management (Huang et al.,
2010; Amintoosi and Kanhere, 2013; Wang et al., 2013) has been
introduced in crowd-sensing systems. In Reddy et al., the authors
proposed five metrics (timeliness, capture, relevancy, coverage and
responsiveness) to evaluate the quality of data and participants from a
crowd-sensing campaign. However, the existing state-of-the-art data
quality improvement solutions (Min et al., 2013; Vergara-Laurens
et al., 2014; Kurasawa et al., 2014) lack general means to detect,
validate and correct the gathered sensory data. Authors in Nam et al.
(2010) and Ahmadi et al. (2010) presented privacy-preserving me-
chanisms for ensuring privacy of location-tagged crowd-sensing data
while allowing accurate data reconstruction at the server side. LOCATE
(Boutsis and Kalogeraki, 2013) is a middleware that aims to provide
privacy preservation for crowd-sensing systems so that leak of sensitive
data is prevented. These works mainly focus on manually perturbed
data reconstruction. On the contrary, our work targets at a general
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framework for detecting potentially malicious or erroneous sensory
data after data have been collected.

3. Preliminaries

In this section, we introduce the system model and motivations
behind this work.

3.1. System model

We consider a typical client-server crowd-sensing architecture,
where a larger number of mobile devices are tasked into community-
based data gathering. The sensory data collected by participants are
reported (e.g., through WiFi or cellular networks) to a central applica-
tion server. A task normally specifies multiple modalities of sensory
data to be collected based on the application requirements (Christin
et al., 2011), and an individual data collection device may be involved
into multiple concurrent sensing tasks (Das et al., 2010; Song et al.,
2014). In this work, we consider the collected data in a crowd-sensing
system are multidimensional time-series sensor readings (Ahmadi
et al., 2010; Groat et al., 2012). For example, in our prior project (Yow
et al., 2014) studying social networks through mobile phone sensing, in
addition to phone usage and co-location information, other context
data were collected as well, such as the magnetic, audio, accelerometer
and gyroscope sensory data. Although it was a single crowdsourcing
task in Yow et al. (2014), we collected the multidimensional context
data to cross-validate the obtained variables of interest. We assume the
server could associate sensor data reports from the same participants.
In many cases, participants in crowd-sensing are anonymous in terms
of physical persons to avoid private information leakage. However, they
may expose their user names to a crowd-sensing system since
participants will probably receive incentive rewards after the data
contributions. In addition, it is possible to link multiple data submis-
sions from a participant according to the network-layer information
such as IP addresses.

Generally, data types collected in crowd-sensing applications can be
classified into the following two categories: 1) public sensory data such
as for environmental monitoring or intelligent transportation applica-
tions (Dutta et al., 2009; Kanjo, 2010); and 2) user behavioral sensory
data for human-centric applications such as social network (Ahn et al.,
2010) and personalized health and fitness (Lin et al., 2012). In
particular, this paper focuses on the public sensory data (e.g.,
environmental parameters, traffic variables or spacial information) in
crowd-sensing environment.

3.2. Data representation

Assume a crowd-sensing system with N participants, multidimen-

sional time-series data are generated by each participant and then
reported to the centralized server. Let us assume that time is divided
into continuous slots (e.g., five minutes per time unit) and the data
reporting time span includes T time slots. A participant i produces a
data record at time t with K different sensor types, where each sensor
reading can be denoted by s i t k( , , ), where i N∈ [1, ], t T∈ [1, ] and
k K∈ [1, ].

To facilitate the description of our false data detection and
correction approach, we use an N K T× × matrix (i.e., SN K T× × ) to
represent the collected data in a crowd-sensing system. For the
dimension k out of K-dimensional sensory dataset, we define an
N T× sensory data matrix S(k), which records the raw sensor readings
collected from N participants for T time slots.

We assume N participants are in a reasonably large area (e.g., in a
university). In case of very large-scale sensing areas (e.g., city scale), to
reduce the computation complexity of false data detection, we can
subdivide the area into smaller grids and group the collected data for
each sub-area with participants’ locations in that sub-area only. Then,
false data detection and correction will be performed for each sub-area.

3.3. Spatio-temporal correlation in sensory data

Existing work has revealed that sensory data normally exhibit
spatio-temporal correlation in either crowd-sensing environment
(Nam et al., 2010; Kurasawa et al., 2014; Rallapalli et al., 2010) or
traditional wireless sensor networks (Kong et al., 2013). That is, the
sensory values or the value changes in one dimension from the same
participant are usually similar at adjacent time slots, and sensory
values from physically correlated participants are similar for a parti-
cular time instant. To confirm this empirically, we conducted experi-
ments using 10 smartphones to collect temperature and sound level
measurements in an open space for 60 min. The definitions of spatio-
temporal stabilities and low-rank feature (i.e., redundancy) can be
found in Section 4.2.

Fig. 1 plots the cumulative distribution function (CDF) curves of the
spatio-temporal stability for temperature and sound level measure-
ments collected by smartphones. From Fig. 1(a), we observe that over
90% of temperature changes between adjacent time slots are less than
5%. Sound level result shows a high variance relatively, around 35% of
sound level changes are larger than 20%. Fig. 1(b) shows similar trends
in spatial stability as the results in temporal stability in Fig. 1(a). These
results indicate that temperature data in smartphone sensing show
high spatio-temporal stability. While the sound level measurements are
more sensitive to local noises (possibly due to smartphone micro-
phones’ heterogeneity and the noisy environment), showing less spatio-
temporal correlation compared with the temperature.

Fig. 2 illustrates the distribution of singular values after performing
the singular value decomposition over the sensory data matrix. It

Fig. 1. Spatio-temporal stability in sensory data collected by smartphones.
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shows both temperature and sound level data exhibit obvious low-rank
structures. These experimental results demonstrate that there exists
inherent low-rank features and certain spatio-temporal correlation in
real-world sensory data.

3.4. False data in crowd-sensing

Only in an ideal environment, participants provide accurate and
complete sensing readings (Kurasawa et al., 2014; Vergara-Laurens
et al., 2014). Unfortunately, on one hand, there exists inexperienced
and malicious participants, which may provide corrupted sensory data
in crowd-sensing systems. On the other hand, sensor readings are
liable to be biased due to many reasons such as hardware heterogeneity
and failure. As a result, the sensory data matrix normally contains
missing and false sensor values, which motivates us to propose the DECO

framework in this work.
To detect the false data, we can exploit data reconstruction

techniques to rebuild the sensory data matrix k( ) based on the
imperfect data matrix S(k). Given the reconstructed sensory data
matrix, by comparing difference between k( ) and S(k), it is possible
to detect data inconsistencies and likely to infer real data values in
crowd-sensing systems. Therefore, the key objective in DECO is to
develop an efficient data interpolating technique to reconstruct the
sensory data matrix that approximates the real data values as close as
possible.

3.5. Spatio-temporal compressive sensing

Compressive sensing (CS) (Candes and Tao, 2006) has attracted
considerable attention as a generic methodology for recovering the
unknowns based on partial observations. Spatio-temporal compressive
sensing (ST-CS) has been proposed to reconstruct missing values for

Internet traffic measurements (Roughan et al., 2012) and wireless
sensor networks (Kong et al., 2013). The main idea is that many signals
or datasets that are collected from real-world applications exhibit
certain structure or redundancy, e.g., neighboring rows or columns in a
sensory data matrix often have values close to each other. By utilizing
this prior knowledge, ST-CS accurately reconstructs missing values in
these real-world datasets.

4. Deco framework design

In this section, we first provide an overview of the DECO framework,
then detail the underlying core components that comprise the DECO

architectural framework. Specially, we address two challenges in
applying ST-CS for false data detection and correction: 1) how to
accurately derive the spatial adjacency of participants? and 2) how to
properly apply ST-CS for data reconstruction in crowd-sensing envir-
onment?

4.1. Overview

The DECO framework is illustrated in Fig. 3. In typical crowd-sensing
environment, sensory data are collected and uploaded to the central
data server by a large number of participants over wide spans of space
and time. DECO is designed as an enhancement layer for false data
detection and correction in various crowd-sensing systems. DECO not
only improves the data quality, but also provides useful information for
application-layer modules such as reputation management and incen-
tive distribution. Essentially, DECO improves the quality of service
provided by a crowd-sensing system to the end users.

The data characterization module analyzes the low-rank structure
and spatio-temporal properties in each data dimension (e.g., tempera-
ture, humidity, noise level, pressure, and location according to different
sensor types) based on a training sensory dataset. The spatial con-
straint estimation module estimates the proximity of participants based
on any context condition available in the dataset being detected. The
key idea of DECO is to employ the ST-CS technique (Roughan et al.,
2012) to reconstruct the sensory data given an incomplete and partially
inaccurate dataset, in the event that the sensory data being recon-
structed exhibit low-rank structure and spatio-temporal properties.
Otherwise, data interpolation methods such as Delaunay Triangulation
(Kong et al., 2013) and K-Nearest Neighbor can be used to rebuild the
sensory data matrices. Since it has been shown that ST-CS can achieve
an effective reconstruction even for high data-loss scenarios, in this
work, we focus our investigation on the ST-CS based data reconstruc-
tion.

4.2. Data characterization

To apply the ST-CS technique for data reconstruction, we first
characterize spatial and temporal dependencies for each data type in
real-world sensor datasets (assume we have certain number of
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Fig. 2. Low-rank feature in sensory data collected by smartphones.

Fig. 3. DECO framework for crowd-sensing.
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trustable participants for data collection in the bootstrap phase), using
the following low-rank structure, temporal stability, and spatial
stability metrics. For those data types (e.g., environmental parameters
and location-dependent information) that exhibit pronounced low-
rank structure (i.e., redundancy) and spatio-temporal stability, the ST-
CS technique can be applied for efficient matrix reconstruction
(Roughan et al., 2012).

4.2.1. Low-rank structure
As mentioned in Section 3.2, for the dimension k (according to

sensor types) in a sensory dataset, an N T× sensory data matrix S(k)
represents the data collected in a specific geographical area with N
participants during a given T time period. Singular Value
Decomposition (SVD) decomposes this N T× matrix into three ma-
trices (Kong et al., 2013).

S k UΣV( ) = *, (1)

Where U is an N N× unitary matrix, Σ is an N T× diagonal matrix
with non-negative real numbers on the diagonal, V is a T T× unitary
matrix, and V* denotes the conjugate transpose of V. The diagonal
entries σi of Σ are known as the singular values of S(k). Typically, these
singular values are sorted in descending order. The rank of S(k),
denoted by r, is defined as the number of its non-zero singular values.
If r min N T⪡ ( , ), we say S(k) exhibits low-rank structure.

4.2.2. Temporal stability
We measure the temporal stability of S(k) by calculating the

normalized difference values s i t kΔ ( , , ) between adjacent time slots
for the kth dimension data uploaded by participant i during T time
period i N( ∈ [1, ], t T∈ [1, ] and k K∈ [1, ]):

s i t k s i t k s i t k
max s i t k s i t k

Δ ( , , ) = | ( , , ) − ( , − 1, )|
{| ( , , ) − ( , − 1, )|}

,
i t∀ ,∀ (2)

where max s i t k s i t k{| ( , , ) − ( , − 1, )|}i t∀ ,∀ is the maximal difference
between any two consecutive time slots in S(k).

4.2.3. Spatial stability
The rationale of spatial stability is that, in real-world sensor

datasets, sensor readings measured by geographically nearby partici-
pants at the same time slot may be close in value. We first define the
adjacency matrix H,

⎧⎨⎩H h i j
i j= ( ( , )) = 1 if and are neighbors;

0 otherwise,N N×
(3)

where i j N, ∈ [1, ]. Both rows and columns in H represent participants,
and h i j( , ) represents whether participants i and j are neighbors or not.
In the data characterization phase, we assume that data are collected by
trustable participants in a reasonably large area. Thus, neighborhood in
H can be derived by the Euclidean distance between two participants
(i.e., i and j are neighbors if their distance is less than a threshold d) or
Bluetooth scanning to discover co-located participants (Yow et al.,
2014).

The spatial stability of S(k) at a specific time t is measured by
computing the normalized difference between the sensor value
uploaded by a participant i and the average value of i's all neighbors:

where

h i j∑ ( , )j
N
=1 is the number of one-hop neighbors of node i.

max s i t k( , , )i t∀ ,∀ and min s i t k( , , )i t∀ ,∀ are the maximum and minimum

values in S(k), respectively. s j t k h i j h i j( ∑ ( , , ) ( , )/ ∑ ( , ))j
N

j
N

=1 =1 represents
the average value of i's all neighbors.

4.3. ST-CS for sensory matrix reconstruction

In the case where crowd sensory data exhibit a spatio-temporal

structure, ST-CS leverages this structure to rebuild the sensory data
matrix. Here, we briefly introduce the ST-CS technique, and refer
interested readers to Kong et al. (2013) for more details.

Let us assume an N T× sensory data matrix S(k) is being detected.
S(k) may contain missing and false values. We define an N T× missing
index matrix B(k), which indicates whether a data sampling in S(k) is
missing or not.

⎧⎨⎩B k b i t k x i t k( ) = ( ( , , )) = 0 if ( , , ) is missing,
1 otherwise.N T×

The objective in DECO is to accurately estimate k( ) , which can be
decomposed by SVD, and re-written as follows:

k( ) = *,

where UΣ= 1/2, VΣ= 1/2, and * denotes the conjugate transpose of
. Through theoretical derivations, the ST-CS matrix reconstruction

problem is formulated as the following optimization problem:

min B k S k λ{‖ ( )·( *) − ( )‖ + (∥ ∥ + ∥ * ∥ ) + ‖ *‖

+ ‖ * ‖ },
F F F F

F

2 2 2 2

2





where λ is the Lagrange multiplier, and ‖·‖F
2 is the Frobenius

(Euclidean) norm. B(k) and S(k) are known.  and  are the spatial
and temporal constraint matrices, which will be introduced in the
following subsections. Note that ‖ *‖F

2 , ‖ * *‖F
2 , and

B k S k‖ ( )·( *) − ( )‖F
2 need to be set equal in the similar order of

magnitude, otherwise, they may overshadow the others during optimi-
zation (Roughan et al., 2012). Then, by tuning λ, and can be
estimated in this optimization problem, and k( ) is consequently
estimated.

4.4. Deriving spatial constraint

For the purpose of characterizing spatial stability for different types
of sensor readings, we can use ground truth co-location information to
derive the spatial adjacency matrix H. However, real-world crowd-
sensing produces inaccurate and uncertain sensory data as well as
missing values. It poses challenges in accurately estimating spatial
adjacency matrix H in practical environment. For example, GPS traces
are likely to be obfuscated for privacy-preserving on the participant-
side prior to sharing them (Ahmadi et al., 2010; Nam et al., 2010).
Bluetooth device discovery in mobile scenarios normally contains
missing values since each inquiry scan incurs about 12 s delay (Yow
et al., 2014). Malicious adversaries may deliberately upload forged
location data (Talasila et al., 2013). In other words, we cannot directly
derive H from the location information in crowd-sensing datasets.
However, applying ST-CS for sensory data reconstruction requires a
good approximated spatial adjacency matrix H.

To address the above challenges, we propose to infer participants’
proximity based on multidimensional sensor readings in crowd-sensing
systems. We classify the sensory data into 1) spatially-dependent
(location of the samples, WiFi AP signatures, and Bluetooth signatures)
and 2) non-spatial (environmental variables) information/attributes. If
values of spatially-dependent variables are similar, it is more likely that
the two participants are nearby each other, e.g., NearMe (Krumm and
Hinckley, 2004) compares the WiFi signatures to estimate the proxi-
mity of mobile devices to one another. As shown in Section 3.3, real-
world environmental measurements made at nearby locations may be
closer in value than measurements made at locations farther apart, but
not vice versa. However, intuitively, if non-spatial values are remark-
ably different, it is likely that the two participants are far away.

The rationale of our spatial adjacency discovery is that, spatially-
dependent information provides positive clues for proximity estima-
tion. While non-spatial information can be used as non-adjacent
(negative) indicators, which potentially improve the estimation accu-
racy ofH. Assume at time slot t in data dimension k, participants i and j
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have sensor readings s i t k( , , ) and s j t k( , , ), respectively. There are M
dimensional sensory data that we take into account for estimating H.
We define a general proximity function to estimate the adjacency of
participants i and j as follow, which is independent of specific
applications:

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭∑h i j ω Similarity i j t k( , ) = max 0, · ( , , , ) ,

k

M

k
=1 (5)

where ωk is the weight coefficient of the kth dimensional data
( ω∑ = 1k

M
k=1 ) in the proximity function. Similarity i j t k( , , , ) is the func-

tion measuring the similarity of the kth dimensional data reported by
participants i and j at time slot t. If ω Similarity i j t k∑ · ( , , , )k

M
k=1 is a

negative value, h i j( , ) is set to 0.
Specifically, we use Pearson's correlation coefficient to measure the

similarity for WiFi AP signatures (it also applies for calculating the
similarity of two Bluetooth signatures). Suppose the two WiFi signa-
tures measured by participants i and j at time t are,

s i t wifi ap rss ap rss

s j t wifi ap rss ap rss

( , , “ ”) = {( , ), ( , )…},

( , , “ ”) = {( , ), ( , )…},

i i i i

j j j j
1
( )

1
( )

2
( )

2
( )

1
( )

1
( )

2
( )

2
( )

where ap denotes the AP MAC address, and rss represents the
associated signal strength. Let ni and nj denote the number of APs
scanned by participants i and j at time t, respectively. Since some APs
in s i t wifi( , , “ ”) may not have corresponding APs in s j t wifi( , , “ ”), and
vice versa, we add virtual APs with fixed signal strength (e.g.,
−110 dB m) in order to let them have the exactly same AP sequences.
Let nij denote the length of the AP sequence after inserting the virtual
APs. Then, we calculate the Pearson's correlation coefficient σ
( σ−1 ≤ ≤ 1), which is set as Similarity i j t wifi( , , , “ ”).

σ
rss rss rss rss

rss rss rss rss
=

∑ ( − )( − )

∑ ( − ) ∑ ( − )
,

n
n

i i
n

j j

n
n

i i n
n

j j

1
( ) ( ) ( ) ( )

1
( ) ( ) 2

1
( ) ( ) 2

ij

ij ij
(6)

where rss i( ) denotes the average value of signal strength in i's AP
sequence after inserting the virtual APs.

For absolute location data, such as GPS coordinates, we use
Euclidean distance to measure their similarity. That is, if the GPS
distance between two participants i and j is less than a range d at time t,
then Similarity i j t gps( , , , “ ”) = 1, otherwise, the value is set 0.

We then exploit the non-spatial attributes (which are usually scalars
such as temperature and noise level) to calibrate the estimation of
h i j( , ). For non-spatial information, we define the similarity function of
the kth dimensional data reported by participants i and j at time slot t
as follow (Similarity i j t k( , , , ) is abbreviated as Sim):

Sim
s i τ k s j τ k

θ max s i t k min s i t k
= −

∑ |( ( , , ) − ( , , ))|
(2 + 1)( ( , , ) − ( , , ))

τ t θ
t θ

i t i t

= −
+

∀ ,∀ ∀ ,∀ (7)

where s i τ k s j τ k θ( ∑ |( ( , , ) − ( , , ))|)/(2 + 1)τ t θ
t θ
= −
+ is the mean value of

absolute differences during the θ(2 + 1) time period, and θ is an
adjustable parameter specifying the time window length (θ ≥ 0).
Considering the temporal stability of non-spatial sensing data, we
average the sensor readings over a time window for robust estimation.
Since non-spatial information is used as a negative indicator, Sim is
always a negative value.

Note that the spatially-dependent sensory data dominates the
estimation of spatial adjacency matrix H. Therefore, their weight
coefficients should be larger than those of non-spatial data. By
combining the similarities (either positive or negative) from M dimen-
sional sensory data, we calculate the value of every h i j( , ), which ranges
from 0 to 1. Then, the spatial adjacency matrix H is transformed to the
spatial constraint  as follows.

⎧

⎨
⎪⎪

⎩
⎪⎪

i j

h i j

i j
h i j

h i j

= ( ( , )) =

0 if ∑ ( , )== 0;
1 else if == ;

− ( , )
∑ ( , )

otherwise,
N N

j
N

j
N

×

=1

=1



(8)

where i j( , ) is an element in  . We assign − h i j
h i j

( , )
∑ ( , )j

N
=1

to each

neighboring node in order to make the sum of elements in each row
to be 0. Finally, we derive  , which is applied as the spatial constraint
into the ST-CS matrix reconstruction.

4.5. Temporal constraint

Since the temporal stability is an inherent feature of real-world
sensory data, the temporal constraint matrix  is relatively easy to
obtain. We set Toeplitz= (0, 1, − 2, 1)T T× (Rallapalli et al., 2010),
which denotes the Toeplitz matrix with central diagonal given by ones,
the first upper diagonal given by minus two, the second upper diagonal
given by ones, and the others given by zeros, e.g.,

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥=

1 −2 1 0 ⋯
0 1 −2 1 ⋮
0 0 1 −2 ⋮
⋮ ⋱ ⋱ ⋱ ⋱

.

T T×



(9)

The additional temporal constraints capture the temporal stability
properties in crowd-sensing datasets, which is expected to filter out
noises and errors in ST-CS matrix reconstruction.

4.6. False data detection and correction algorithm

Fig. 4 shows the flowchart of false data detection and correction in
DECO framework. Assume the kth dimensional sensory data matrix S(k)
is being detected, which exhibits low-rank structure and spatio-
temporal stability. We derive the spatial constraint  based on the
other K − 1 dimension data, i.e., selecting M dimensional sensory data
to estimate  (M K≤ − 1), which has been discussed in Section 4.4.

Fig. 4. Flowchart of false data detection and correction algorithm.
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Next, we reconstruct sensory data matrix by applying the ST-CS
method with  and  constraints, and obtain k( ) . Then, we check
data inconsistencies between S(k) and k( ) , and finally we identify the
false sensor readings in S(k).

However, improperly utilizing ST-CS for data reconstruction could
lead to low accuracy and high false positives. This is because,
neighboring sensor readings normally have mutual influence in ST-
CS based data reconstruction, i.e., false data from one participant may
have negative influence on the data estimation for his/her neighbors.
As a result, good quality sensor readings may be misdeemed as false
data. Therefore, conservatively, we need to first identify potentially
untrusted participants in the K-dimensional sensory dataset, which can
be inferred based on their low trust levels in reputation and trust
assessment (Christin et al., 2014) or high proportion of outliers in the
dataset (Vergara-Laurens et al., 2014). Later on, we will explain DECO

also works without knowing untrusted participants. Let U denote the
untrusted participant set, where u represents an untrusted participant
in U ( u U∀ ∈ ). We assume data contributed by participant u may
contain erroneous values (either partial or whole data). We employ
DECO to efficiently detect potential false data, and estimate the
corresponding values for these untrusted participant in U.

Algorithm 1. False data detection & correction for S(k).

Input:
S(k), B(k), Untrusted participant set U ( u U∀ ∈ );

Output:
k( ) : false data index matrix for S(k);
k( ) : sensory data matrix with correction;

Procedure:
1: Derive spatio-temporal constraints  and  ;
2: for u∀ in U do
3: b u t k t T b u t k B k( , , ) ← 0, ∀ ∈ [1, ], ( , , ) ∈ ( );

//Mark u's data as missing values in B(k)
4: end for
5: Apply ST-CS for matrix reconstruction using the updated B(k),

i.e., solving

B k S k λmin{‖ ( )·( *) − ( )‖ + (‖ ‖ + ‖ *‖ ) + ‖ *‖ +

‖ *‖ }
F F F F

T
F

2 2 2 2

2





;

6: k( ) ← *; //Obtain the reconstructed matrix
7: k( ) ← (0)N T× ; //Initialization
8: for u∀ in U do
9: for t∀ = 1 to T do
10: if s u t k s u t k ξ| ( , , ) − ( , , )| > k then

11: f u t k( , , ) = 1; // s u t k k∀ ( , , ) ∈ ( )

12: end if
13: end for
14: end for
15: k f u t k( ) ← ( ( , , ))N T× ;

16: return k( ) and k( ) ;
end Procedure

The proposed false data detection and correction algorithm is described
in Algorithm 1, which will be repeated sequentially for each dimension in
the K-dimensional sensory dataset (k K∈ [1, ]). First, we derive spatio-
temporal constraints  and  (Line 1). For any untrusted participant u, we
mark his/her sensor readings as missing values in B(k) (Lines 2–4), to
avoid untrusted data misleading the data reconstruction. We then rebuild

k( ) by applying ST-CS matrix reconstruction using the updated B(k)
(Lines 5–6). An individual threshold ξk, a data type specific parameter, is
needed for detecting potential false values in the kth dimensional data
(k K∈ [1, ]). For every participant u at each time slot, a sensor reading is
marked as a potential false value if s u t k( , , ) in S(k) is notably different

compared to the corresponding value s u t k( , , ) in k( ) (Lines 8–14).
Finally, we obtain the false data index matrix k( ) , in which each nonzero
element indicates a possible false value (Line 15). Since data reconstruction
fills in the gaps of any missing values in the dataset, the reconstructed k( )

naturally provides estimated values for those potentially false data (and
missing data) in S(k).

The rationale of the false data detection in DECO design is that, by
checking data consistency with co-located participants over a reason-
ably long time period, a misbehaving or erroneous participant has a
very small possibility to convince the false data. Actually, DECO can be
extended for screening the sensory data matrix S(k) without prior
knowledge of the untrusted participant set U. For example, we can
sequentially check each participant by using the aforementioned
method, and figure out potential data inconsistencies. Interestingly,
sensory data matrix reconstruction enables quantitative description
about the data quality of each participant. The false data index matrix

k( ) provides useful statistical information for reputation management
and incentive distribution, which are two important functions that
might affect the successful deployment of a crowd-sensing system.

5. Performance evaluation

5.1. Case study i: crowd-sensing-based wifi fingerprinting

In this section, we present our testbed experiment when applying
DECO for data quality improvement in a crowd-sensing-based WiFi
fingerprinting system.

5.1.1. Motivation
WiFi fingerprinting is considered a promising indoor localization

approach with rapidly increased deployments of WiFi access points
(Jun et al., 2013; Luo et al., 2016a). Typically, it is composed of two
phases: an offline training phase and an online localization phase.
During the training phase, dedicated site surveyors collect RSS values
from multiple WiFi APs at different reference points to construct the
radiomaps, which are used for localization in the online phase.
However, the widespread use of WiFi fingerprint-based indoor locali-
zation is still limited due to the labor-intensive training phase to
construct the radiomaps.

The idea of crowd-sensing-based WiFi fingerprinting is to utilize
casual users to collect WiFi fingerprints, which enables training data to
be crowdsourced without explicit effort of site surveyors (Luo et al.,
2014, Luo et al., 2016b). However, radiomap construction with crowd-
sensing introduces a new challenge: the fingerprinting system is
exposed to malicious and erroneous users, and there is no data quality
guarantee of the crowdsourced radiomap. Therefore, efficient data
validation method that is able to detect incorrect values and perform
possible data quality improvement is essential in crowd-sensing-based
indoor localization systems.

5.1.2. Experimental setup
We conduct an experiment using 10 Samsung Galaxy S4 smart-

phones for crowd-sensing-based WiFi fingerprinting. Before the ex-
periment, all smartphones are synchronized by the ClockSync applica-
tion. Users equipped with smartphones walk around in a campus
building over 120 min totally. Each smartphone running an Android
service in the background opportunistically collects WiFi fingerprints,
and uploads the collected data to the localization server. To obtain the
proximity estimation of smartphones, we also collect other sensory
data available in the phones, including bluetooth neighbor scans,
temperature, humidity and sound level measurements. We apply the
method introduced in Section 4.4 to infer smartphones’ proximity
based on other multidimensional sensor readings, and derive the
spatial constraint  . The weight coefficient settings in spatial adjacency

L. Cheng et al. Journal of Network and Computer Applications 77 (2017) 123–134

129



estimation are: ω = 0.7bluetooth , and non-spatial attributes equally share
the remaining 0.3. To obtain the ground truth to construct the WiFi
fingerprint radiomap, we ask participants to manually tap their
locations whenever they are passing the predefined reference locations.
An average of 35 WiFi APs could be detected in our experiment. At the
server side, we implement the proposed DECO system in Matlab.

Threat Model: In this experiment, we consider that any participant
may act maliciously and may upload fake WiFi fingerprints to the
system. We also consider the cases that participants stop providing
data due to the lack of interest or motivation in the data collection
campaign or some inexperienced participants fail to upload the
collected data.

In order to emulate the potential deterioration of data quality in the
system, we set two adjustable parameters Rm and Rf to control the
amount of missing and false data during the data collection. Users
could set these two parameters through the data collection software
interface. In the bootstrap phase, a smartphone sets itself as an
untrusted participant with a probability of Rf, and then sets the
scanned RSS with random false values ranging from −100 db m to
−30 db m at each time slot (since in our experiment, the collected RSS
values normally range from −100 db m to −30 db m). For trusted
participants, at each time slot, the Android data collection service sets
the RSS values to be missing value Nil with a probability of Rm.

We compare the performance of DECO against widely known data
interpolation methods: K-Nearest Neighbors (KNN) (Cover and Hart,
1967) and Delaunay Triangulation (DT) (Kong et al., 2010; Vergara-
Laurens et al., 2014). We measure the detection precision, recall and
accuracy using different data interpolation methods. These metrics are
defined as follows, Precision=TP/(TP+FP), Recall=TP/(TP+FN) and
Accuracy=(TP+TN)/(TP+TN+FP+FN), where TP, FP, TN, FN are true
positive, false positive, true negative and false negative respectively. In

this experiment, if the difference between the estimated RSS values and
the original values are larger than averagely 20% of the original values
(i.e., the threshold ξk in Algorithm 1), this RSS scan is marked as a false
WiFi fingerprint. To measure the effectiveness of data correction, we
apply the basic location determination method in WiFi fingerprinting
(Bahl and Padmanabhan, 2000) and compare the final localization
error with/without DECO's data correction of the radiomap. In Bahl and
Padmanabhan (2000), the location is determined by averaging over 3
nearest neighbors based on RSS values in the radiomap.

5.1.3. Impact of false data ratio
We first investigate the impact of false data ratio on DECO's

performance and the final localization accuracy with fixed ratio of
missing values. In this experiment, we set R = 20%m , and vary the false
data ratio Rf from 10% to 30%.

Fig. 5 shows the false data detection performance. As the false data
ratio increases, the results of precision and recall ratio in Fig. 5a and b
drop accordingly, resulting the degradation of final false data detection
accuracy as shown in Fig. 5(c). However, as DECO utilizes the spatio-
temporal constraints and takes the whole data structure into consid-
eration (Candes and Tao, 2006), it outperforms the local interpolation
methods KNN and DT, and achieves higher false data detection
accuracy in all cases.

Fig. 5(d) shows the final localization error with and without DECO's
false data correction. The false data introduced by malicious users
significantly degrades the localization performance. As the false data
ratio increases from 10–30%, the average localization error is increased
from 4.6 to 10.8 m. After performing data correction with DECO, the
localization error is significantly reduced to 3.2 m and 5.3 m, respec-
tively. DECO efficiently detects and corrects false fingerprints and
generates high-quality radiomaps, which improves localization accu-

Fig. 5. Impact of false data ratio.
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racy in our crowd-sensing-based WiFi fingerprinting system.

5.1.4. Impact of missing data ratio
Next, we study the impact of missing data ratio on the system

performance given fixed percentage of false values. We set R = 20%f
and vary the missing data percentage Rm from% 10 to 30%.

The amount of missing data affects the performance of false data
detection and correction. As the data become more sparse, the data
reconstruction becomes less accurate. Fig. 6 shows the evaluation
results in this scenario. As the missing data ratio increases from 10 to
30%, DECO remains a high detection accuracy while the performance of
KNN and DT drops more significantly. This shows that DECO remains
robust even with a large portion of missing data.

The final corrected fingerprints improve the localization perfor-
mance. As shown in Fig. 6(d), DECO reduces the localization from 3.8 to
3.1 m with 10% missing data, and from 5.2 to 3.2 m with 30% missing
data, which shows that DECO is able to efficiently detect and correct false
fingerprints that introduced by crowd-sensing participants.

5.2. Case study ii: crowd-sensing for environment monitoring

To evaluate the potential of DECO for crowd-sensing with a large
number of data contributors, in this section, we compare the perfor-
mance of DECO against KNN and DT based on a synthetic dataset in the
context of crowd-sensing based environment monitoring application
scenario.

5.2.1. Datasets
Since there is no public dataset specially for crowd-sensing

(Kurasawa et al., 2014), we generate a synthetic dataset based on the

frequently used GreenOrbs (Mo et al., 2009) dataset in our evaluation.
In GreenOrbs, 450 static sensor nodes were deployed to gather
temperature, light, and humidity measurements once every 10 min.
We generate a scenario where sensor nodes (either smartphone built-in
sensors or external sensors that can be connected to a smartphone) are
freely moved in a public area as follows: at each time slot (every 10 min
in GreenOrbs dataset), a sensor node either moves to another position
or remains at the same place. If moving, we randomly choose one of its
one-hop neighbors as the node's substitute. That is, the sensor node
will move to the substitute's position and obtain sensor readings same
as the substitute's at the next time slot. This gives us up to 450
participants for data collection over an extended period. The low-rank
property and spatio-temporal stability in GreenOrbs dataset have been
shown in Kong et al. (2013), which means ST-CS can be applied in this
dataset.

We use the smartphone proximity information in Section 5.1 to
emulate the practical proximity estimation in crowd-sensing. For each
pair of ground truth co-located smartphones i and j (i and j encounter
each other), we extract the spatially-dependent information at the
encounter time. After that, we obtain a collection of spatially-depen-
dent sensory data from the smartphone sensing. Then, we randomly
assign one measurement (i.e., WiFi and Bluetooth signatures) to each
pair of ground truth co-located nodes in the synthetic dataset. Together
with the non-spatial measurements in GreenOrbs, we apply the
proposed proximity estimation method and finally obtain the estimated
spatial constraints at each time slot. We observed that WiFi and
Bluetooth signatures dominate the spatial adjacency estimation. The
weight coefficient settings in spatial adjacency estimation are:
ω = 0.4wifi , ω = 0.4bluetooth , and non-spatial attributes (i.e., any two

Fig. 6. Impact of missing data ratio.
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attributes among temperature, light and humidity) share the remaining
0.2. For KNN, the parameter K is set as the number of one-hop
neighbors in GreenOrbs dataset.

5.2.2. Experimental setup
DECO framework is designed to accurately detect and correct false

data for incomplete sensory datasets with considerable missing values.
To verify the effectiveness of DECO, we randomly remove 20% sensor
readings from the dataset, thus generating an incomplete sensory
dataset. Then, we select 10–30% nodes as the untrusted participants,
and randomly inject false data into the data reports of these untrusted
participants. The injected false data values are randomly selected
within the range of the ground truth sensor readings.

The experimental evaluation focuses on two metrics. 1) Recall rate:
the ratio of false sensor readings discovered by detection methods to
the total number of false sensor readings. 2) Data correction ratio: the
ratio of the correct estimation in value to the total number of false data.
In this experiment, if the difference between the estimated value and
the original value (after injecting false data in the dataset) is larger than
20% of the original value, a sensor reading is marked as a false value.
When calculating the data correction ratio, if the difference between the
estimated value and ground truth is within 10% of the ground truth
value, it is considered a correct estimation.

5.2.3. Evaluation results
Fig. 7 depicts the recall rate results for temperature and light false

data detection. From Fig. 7(a), DECO achieves 93% recall rate on
average. As the false data percentage increases from 10 to 30%,
detection rates for all methods also decrease. However, both KNN

and DT show poor performance when the false data percentage
becomes large. Since KNN is a local interpolation method, which
simply averages values of the one-hop neighbors to estimate the
missing value, KNN's performance drops quickly when the false data
percentage is larger. While even at high false data percentage, DECO

provides above 90% detection rate. Fig. 7(b) shows the same trend as
observed in Fig. 7(a).

In addition to detecting the false data, DECO is able to estimate both
false and missing data at the same time. Fig. 8 reports the correction
rate when comparing DECO with KNN and DT. As the false data
percentage increases, all schemes experience decreased data correction
rate. Overall, DECO shows obvious advantages over the other methods.
This is because, KNN and DT interpolate data based on only the spacial
correlation among neighboring nodes without considering the tempor-
al correlation. Even at high false data percentage, the data recovery
ratio in DECO is less than 20% for both temperature and light data.

6. Conclusion

In this work, we presented DECO, a false data detection and
correction framework tailored for crowd-sensing with missing data.
We showed there exists inherent low-rank features and spatio-tempor-
al correlations in real-world sensory data. Then we developed a false
data detection and correction algorithm by applying the spatio-
temporal compressive sensing technique. Through comprehensive
performance comparisons, we demonstrated that DECO is well suited
for data quality improvement in crowd-sensing with considerable
missing data. The proposed algorithm effectively identifies false data
and outperforms the state-of-the-art methods in false data correction.

Fig. 8. False data correction.

Fig. 7. Recall rate.
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