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Abstract—In the wireless communication, there are many cases
where the transmission path is obstructed by unknown objects.
With the rapid development of the drone technology in recent
years, the drones are advocated to serve as mobile relays to
forward data streams. However, the challenges are that data
transmission may suffer severe signal attenuation due to the
existence of the obstructions and it is challenging to find the best
location for mobile relays due to the dynamic environment and
unpredictable interference. To address the problem, this paper
proposes an approach that a drone can automatically find the lo-
cation with the optimal link quality. We design a novel algorithm,
named Path-sampling Online Tensor Update (POTU), to estimate
the link quality in the space and find the optimal location.
Furthermore, the algorithm is practical to the real applications
due to the simplicity of implementation. In the experiment, we
construct a realistic scene and compare the performance of our
algorithm with the classic and the state-of-the-art algorithms. As
a result, POTU outperforms existing methods in achieving the
trade-off between time cost and estimation accuracy.

I. INTRODUCTION

The mobile relay technique is a hot research topic nowadays

and has many advantages in wireless data transmission, such as

its mobility for deployment. The key features of mobile relay,

including its low-cost, mobility and flexibility have raised great

interests in both industry and academia. In addition, due to the

existence of the obstructions that lead to signal attenuation,

mobile relays can be used to bypass the obstructions and

enhance the quality of transmission. There are lots of use

cases for mobile relay, such as group mobility, reliability,

and wireless backhaul load balancing. Drones, which are also

referred as unmanned aerial vehicles (UAVs), as one kind of

modern mobile relays are discussed in [3] [4].

This paper addresses a realistic problem that in places where

obstructions exist, the data transmission often suffers a lot of

signal attenuation leading to poor transmission quality. Using

mobile relays is an effective method to bypass the obstruc-

tions in the transmission path. With the rapid development

of the drones and their high flexibility in real applications,

the drones have become the promising option for mobile

relays, especially in emergent and critical tasks, the severity of

which is mentioned in [16]. For example, mobile relays can

be deployed in the earthquake scene [1] to establish better

communication in the disaster area. Another example is that

mobile relays can provide a way to bypass the walls when high

transmission quality is needed between two rooms obstructed

by multiple walls. Using drones as the transmission relay is a
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Fig. 1. Fire-fighting scenario illustration.

novel way since the drone technology is in its infancy and

is becoming more and more popular. Also, such real-time

situation needs quick establishment of the transmission and

the drones’ mobility with flexibility is perfectly suitable for it.

Specifically, in most fire-fighting scenarios, the high-quality

video needs to be transmitted in real time so that the field

control vehicle can make effective arrangements according

to the video received from the camera in the front fire

location. However, such wireless link is usually none-line-of-

sight due to unknown obstructions. The video transmission

path between the camera device and the field control vehicle

is often obstructed by buildings, as illustrated in Fig. 1. In this

situation, the path will suffer severe signal attenuation so that

the control vehicle cannot receive high quality video. Setting

up the mobile relay between the video transmission source

and the destination is an approach to solving this problem.

The drone can be used as the mobile relay in order to bypass

the obstructions. It will establish a relatively longer transmis-

sion path which, however, provides much higher transmission

quality. Also, due to the mobility and flexibility of the drone,

it can quickly reach the relay location and the transmission

between the front field camera and the field control vehicle

can be established in a relatively short time.

To solve the mobile relay problem in emergent tasks, we

propose an approach to finding the optimal location for mobile
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relays by using the drone to sample from the space and update

the optimal location by an algorithm and finally arrive at the

optimal location. First, we take the whole space as a 3-D tensor

and treat the value of every element in the tensor as the link

quality of data transmission. Such abstraction helps us better

describe the environment. Then we carefully consider the data

transmission model and apply the model in the tensor. Our

goal is to develop a strategy for the drone to take samples

and update the quality tensor with the samples and finally

find the optimal location for the relay. To achieve our goal,

we design an algorithm called Path-sampling Online Tensor

Update (POTU). The algorithm uses an online update method

to make corrections through tensor recovery iteratively with

the real data sampled as inputs, resulting in rather accurate

estimation of the link quality. At last, extensive simulations are

conducted to compare the performance of different solutions

to this problem including the classic and the state-of-the-art

methods.

The contributions of this paper are listed as follows:

• To the best of our knowledge, our work is the first to

focus on using tensor update method together with drones

to find the optimal location for mobile relays.

• A novel algorithm, POTU, with online tensor update is

designed. The algorithm is practical due to the simplicity

of implementation and does not need to consider any form

of distortion or interference in the dynamic environment.

Rather, it utilizes the tensor update to make corrections

to acquire more accuracy link qualities according to the

sampled real data.

• Simulations show that POTU outperforms the classical

and the state-of-the-art algorithms, providing a more

balanced and stable performance.

The rest of the paper is organized as follows. In Section

II, we introduce the related work in corresponding field. In

Section III, we introduce the system models, describe the

problem and briefly have an overview of 3-D tensors. In

Section IV, we provide our approach and introduce POTU in

detail. In Section V, we conduct the simulations. Our work is

concluded in Section VI.

II. RELATED WORK

Lots of works have contributed to the adoption of mobile

relays [6] [7] [8] [18]. In [8], low-cost disposable mobile

relays are used to reduce the total energy consumption of

data-intensive wireless sensor networks (WSNs). Both cen-

tralized and distributed algorithms are proposed to find the

best locations for mobile relays and minimize the total energy

consumption of mobility of relays and data transmission.

Using mobile relays to offer high-quality services on high-

speed transportation has also been studied [7]. Key techniques,

such as the group mobility, the local service support, the

multi-RAT (multi-Radio Access Technology) and RAN (Radio

Access Network) sharing are applied to improve the efficiency

of mobile relays.

There are many other works focusing specifically on using

drones, which are often referred as unmanned aerial vehicles

(UAVs), as transmission relays. Drones are mentioned as a

method to support the Battlefield Information System (BITS)

at first, as described in [17]. It is planned to use drones

as platforms for a high capacity trunk radio relay to form

a drone-based battlefield broadcast system. The paper also

points out that, to effectively apply the drone technique in

such communication system, airborne relays using drones must

maintain compatibility with the existing and planned terrestrial

and space communication infrastructures.

In recent years, efforts has been also put into studying using

drones as mobile relays to improve the performance of modern

communication systems. In 2013, Guo and others provide

an analysis on using drones to assist the cellular network

performance and the experiments show that trough-to-peak

throughput improvements can be acquired for users in poor

coverage areas [9]. Furthermore, the paper uses stochastic

geometry and multi-cell simulation results to reinforce the

experimental study with large-scale network analysis.

To address the problem of establishing line-of-sight trans-

mission path for the drones, the algorithms for relay placement

are studied. In [3], two algorithms to establish the relay

chain are proposed to solve the problem of using drones as

transmission relay when there exists obstructions. The paper

compares the two algorithms, one of which is a dual ascent

algorithm and the other is a modification of the Bellman-Ford

algorithm. The ground operator chooses the final placement of

the drones evaluating the number of hops and the chain cost.

In the simulations, both algorithms have better performances

than the classic Bellman-Ford algorithm. The same authors

also examine using drones as mobile relays [4]. The paper digs

deeper into using drone-based surveillance where information

must be transmitted to the base station in real time. The

limitation of the range and the requirement of line of sight

make the transmission from the distant location impossible. To

solve the relay placement problem, the paper presents using

graph search and a label-correcting algorithm to generate sets

of Pareto-optimal chains efficiently in order to achieve trade-

offs between the number of drones and the resulting quality.

A dual ascent algorithm is also proposed for certain tasks and

situations.

However, these solutions cannot fit in the mobile relay

problem in emergent tasks since that they do not ensure the

quality of real-time transmission, the bypass of obstructions

and the speed of the optimal location finding. In order to find

the optimal location as fast as possible for the emergency as

well as ensuring the transmission quality, we need to develop

a new approach.

III. PROBLEM FORMULATION

We first provide our system models, then describe the

problem and finally take an overview of the 3-D tensor.

A. System Models

1) Space Model: As can be seen in Fig. 1, obviously,

the optimal location is somewhere between the field control

vehicle and the camera device. Taking the field control car as
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the origin o with coordinates (0, 0, 0) and the camera device

as the point c with coordinates (n1, n2, n3), we set up a 3-D

space.
Accordingly, a 3-D tensor Q ∈ R

n1×n2×n3 is created to

represent the link quality where n1, n2, n3 are the scales of

the three dimensions. In this way, we split the space into n1×
n2 × n3 cubes and we assume the link quality in a cube is

the same. The value of each element Q(i, j, k) of the tensor

denotes the link quality of video transmission if the drone is

set in (i, j, k).
2) Link Quality Model: In order to measure the link quality

for each location, we provide a model for data transmission,

taking the large-scale path loss, the shadowing loss and the

non-shadowing loss into consideration [11]. Let d be the

distance and P (d) be the large-scale path loss between the

sender end and the receiver end. Z(1) and Z(2) represent

the shadowing loss and the non-shadowing loss, respectively.

The loss of the signal L along the transmission paths can be

calculated as

L = P (d) + Z(1) + Z(2), (1)

where P (d) is given by

P (d) = 10αlog(d) + β, (2)

where α and β are constants and α ≥ 2. Furthermore,

considering that attenuation parameter is not constant in the

space, using the linear integral over the transmission path, for

the shadowing loss Z(1), we have

Z(1) =

∫
path

g(r)dr, (3)

where r ∈ R
3 denotes a distance vector in the space and g(r)

(dB/m) denotes the attenuation parameter due to the shadowing

loss on location r. And for the non-shadowing loss Z(2), we

assume a wide-sense stationary Gaussian process with zero

mean and variance η2.
To find a way of link quality evaluation, we should consider

both the source side and the destination side. The obvious

method to describe the link quality is the received transmission

quality from certain points. Since the transmission quality at

the destination point received from the relay point is equivalent

to that at the relay point received from the destination point,

we consider the receiving qualities at the relay point from

both the source point and the destination point as factors in

representation of link quality metrics. Let So, Sc denote the

sending quality at the origin o and the camera point c and

Ro(i, j, k), Rc(i, j, k) denote the receiving quality from point

o and c at point (i, j, k). According to the data transmission

model above, we give the representation of the link quality

Q(i, j, k) described as the product of the receiving qualities

Ro(i, j, k) at point (i, j, k) from origin point o and Rc(i, j, k)
at point (i, j, k) from camera point c

Q(i, j, k) = Ro(i, j, k)×Rc(i, j, k), (4)

where Ro(i, j, k) and Rc(i, j, k) are given by

Ro(i, j, k) = So − Lo,

Rc(i, j, k) = Sc − Lc,
(5)

where So, Sc are the sending quality at o and s and Lo, Lc are

the signal loss along the path from point o and c, respectively.

Here we want to achieve better total performance of the relay

transmission quality and it can be easily proven in mathematics

that the product of the two value is the best way to evaluate

it.

Let H denote the set of locations covered by the transmis-

sion path and the shadowing loss of the signal can be given

by

Z(1) = Σ(x,y,z)∈Hg(x, y, z)r(x, y, z), (6)

where g(x, y, z) is the corresponding attenuation parameter of

the cube (x, y, z) and r(x, y, z) is the path length in the cube

(x, y, z).

B. Problem Description

The drone aims to find the optimal location with the best

link quality. We need to develop a strategy of path choosing

for the drone and a method to update the quality tensor Q in

an online manner.

In this problem, the drone flies along the path according to

the strategy in the space with the initialization of the quality

tensor Q using the data transmission model. Thus, the problem

is described as follows:

In the space set up based on the destination point o(0, 0, 0)
and the source point c(n1, n2, n3), given the start point

s(sx, sy, sz) and the initial quality tensor Q, we design a

strategy for the drone to find the optimal point p(px, py, pz)
so that the link quality Q(px, py, pz) is maximized.

For the reason that such strategy is applied in the certain

scenes for the emergency situations such as fire-fighting,

the energy consumption for the drone is not considered as

the battery for the drone is assumed to be enough for the

completion of most fire-fighting scenarios. Due to the current

development of drone technology, the stability of the drone is

also not considered. Other factors such as frequency spectrum

are excluded since the specific application scenarios are short-

ranged and these factors are much less significant in this

problem.

C. Overview of 3-D Tensors

To solve the problem, we first introduce some concepts in

the linear algebra and present the general statement of the

tensor completion problem. For a 3-D tensor X , X (i) denotes

the ith frontal slice of X . We use X (:, :, k), X (:, j, :) and

X (i, :, :) to denote the kth frontal slice, jth lateral slice and

ith horizontal slice, respectively. X̂ denotes the 3-D tensor

obtained by taking the Fourier transform on X along the third

dimension.

1) Linear operation: T-product is used to define the mul-

tiplication for 3-D tensor. For a 3-D tensor X ∈ R
n1×n2×n3 ,

we can view it as an n1 × n2 matrix with each element as a

tube which can be seen as a vector into the tensor. Each tube

of the 3-D tensor can be described as X (i, j, :). Then we give

the definition of t-product.
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Definition III.1. t-product. The t-product C of A ∈
R

n1×n2×n3 and B ∈ R
n2×n4×n3 is a tensor of size n1×n4×n3

where the (i, j)th tube denoted by C(i, j, :) for i = 1, 2, ..., n1

and j = 1, 2, ..., n4 of the tensor C is given by Σn2

k=1A(i, k, :
) ∗ B(k, j, :).

The t-product of A and B can be calculated by performing

the Fast Fourier transformation (FFT) along the tubes of A
and B to obtain Â and B̂, then multiplying each pair of the

frontal slices of Â and B̂ to obtain Ĉ, and finally performing

the inverse FFT along the third dimension to obtain the result.

The details are shown in [10] [12] [13].

2) t-SVD: Using multiplication for 3-D tensors, we can

compute a tensor-Singular Value Decomposition (t-SVD).

First, we give the following definitions.

Definition III.2. Tensor Transpose. For a tensor X with size

n1×n2×n3, X� is obtained by transposing each of the frontal

slices and reversing the order of transposed frontal slices 2

through n3.

Definition III.3. Identity Tensor. The identity tensor J ∈
R

n×n×n3 is tensor whose first frontal slice is the n×n identity

matrix and all other frontal slices are zero.

Definition III.4. Tensor Tubal-rank. The tensor tubal-rank

of a 3-D tensor is the number of non-zero tubes of S in the

t-SVD factorization.

For a tensor M ∈ R
n1×n2×n3 , the t-SVD of M is given

by

M = U ∗ S ∗ V�, (7)

where the tensors U and V have the feature that U� ∗U = J ,

V� ∗ V = J .

Using the t-SVD, we can extract notions of complexity

of the data in the matrix in terms of ”rank”. The notion of

multi-rank was proposed in [12] using the Fourier Domain

representation of t-SVD as the vector of ranks of the slices

X̂ (:, :, k), k = 1, 2, ..., n3. The l1 norm of the multi-rank can

then be a way to measure the complexity of the data in the

matrix.

3) Tensor Completion: Compressive sensing is usually a

method for tensor completion [14] [15]. Consider the problem

to predict the missing data of a tensor with some of its

data being sampled. Suppose there is an unknown tensor

M∈ R
n1×n2×n3 which is assumed to have a low tubal-rank,

which indicates that in continuous space, the elements have

high relativity. A subset of entries {Mi,j,k : (i, j, k) ∈ Ω} is

sampled where Ω is an indicator tensor of size n1 × n2 × n3

meaning which entries of the tensor are being obeserved. The

goal is to recover the entire tensor M from sampled data.

To address the problem of tensor completion, the following

minimization problem should be solved

min ||X ||TNN , subject to PΩ(X ) = PΩ(M), (8)

where ||X ||TNN denotes the tensor-nuclear-norm (TNN) and

is defined as the sum of the singular values of all the frontal

slices of X̂ [19] and PΩ is the orthogonal projector indicating

the sampled location. Therefore, the component (i, j, k) of

PΩ(X ) equals to the component (i, j, k) of M if (i, j, k) ∈ Ω
and zero otherwise.

IV. PATH-SAMPLING ONLINE TENSOR UPDATE

Based on the 3-D tensor, we propose the Path-sampling

Online Tensor Update (POTU) algorithm to solve the problem.

In this section, we first take an overview on our approach and

then show the details of our algorithm.

A. Overview

1) Initial Setup: We assume that point o, c, s are known

initially. These points are obtained by the drone using the

camera to observe the location of the field control vehicle

and the camera device. Then we set up the corresponding 3-D

space taking the field control vehicle as the origin o(0, 0, 0)
and the location of the camera as c(n1, n2, n3). Accordingly,

the initial point s(sx, sy, sz) where the drone starts is also set,

usually, to a point on the ground.

Second, the initial values for the 3-D quality tensor Q
are set. Considering that the shadowing loss and the non-

shadowing loss of the signal are relatively less compared to the

large-scale path loss between the sender end and the receiver

end, we initialize the quality tensor with values only taking

the large-scale path loss into account leading to L = P (d).
Note that any form of the distortion on the transmission link

quality resulted from the dynamic environment is corrected

in the tensor update using the sample real data, so that the

initialization does not consider the distortion or the attenuation.

Thus, by (4) and (5), for each element in the quality tensor,

the value is initialized as

Q(i, j, k) = Ro ×Rc

= (So − Lo)× (Sc − Lc)

= (So − P (do))× (Sc − P (dc)),

(9)

where do and dc represent the distances between the drone

and the vehicle, the camera respectively and the large-

scale path loss P (do), P (dc) are given by (2). The dis-

tances do and dc are given by do =
√
i2 + j2 + k2, dc =√

(i− n1)2 + (j − n2)2 + (k − n3)2.

2) Optimal Location Finding Procedure: In the optimal

location finding procedure, samples are taken for updating the

link quality tensor. To acquire the link quality of each point,

signals are sent by both the field control vehicle and the camera

device to the drone. The data contained in the signals includes

the information about the sender, such as the original signal

strength S at the sender end and the transmission start time.

By measuring the signal strength R at the receiver end, we can

get the signal loss L = S−R along the path. After getting the

receiving quality Ro from the field control vehicle point o and

Rc from the camera device point c, the link quality value for

the current location is calculated by (5) and the drone moves

to the next location.

We develop a strategy for the drone to take samples for up-

dating the quality tensor and finally find the optimal location,

ensuring an accurate estimation of the tensor. Let the set D
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be the data sample set and du denote the data sampled at the

location u(ux, uy, uz). By the initialization of the 3-D tensor,

regardless of the shadowing loss and the non-shadowing loss

whose influences will be corrected by tensor update using real

sample, we have already had general estimation of the link

quality tensor, which lacks accuracy for certain. However, it

is good enough for an initialization. Thus, the drone follows

the below steps:

• Step 1: Fly to the current optimal location and take

samples.

• Step 2: Update the link quality tensor Q with D together

with Q.

• Step 3: If the current location is the optimal location, end

the procedure. If not, repeat from Step 1.

After every round of updating the link quality tensor, if the

drone doesn’t arrive at the optimal location, it continues to

find the optimal location and takes samples along the way.

The exact data of each location is used to update the link

quality tensor based on the value achieved before. Specifically,

the values taken by the drone and the values previously

achieved together are the input of the tensor update procedure

to make corrections on the achieved quality tensor. In this way,

gradually, we achieve a more accurate link quality tensor for

optimal location finding.

B. Algorithm

To solve the problem, we design an algorithm named Path-

sampling Online Tensor Update (POTU) to find the optimal lo-

cation. The detail of the algorithm is shown in Algorithm 1. In

general, when the current location is not the optimal location,

POTU samples the data along the path to the optimal location

and updates the link quality tensor using TensorUpdate method

which is introduced later. Then POTU finds the current optimal

location and determines whether to terminate or to continue

the next iteration.

Algorithm 1 Path-sampling Online Tensor Update

Input: o, c, s,Q
Output: p

1: D ← ∅
2: Main Procedure
3: while s �= p do
4: for every point u along the path from s to p do
5: D ← D ∪ du
6: end for
7: Q← TensorUpdate(Q,D)
8: s← p
9: p← argmax

v
{Q(vx, vy, vz)}

10: end while

Initially, the input points, the starting point s, the origin

point o and the camera point c are obtained by the camera

carried by the drone itself and set accordingly. The 3-D space

is set up according to o and c. As for the initialization of

the quality tensor Q, the area where the transmission path

is shadowed by the obstructions like buildings is considered

to have relatively high signal loss so that the locations in

such area cannot be the optimal relay location and are not

considered in our problem. Note that the set D which records

the data that has been sampled till the current time is initialized

to be empty as presented in step 1 in the algorithm.
In the main procedure, POTU takes samples along the path

and updates the link quality tensor Q. As long as that the

current location is not the optimal location, the drone continues

to fly to the optimal location and samples data for the next

round of tensor update. Such procedure is implemented by a

while loop from step 3 to step 10 in the algorithm. Note that

after each process of flying to the current optimal location, the

number of data observed increases.
By taking the data sampled by the drone and the previously

achieved values as inputs, we define tensor update procedure

TensorUpdate(Q, D) in step 7 in the algorithm as a tensor

recovery problem, which actually makes corrections on the

previously achieved value by using the observed value. Con-

sidering the tensor recovery problem, for an unknown 3-D link

quality tensor Q, the goal is to recover the whole tensor Q
from the selected entries by solving the problem

min ||X ||TNN , subject to PΩ(X ) = PΩ(Q), (10)

which is in the same form as (8). Here, all the entries in

the tensor are selected and the exact sampled data is used

for entries at which locations have been sampled and the

previously achieved value is used for other entries.
Let Y be the sampled data, we have Y = PΩ(Q). Define F3

and F−1
3 to be the Fourier and inverse Fourier transform along

the third dimension and G = F3PΩF−1
3 to be an operator.

Thus, we have Ŷ = G(M̂) where Ŷ and M̂ are the Fourier

transforms of Y and M along the third dimension. Under

such construction, the problem (10) can be then represented

as follows:

min ||blkdiag(X̂ )||∗, subject to Ŷ = G(X̂ ), (11)

where blkdiag(X̂ ) is a block diagonal matrix whose di-

agonal blocks are given by X̂ (i). Note that ||X ||TNN =
||blkdiag(X̂ )||∗. The optimization problem can be rewritten

as follows:

min ||blkdiag(Ẑ)||∗ + LŶ=G(X̂ ),

subject to X̂ − Ẑ = 0,
(12)

where L denotes the indicator function. By applying the

framework of Alternating Direction Method of Multipliers

(ADMM) [2], we can have the following recursion

X̂ k+1 = argmin
X̂

{LY=G(X̂ ) + 〈T̂ k, X̂ 〉+ 1

2
||X̂ − Ẑk||22}

= argmin
X̂ :Y=G(X̂ )

{||X̂ − (Ẑk − T̂ k)||F },

(13)

Ẑk+1 = argmin
Z

{1
ρ
||blkdiag(Ẑ)||∗+

1

2
||Ẑ − (X̂ k+1 + T̂ k)||F },

(14)
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T̂ k+1 = T̂ k + (X̂ k+1 − Ẑk+1). (15)

The solution to (14) is given by the singular value threshold-

ing [5]. By examining the format of (14), it can be split into

n3 minimization sub-problems. Let Ẑk+1,(i), X̂ k+1,(i), T̂ k,(i)

denote the ith frontal slice of Ẑk+1, X̂ k+1 and T̂ k. Then (14)

can be split into:

Ẑk+1,(i) = argmin
W

{1
ρ
||W ||∗ +

1

2
||W

− (X̂ k+1,(i) + T̂ k,(i))||F },
(16)

for i = 1, 2, ..., n3. In this way, we can calculate every ith
slice of Ẑk+1. By solving (16), we can update the link quality

tensor presented in Step 7 in the algorithm.

After every round of tensor update procedure, the drone

sets the current point as the start point s and by traversing

the achieved quality tensor, the drone finds the location with

the best link quality and sets the new optimal location p as

presented in step 8 and step 9. Afterwards, the drone examines

whether the optimal location p is the same as the current start

point s. If it is, then the optimal location p is found and the

while loop ends. If not, the drone flies to the optimal location

and makes the next round of correction.

Furthermore, it can be predicted that the whole loop is

certain to come to an end. Since the initialization has found a

relatively good location for video transmission relay, the drone

actually takes samples in the certain small area around the first

found optimal location. Therefore, POTU terminates in limited

time.

V. SIMULATION

In this section, we evaluate the performance of POTU by

comparing POTU with the classic and the state-of-the-art

algorithms.

A. Environment Setting

In the simulations, we create a 3-D space scene which

simulates the real life scene. Specifically, in the 3-D space

based on the point o(0, 0, 0) and c(n1, n2, n3), we put a

cuboid representing the building in the environment marked

by b1, b2, ..., b8 based on the value of n1, n2, n3. The settings

of these points are listed in the Table I. The start point s is

set to (n1, n2, 0), one point on the ground.

Since the signal attenuation through the obstruction is

severe, we assume the optimal location for mobile relay does

not lie in the location where transmission path is obstructed

by the building. Thus, these points are ruled out when finding

the optimal location for best link quality. To simulate the real

life scene, in addition to considering the large-scale path loss,

we add a random value with normal distribution to obtain the

experiment data. Additionally, the values in the tensor have all

been normalized by dividing the value by the maximum value

in the tensor.

In the simulation, we first consider the base methods to

achieve the optimal location. We traverse the whole real

quality tensor to find the real optimal location with the best

TABLE I
OBSTRUCTION POINTS SETTING IN THE SIMULATION.

b1 (0, 1
4
n2, 0)

b2 ( 3
4
n1,

1
4
n2, 0)

b3 ( 3
4
n1, n2, 0)

b4 (0, n2, 0)

b5 (0, 1
4
n2, n3)

b6 ( 3
4
n1,

1
4
n2, n3)

b7 ( 3
4
n1, n2, n3)

b8 (0, n2, n3)

link quality. Afterwards, we compare the performance of

POTU with that of the classic algorithm, K-Nearest Neigh-

bor (KNN), and that of the state-of-the-art algorithm Tensor

Recovery (TR). In KNN, during the flying process to the

optimal location, the drone updates the values of the 6 nearest

neighbors of the current location and finds the new optimal

location until reaching the final optimal location. While in TR,

the link quality tensor is recovered once with the sampled data

then the optimal location is determined.

To evaluate the final optimal location quality, we conducted

T trials and in each trial, N simulations were done and we

measure the performance E of each trial by

E = ΣN
i=1(Qi −Qr)2, (17)

where Qr is the link quality of the real optimal location. The

metric E evaluates the difference between the achieved results

and the real optimal location. Better algorithms have smaller

value since the achieved results are closer to the link quality

of the real optimal location. We calculate the average of the

trial performances E to compare the general performance of

the three algorithms.

In addition, to compare the stability of the three algorithms,

the standard error is calculated by

Errors =

√
ΣN

i=1(Qi − Q̄)2

N − 1
, (18)

where Q̄ =
ΣN

i=1Qi

N . The metric Errors evaluates the standard

error of the results of different simulations. The smaller

the standard error is, the more stable results the algorithm

produces.

In order to measure the efficiency, the time costs of the three

algorithms are also compared. We evaluate the time cost for

each trial by the average time cost of each simulation and the

formulation is given by

t̄ =
ΣN

i=1ti
N

. (19)

Experiments are conducted with different data sizes to acquire

more results about the performance.
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The procedures of simulation are as follows:

• First, initialize with the parameters of the original data.

Setup the 3-D space, mark the point o, c, s and calculate

the initial quality tensor Q.

• Second, simulate the drone’s flying process. Then use the

algorithms POTU, KNN and TR to update the link quality

tensor and record the link quality of the final location for

relay.

• Finally, repeat the simulations several times with different

parameters and compare the performances among the

algorithms.

B. Simulation Results

In Fig. 2, we plot the performance comparisons among the

three algorithms on multiple trials and with different tensor

sizes.

To evaluate the quality performance, it can be seen from

(a), (b) and (c) that, in general, POTU outperforms KNN and

TR. According to our measurement of the link quality which is

given by (17), we know that the less the performance E is, the

better the link quality is acquired. Specifically, in (a), POTU

achieves the performance value 0.412× 10−3, KNN achieves

1.289× 10−3 and TR achieves 0.703× 10−3. Comparing the

results achieved by the three algorithms, we find that POTU

is about 3 times better than KNN and 2 times better than TR.

In (c), where the performance of TR is close to POTU whose

values are 0.586×10−3 and 0.430×10−3, respectively, POTU

is about 5 times better than KNN whose value is 1.935×10−3.

From (b), POTU also has a smaller value of E indicating better

performance than TR and KNN. In total, it can be seen from

the first three figures that performance of POTU is better than

KNN and TR.

Consider the stability of the algorithms, POTU has higher

stability. Specifically, in (a), the values of Errors for each

algorithm are 0.189× 10−3 for POTU, 0.735× 10−3 for TR

and 0.822 × 10−3 for KNN. POTU produces less fluctuation

in achieved quality performances than TR and KNN. While in

(b), the corresponding values of Errors are 0.238× 10−3 for

POTU, 0.441×10−3 for TR and 0.635×10−3 for KNN, from

which we can easily conclude that the results produced by

POTU have relatively smaller standard error and thus POTU is

more stable. In (c), similarly, POTU gives a more stable results

than TR and KNN which have relatively more fluctuation in

the produced results. With different data sizes, POTU also

provides a more stable performance than KNN and TR. When

measuring the stability of the algorithms, POTU outperforms

KNN and TR.

Evaluating the time costs of the three algorithms, POTU

costs more than KNN and TR. From (a), we can calculate the

time costs. For POTU, the average time cost is 79 while for

KNN and TR, the average time costs are around 35. From (b)

and (c), it can be seen that the time cost of POTU is about 2

times the time costs of KNN and TR. In general, POTU has

relatively more time cost than KNN and TR. It cost more time

for POTU to reach the final optimal location for transmission

delay, however, the transmission can be established before

reaching the optimal location. That is, shortly after taking off

from the starting point, say when reaching the relay location of

the first iteration of the algorithm, the drone starts to transmit

data from the source to the destination and continues to further

iterations at the same time. Under such circumstances, the

actual transmission begins much earlier than reaching the final

optimal location which makes up the disadvantage of POTU

in time cost.

In conclusion, POTU outperforms KNN and TR in acquiring

better quality and achieving higher stability, but with more

time cost. POTU produces better transmission relay location

than TR and much better results than KNN. As for stability

of the results, POTU has great advantage over KNN and also

is more stable than TR. When it comes to time cost, since

extra time consumed by POTU is used for the link quality

tensor update to achieve better location and the transmission

can be established before reaching the final optimal location

while using POTU, the significance of the time cost is less

than the quality performance or the stability. All in all, POTU

outperforms KNN and TR.

VI. CONCLUSION

In this paper, we focus on using mobile relays to enhance the

signal quality in data transmission. Considering the existence

of obstructions along the data transmission path, we propose

to use the drones to forward the data stream in order to

bypass the obstruction. Based on such method, we design

the POTU algorithm for the drone to sample data from the

environment and update the link quality tensor to find the

optimal location for mobile relay. Simulations on the POTU,

KNN and TR show that the POTU algorithm finds better

location for transmission relay and produces more stable

results but with relatively more time cost. As for the time

cost, however, the drone can start transmission shortly after

taking off from the start point and continue to find the optimal

location at the same time. In conclusion, POTU has better

performance in achieving the trade-off between time cost and

optimal location finding.

The future works on such topic are as follows. First, more

effort can be put into setting up a more realistic initialization

for the link quality tensor so that during the updating process,

it will be easier to find the optimal location. For example,

frequency spectrum can be considered when establishing the

transmission and proper estimation of attenuation can be

considered when calculating the initial link quality tensor in

order to speed up the process. Second, more other factors can

be considered into the update algorithm to improve the update

accuracy and the performance stability. For instance, certain

conditions of the environment affecting the parameters of the

space can be considered such as humidity and temperature.

Also, dynamic self-adjusted parameters can be used within

the algorithm to acquire more accurate estimation of the link

quality tensor.
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(b) Link quality with size 30× 30× 30
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(c) Link quality with size 40× 40× 40
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Fig. 2. Simulation results for POTU, KNN and TR.
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