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Abstract— Exploration of white spaces has been recognized as
a promising way to improve the utilization of wireless spectrums.
Especially, indoor white space exploration has been shown to
be much more challenging than that in outdoor environment.
Most of existing works on indoor white space exploration infer
availabilities of TV channels based on the correlations among
the channels and locations, which is learned from the training
data measured beforehand. However, the process of training data
collection normally requires considerable time and devices, as
well as human power. In this paper, we perform a measure-
ment of indoor white spaces and study their characteristics.
Based on the in-depth understanding of the characteristics,
we propose a Training-free Indoor white space exploration
MEchanism (TIME). In TIME, we design an algorithm for chan-
nel state inference based on Bayesian compressive sensing, as well
as an incremental method for deployment of spectrum detectors.
Furthermore, we present an algorithm to determine a proper
number of spectrum detectors in need. Extensive real-world
experiments are conducted to evaluate TIME’s performance.
The evaluation results demonstrate that TIME achieves
competitive performances against the state-of-the-art training-
based mechanisms.

Index Terms— White space, spectrum measurement, spectrum
exploration.

I. INTRODUCTION

THE fast development of wireless networks and mobile
communications leads to explosive wireless traffic

growth, and thus the shortage of wireless spectrums becomes
more and more serious given the existing static spectrum
allocation strategy. However, it is observed that most licensed
spectrums are not fully utilized, but in contrast, the amount of
unlicensed spectrums, which are free to use, is very limited.
To deal with the growing spectrum demand, the concept
of dynamic spectrum access (DSA) was proposed, which
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allows unlicensed wireless devices to access the locally vacant
licensed spectrums [1]–[5].

In 2008, Federal Communication Commission (FCC) issued
a historic rule that allows the unlicensed access of vacant (or
unoccupied) TV spectrums. After that, accessing vacant TV
spectrums became a popular implementation of DSA. People
call vacant TV spectrums “TV white spaces” or simply “white
spaces”. Unlicensed devices are allowed to access the locally
unoccupied TV spectrums, but should not interfere with any
of the licensed transmissions (e.g., TV broadcast). Therefore,
all user devices (especially the unlicensed ones) are required
to explore whether a TV channel is occupied or not before
using it.

There are mainly two kinds of white space exploration:
outdoor and indoor white space exploration. Most of the prior
works focus on the outdoor white space exploration [6]–[8],
where two approaches are spectrum sensing and geo-location
database. The spectrum sensing approach requires every unli-
censed device directly detect the state of a TV channel
before using it, which is expensive on devices and energy
consumption. And it is difficult for off-the-shelf devices
to detect the existence of TV signals at high accuracy.
In contrast, the geo-location database approach, maintained
by FCC, needs no hardware and is easy to implement. Most
white space devices and standards are designed based on it.
A user device gets to know the white space availability by
querying an online database, which stores a white space
availability map. The map indicates the availability of wireless
spectrums at different outdoor locations. However, in the
indoor scenario, we cannot directly apply the approach of
geo-location database. This is because there are relatively
more obstacles (e.g., walls) than that of the outdoor scenario.
Directly applying geo-location database to the indoor scenario
would miss considerable amount of white spaces [9]. To solve
this problem, Ying et al. [9] carried out a large-scale white
space measurement, and proposed the first indoor white space
exploration system, namely WISER. Then, Liu et al. [10]
studied the linear dependence among different channels and
locations, and proposed a cost-efficient indoor white space
exploration scheme FIWEX.

Existing indoor white space exploration approaches [9], [10]
try to deploy spectrum detectors at a small number of indoor
locations, and infer a complete availability map of indoor
white space through methods of data reconstruction. Their
data reconstruction modules and spectrum detector deployment
methods rely on the knowledge of training data sets. This
means that results of indoor white space measurement should
be collected as training data before running the white space
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exploration system. The process of training data collection
normally requires considerable time, devices, as well as human
power, especially in a large and complicated indoor envi-
ronment. Each time one wants to deploy an indoor white
space exploration system in a building, she always needs to
perform the indoor white space measurement for a period
of time, since different buildings have different indoor white
space characteristics. Furthermore, the measurement may be
unable to be carried out, if there are not sufficient number of
spectrum detectors. Therefore, a training-free mechanism for
indoor white space exploration is highly attractive.

In this paper, we propose a Training-free Indoor white
space exploration MEchanism, namely TIME. TIME does not
need any training data, and thus reduces the complexity of
system deployment. There are three major challenges when
designing TIME: (A) How to reconstruct the complete indoor
white space availability map based on the incomplete sensing
data? (B) How to deploy the spectrum detectors? (C) How to
determine the number of spectrum detectors? Existing works
have solved these challenges based on the correlations among
indoor white spaces studied from the training data. However,
when there is no training data, these challenges cannot be
directly solved, due to the lack of a priori knowledge. To solve
these problems, we consider Bayesian compressive sensing
as the data reconstruction algorithm, since it provides a full
posterior density function for the reconstructed data, which is a
useful tool for training-free deployment of spectrum detectors.
Bayesian compressive sensing cannot be directly applied to the
deployment process because of the unique sampling matrices
of indoor white spaces. In our work, we design the sampling
matrix for indoor white spaces in a novel way, and incremen-
tally deploy the spectrum detectors. We determine the location
of each spectrum detector one by one, such that the differential
entropy [11] of the reconstruction result is minimized in
every iteration. We also propose an innovate algorithm to
determine the proper number of spectrum detectors based on
the covariances of reconstruction.

The main contributions of this paper are summarized as
follows.
• We perform an indoor white space measurement in our

complex of offices and labs for a period of two weeks,
and study the characteristics of indoor white spaces. The
measurement results show the correlations and stability
of indoor white spaces. By carefully exploiting these
two characteristics, we come up with a mechanism for
training-free indoor white space exploration.

• We propose TIME, which is a training-free indoor white
space exploration mechanism. It can effectively reduce
the deployment complexity of indoor white space explo-
ration system. TIME deploys the spectrum detectors in
an incremental way, such that the differential entropy
is minimized in every iteration, and reconstructs the
complete availability map of indoor white spaces based
on the incomplete sensing results. We also propose
an algorithm to determine a proper number of spec-
trum detectors. To the best of our knowledge, TIME is
the first training-free indoor white space exploration
mechanism.

• We evaluate the performance of TIME with extensive
real-world experiments. The evaluation results demon-
strate that our training-free mechanism, TIME, achieves
competitive performance to the state-of-the-art training-
based mechanisms.

The rest of the paper is organized as follows. Section II
briefly introduces the Bayesian compressive sensing theory.
In Section III, we present our indoor white space measurement
experiment and results observed. Section IV shows the detailed
design of TIME. Evaluation results are given in Section V.
In Section VI, we discuss some practical problems for indoor
white space exploration. Section VII discusses related work.
We conclude the paper in Section VIII.

II. PRELIMINARY

These years, indoor white space exploration receives more
and more attentions, since there are more indoor white spaces
than outdoor environment [9]. However, the geo-location
database approach, which is commonly utilized in outdoor
white space exploration, cannot be directly applied to the
indoor scenario, because of the existence of the indoor obsta-
cles (e.g., walls). Existing indoor white space exploration
works [9], [10] deploy spectrum detectors at part of the indoor
locations, and recover the white space information over all
locations through training based data reconstruction method.
In our work, we design a Bayesian compressive sensing based
reconstruction module, and present an incremental method to
deploy spectrum detectors.

Compressive sensing (CS) is a new type of sampling tech-
nique, which is widely utilized in different realms [12]–[15].
According to the compressive sensing theory [16], [17], a
signal with the feature of sparsity can be reconstructed with a
high accuracy. Bayesian compressive sensing (BCS) [18]–[20]
is a more advanced compressive sensing data reconstruction
method based on sparse Bayesian learning and the Relevance
Vector Machine (RVM) [21]. Different from the traditional
compressive sensing, Bayesian compressive sensing provides
a full posterior density function instead of the single point
estimation, and gives error bars of the reconstructed data,
which can be used to guide the design of the additional
measurements.

Suppose x is an unknown vector in R
n , which has sparse

representation under some basis � . Then, x can be repre-
sented by

x = �ω =
n∑

i=1

ψiωi , (1)

where � = [ψ1, ψ2, . . . , ψn ] is an n × n dimension basis,
ψi is the i th column of � , and ωi is the corresponding
coefficient. Usually the representation basis � is an orthog-
onal matrix, such as discrete wavelet transform (DWT) basis
and discrete cosine transform (DCT) basis. If the coefficient
vector ω is sparse, which means that most components of ω

have negligible amplitudes, then x is sparse under basis � ,
and can be accurately reconstructed by a small number of
measurements

y = �x = ��ω, (2)
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Fig. 1. Floor map with 66 measurement locations, each denoted by
a red dot.

where � = [φ1, φ2, . . . , φm]T is an m × n (m � n)
sampling matrix, and every row φT

i represents a sample
or a measurement. The problem of solving ω based on y,
� and � is ill-posed since m � n. However, if ω is sparse,
such an ill-posed problem can be solved via an �1-regularized
formulation [16]

ω̂ = arg min
ω
{‖y −��ω‖22 + ρ‖ω‖1}, (3)

where the scalar ρ controls the relative importance of precise
fit to the measurement and sparseness. In real-world applica-
tions, the measurements may be noisy. Bayesian compressive
sensing considers a common zero mean Gaussian noise with
unknown variance σ 2. The measurement result becomes:

y = ��ω + n, (4)

where n ∈ R
m is the Gaussian noise. Given �, � , and y,

Bayesian compressive sensing provides the posterior density
function for ω with mean μ and covariance 
. The values
of μ and 
 are calculated by the Bayesian compressive
sensing module.

Bayesian compressive sensing also provides an effective
way to incrementally design the sampling matrix �. Suppose
the current sampling matrix is �, which is an m × n matrix,
a new measurement means adding a new row φT

m+1 to �.
An optimal φT

m+1 should be designed to reduce the uncertainty
as much as possible, which means to minimize the differential
entropy [11]. According to the Bayesian compressive sensing
theory [18], minimizing the differential entropy equals to
maximize

φT
m+1
φm+1 = φT

m+1Cov(ω)φm+1 = Var(ym+1). (5)

This means that φT
m+1 should maximize the variance of the

measurement ym+1, and the eigenvector of 
 with the largest
eigenvalue is a good choice of φm+1.

III. INDOOR WHITE SPACE MEASUREMENT

In this section, we introduce our indoor white space mea-
surement experiment. We perform the measurement on the
3rd floor of a complex of offices and labs for two weeks
(Nov. 3, 2014 - Nov. 16, 2014) to explore the characteristics
of indoor white spaces. The floor map is shown in Fig. 1. The
observations provide important guidelines for designing our
training-free indoor white space exploration mechanism.

Fig. 2. Our measurement device with a laptop, an USRP N210, a log periodic
PCB antenna, and an uninterrupted power supply (UPS).

A. Equipment and Setup

Our measurement device (Fig. 2) consists of a laptop, an
USRP N210, a log periodic PCB antenna (400-1000 MHz),
and an uninterrupted power supply (UPS). The USRP N210 is
equipped with SBX daughter-board with 5-10 dBm noise
figure.

We measure the UHF TV channels with central frequencies
within 470 MHz - 566 MHz and 606 MHz - 870 MHz. The
bandwidth of a TV channel is 8 MHz. We measure a total
of 45 TV channels. Several methods have been proposed to
detect the presence of signal transmissions, such as energy
detection, matched filtering, and waveform-based sensing.
Here, we choose energy detection, since it is a commonly
used spectrum sensing method with low computation and
implementation complexity. Please refer to [22] for a survey of
spectrum sensing algorithms for cognitive radio applications
and [23], [24] for the knowledge of energy detection. We use
a GUN Radio FFT program with a bin size 1024 and sample
rate 4 MHz. The signal strength of a channel is calculated
by averaging the values of all the corresponding bins.
We compare the detected signal strengths with a threshold.
If a channel’s signal strength is greater than the threshold,
we consider this channel as occupied, otherwise unoccupied.
The same as [9], we use a threshold of −84.5 dBm/8 MHz.
Although the threshold is higher than that suggested by FCC
(i.e., −114 dBm/8 MHz) [25], we set the threshold in this way
due to the limitation of our hardware. We have to note that the
vacant channels detected using our prototype may be not safe
to access in practice. However, our measurement observations
and designed mechanism are not limited to any specific
threshold. If the devices (e.g., ThinkRF WSA5000 [26])
are sensitive enough to support a threshold of
−114 dBm/8 MHz, the vacant channels detected by our
prototype would be safe to use.

B. Measurement Results and Observations

In the indoor white space measurement, we choose
66 typical indoor locations (red dots in Fig. 1), and measure the
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Fig. 3. Indoor white space measurement observations.

signal strengths of all the 45 TV channels at each location. Our
measurement device is loaded on a movable cart. We measure
TV channels’ signal strengths at one location after another.
We perform one round of measurement each day. The mea-
surement lasts for a period of two weeks. It would be ideal to
simultaneously measure the TV channels at all the locations.
However, that would need 66 sets of spectrum detectors, which
exceed the budget of our research funding. Ying et al. [9]
have shown that TV channels are short-time stable in terms
of hours. In our work, a round of measurement over all
66 locations needs no more than two hours, and thus the
results of the asynchronous measurement can still provide
some insights. Actually, there exist correlations among indoor
white spaces at different times. In this paper, we just study
the space and channel correlation. Utilizing time correlation
to improve the system performance is one of our future work.

For the convenience of representation, we convert the
absolute signal strengths to relative values by subtracting
the threshold (−84.5 dBm) from them. After each round of
measurement, we get a 66× 45 matrix

X =

⎛
⎜⎜⎜⎝

x1,1 x1,2 . . . x1,44 x1,45
x2,1 x2,2 . . . x2,44 x2,45
...

...
. . .

...
...

x66,1 x66,2 . . . x66,44 x66,45

⎞
⎟⎟⎟⎠, (6)

where xi, j refers to channel j ’s relative signal strength at
location i . Since Bayesian compressive sensing can reconstruct
vector data with a high accuracy, for the convenience of
calculation, we transform matrix X to a vector in a row-wise
order:

x = (x1,1, x1,2, . . . , x1,45︸ ︷︷ ︸
Location 1

, x2,1, . . . , x2,45︸ ︷︷ ︸
Location 2

, . . . , x66,45)
T , (7)

where x is a vector of 2970 dimensions (2970 = 66 × 45).
We perform one round of measurement every day, and get
a corresponding relative signal strength matrix X , which

contains the relative signal strengths of the 45 TV channels at
66 indoor locations. After the two weeks’ measurement, we
get a total of 14 measurement data sets. We use X (i) and x(i)

to denote the measurement data set in the i th day. From
the indoor white space measurement, we have the following
observations.

First, we draw measurement results of the first day
(Nov. 3, 2014). Fig. 3(a) shows the 45 TV channels’ relative
signal strengths over all the 66 indoor locations. We observe
that even for the same channel, its signal strengths may
differ from each other at different locations. Fig. 3(b) is the
corresponding availability map of indoor white spaces, where
black blocks refer to occupied channels and white blocks
refer to white spaces. The state of each channel is different
at different locations, and this means that a channel may be
occupied at some indoor locations while vacant at others. The
differences on a TV channel’s signal strengths are caused
by the complicated indoor obstacles (e.g., walls), and make
the commonly used outdoor white space exploration approach
(i.e., geo-location database) invalid in the indoor environment.
If we directly apply the outdoor exploration methods to the
indoor environment, we may lose a number of potential white
spaces and get a conservative result.

Second, the measurement results show that there exist
correlations among the indoor white spaces, which means
that the signal strengths of TV channels are not independent
at different channels or locations. Intuitively, correlations of
indoor white spaces represent the redundancies in X and x.
The redundancies in matrices indicate their property of low
rank, while those in vectors infer their property of sparsity.
We use the first day’s measurement data as an example to
illustrate the correlations among indoor white spaces. Fig. 3(c)
demonstrates that the relative signal strengths of all 45 TV
channels are similar at location 13, 21, 33, and 51, which
means that the 13rd, 21st, 33rd, and 51st rows in X (1) have
similar values. Similarly, Fig. 3(d) shows that the relative
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Fig. 4. Stability of correlations.

signal strengths of channel 20 and 25 are similar at all
66 locations. This means that the 20th and 25th columns
in X (1) are similar. These two figures demonstrate that the
rows and columns of X (1) are not independent. Besides, for
a matrix X , if the vector that contains all its singular values
is sparse, then the matrix is low rank. In Fig. 3(e), we draw
the distribution of the singular values from the 14 relative
signal strength matrices. The X-axis represents the i th singular
values, and the Y-axis stands for the normalized singular
values. Fig. 3(e) suggests that most of the energy is contributed
by the top few singular values, which reveals the approximate
low rank structure of X (1), X (2), ..., X (14).

We also explore the sparsity of vector x. Fig. 3(f) plots the
value of x(1). The X-axis represents the index of x(1), and the
Y-axis stands for the values. Fig. 3(g) shows the corresponding
coefficients ω(1) after the discrete cosine transform (DCT)

ω(1) = �−1x(1), (8)

where � refers to the DCT basis. The sparsity of x(1) on
the basis � means that the vector ω(1) should be sparse
or approximately sparse. In order to intuitively illustrate the
sparsity of ω(1), we sort the elements of ω(1) in a descending
order, and show the results in Fig. 3(h). We observe that
most of the coefficients have negligible amplitudes. Actually,
only 81 of the 2970 have relatively large absolute coefficients
(> 10) in ω(1). The average number of coefficients with
absolute value larger than 10 is 86.4 for all of the 14 rounds
of measurement results. This means that ω is sparse and the
DCT basis is a sparse basis for the measurement data x.

At last, we study the stability of the indoor white spaces’
correlations. Here, we focus on vector x. We perform DCT
on 7 rounds of measurement results x(1), x(2), ..., x(7), and
calculate their DCT coefficients ω(1),ω(2), ...,ω(7). Fig. 4(a)
illustrates all the DCT coefficients from these 7 rounds of
measurement results, whose absolute amplitudes are larger
than 10. Fig. 4(b) shows the corresponding top 50 coefficients
with the largest absolute amplitudes. It is observed that the
value of these large coefficients in ω(1),ω(2), ...,ω(7) may be
different in different measurement data sets, but the locations
of them are relatively consistent.

C. Summary

The main observations of the indoor white space measure-
ment experiment are as follows.
• The signal strengths of TV channels differ from each

other at different indoor locations.
• There exist correlations among indoor white spaces.

Fig. 5. The system model: a part of the candidate locations are selected
to deploy spectrum detectors. The partial sensing results are submitted to
the central server where the complete indoor white space availability map is
calculated based on the partial sensing results. Users could get the status of
TV channels by submitting their indoor locations.

• The correlations among indoor white spaces are stable
over time.

These observations provide important guidelines for designing
our training-free indoor white space exploration mechanism.

IV. SYSTEM DESIGN

In this section, we provide the details of our system design.
We first introduce the system model, and then present the data
reconstruction algorithm. Next, we propose the incremental
deployment algorithm of spectrum detectors. At last, we
present the method determining proper number of spectrum
detectors.

A. System Model

The system architecture of TIME is shown in Fig. 5.
At first, we select N typical indoor locations that cover the
main indoor areas, and call them candidate locations. Just
like the existing works [9], [10], we assume that the candidate
locations are easily selected to cover each room and corridor
of the target building. Given N candidate locations, we aim
to deploy spectrum detectors at M of them. We denote the set
of candidate locations using

V = {1, 2, · · · , N}, (9)

while the set of locations with spectrum detectors deployed is
denoted by

S = {l1, l2, · · · , lM }, (10)

where 1 ≤ l1 < l2 < · · · < lM ≤ N . Each
spectrum detector i is deployed at candidate location li .
It is clear that S is a subset of V (S ⊆ V ). Ideally,
if we deploy a spectrum detector at each of the N can-
didate locations (M = N, S = V ), we can perform a
complete sensing, and get an accurate white space avail-
ability map at all candidate locations. However, this kind
of approach costs too much due to the need of a large
number of spectrum detectors. Instead, we only deploy
spectrum detectors at a part of the candidate locations
(M < N, S � V ), and perform an incomplete sensing.

We assume that the relative signal strengths of TV channels
at candidate location k ∈ V store in

xk = (xk,1, xk,2, · · · , xk,C )
T ∈ R

C , (11)

where C refers to the number of TV channels, and xk, j

is the relative signal strength of channel j at location k.
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The complete indoor white space information, which stores
in x, can be denoted by

x = (xT
1 , xT

2 , · · · , xT
N )

T ∈ R
NC . (12)

Each spectrum detector i , which is deployed at candidate
location li , submit xli to the central server at regular time
intervals. The central server then collects the incomplete
sensing results xl1, xl2, · · · , xlM in a vector

y = (xT
l1 , xT

l2 , · · · , xT
lM
)T ∈ R

MC, (13)

and performs the data reconstruction to estimates the complete
white space information x. After that, the central server
calculates the indoor white space availability map based on the
reconstructed x, and stores the map into its database. When
users want to access indoor white spaces, they submit their
indoor locations to the central server. Given a user’s indoor
location, the central server finds the candidate location, which
is the nearest to the user, and returns a list of the white spaces
according to the candidate location. In the returned list of
white spaces, the central server excludes the channels occupied
by licensed users and existing unlicensed white space users
within the estimated interfering distance.

Same as [9] and [10], we assume that the white space
availability at a given location is the same as that of its nearest
candidate one. We leave the case, in which this assumption
does not hold, to our future work.

The remaining part of this Section is organized as fol-
lows. In Section IV-B, we propose the Bayesian compressive
sensing based reconstruction algorithm. Then, we present
the incremental deployment method of spectrum detectors in
Section IV-C. At last, Section IV-D shows how to determine
the number of spectrum detectors.

B. Availability Map Reconstruction

As we mentioned before, in order to perform efficient
indoor white space exploration, we can only deploy spectrum
detectors at part of the candidate locations, and get an incom-
plete sensing result y. Here, we consider that the spectrum
detectors have already been deployed at a part of the candidate
locations. We will present the algorithm for deployment of
spectrum detectors in Section IV-C. The central server gets
the incomplete sensing result y ∈ R

MC , and tries to estimate
the complete data x ∈ R

NC . We have

y = �x, (14)

where � is a sampling matrix representing the deployment of
spectrum detectors. � is an MC × NC matrix:

� =

⎛
⎜⎜⎜⎝

�l1,1 �l1,2 . . . �l1,N−1 �l1,N

�l2,1 �l2,2 . . . �l2,N−1 �l2,N
...

...
. . .

...
...

�lM ,1 �lM ,2 . . . �lM ,N−1 �lM ,N

⎞
⎟⎟⎟⎠, (15)

where �i, j is a C × C matrix, and

�i, j =
{

IC if i = j,

0 otherwise,
(16)

with IC referring to the C × C identity matrix.

Our measurements in Section III have shown that different
TV channels or different indoor locations are dependent, and
there exists redundancy in vector x, which means that x has a
sparse representation on an orthogonal basis. In this work, we
choose DCT basis, as it has been widely adopted in signal
processing and image compression. We have also verified
that DCT works well on the indoor white space data x in
Section III-B. Let ω be the coefficients of x under DCT basis.
We have

y = �x = ��ω, (17)

where � refers to the DCT basis and ��T = I . To deal with
the measurement noise, we add a zero-mean Gaussian noise n,
which is commonly used, to the measurement results

y = ��ω + n, (18)

where n ∼ N (0, σ 2).
After obtaining y, we are ready to estimate x. Although

there is only one non-zero element in every row of the
sampling matrix � according to its definition, we can still
use compressive sensing to do the reconstruction [13]. This is
because x is sparse under � , and what we actually reconstruct
is w, where each component of y is a combination of w.
According to the Bayesian compressive sensing theory [18],
given y, we can get the posterior for ω as a multivariate
Gaussian distribution with mean and covariance:

μ = 1

σ 2
�
T�T y, (19)


 =
(

1

σ 2�
T�T�� + A

)−1

, (20)

where A refers to the parameters in the prior of ω. Here,
we use the hierarchical sparseness prior in a similar way
as [18] and [21]. The value of A and σ 2 can be estimated
based on the RVM model. Due to the space limitation, we omit
the calculation process. Please refer to [21] for more details.
In our work, we use a fast RVM algorithm [27] to improve the
running speed. Since x = �μ, the posterior density function
of x is also a multivariate Gaussian distribution with mean
and covariance:

E(x) = �μ, (21)

Cov(x) = �
�T . (22)

The central server receives the incomplete sensing result y
at regular time intervals, and then performs the Bayesian
compressive sensing based data reconstruction to obtain the
posterior density function of the complete data x. We use
E(x) as the estimation of x, and the diagonal elements of
Cov(x) as error bars to describe the estimation accuracy. Given
x̂ = E(x), we can easily change it to the matrix form X̂ , which
contains the reconstructed relative signal strengths, based
on a reverse process of equation (7). Intuitively, the white
space availability map should be calculated by comparing
the elements of X̂ with 0. But FCC requires that unlicensed
devices should not interfere with the licensed signal transmis-
sions. This means that the white space exploration mecha-
nism should avoid misidentifying an occupied TV channel as



LIU et al.: TRAINING-FREE INDOOR WHITE SPACE EXPLORATION 2595

vacant (false alarms). Hence, we compare the reconstructed
relative signal strength X̂(i, j) with the protection range P R
(which is less than 0), instead of 0, to reduce false alarms.
The availability map is defined as

MAP(i, j) =
{

1 if X̂(i, j) < P R,

0 if X̂(i, j) ≥ P R,
(23)

where MAP(i, j) = 1 if channel j is vacant at location i , and
MAP(i, j) = 0 otherwise.

C. Deployment of Spectrum Detectors

Deployment of Spectrum detectors is an important part of
the indoor white space exploration, where different deploy-
ments may yield different system performances. However,
existing works only focus on the training based deployment
method, which means that the channels’ information at differ-
ent locations should be collected in advance as training data.
Then, the indoor spectrum detectors are deployed based on
the training data. The ideal way to collect the training data
is to deploy spectrum detectors at all candidate locations, and
to perform simultaneous signal strength collections. However,
it is expensive and energy consuming. Even if we adopt
the asynchronous way as described in Section III, collecting
training data is also a hard job, especially when we need to
deal with a large and complicated indoor environment.

In our work, we propose an incremental spectrum detectors
deployment method, without a training process. Assuming that
there are M spectrum detectors, we first randomly choose
r candidate locations, and deploy a spectrum detector at
each of them. Actually, we can also deploy the first r spec-
trum detectors according to the “importance” (e.g., spectrum
demand) of different candidate locations. Then, we deploy
the remaining spectrum detectors in an incremental way.
The detailed deployment algorithm is shown in Algorithm 1.
In Algorithm 1, V refers to the set of all candidate locations,
S refers to the candidate locations with spectrum detectors,
and V \ S refers to the candidate locations without spectrum
detector. �d is the current sampling matrix with deployed
spectrum detectors, and is initialized as ∅. We update its
value when a new spectrum detector is deployed. If we deploy
a spectrum detector at location l̂, we can explore all the
C channels at location l̂ , and thus add C rows to �d .
The random deployment process is described in lines 2-6.
After that, we get the current sampling matrix �d and the
corresponding measurement result yd = �d x = �d�ω.

Then, we incrementally choose the locations of spectrum
detectors one by one. In each iteration, we perform the
Bayesian compressive sensing data reconstruction (function
BC S in line 10) given �d and yd . Here, the noise variance σ 2

is an input to BC S, which re-estimates it and calculates μd

and 
d . Initially, σ 2 is set to 1% of yd ’s variance. According
to the Bayesian compressive theory (equations (19)-(22)), the
mean and covariance of x are

E(x) = 1

σ 2�
d�
T�T

d yd , (24)

Cov(x) = �
d�
T , (25)

Algorithm 1 Spectrum Detectors Deployment

Input : V : Set of all candidate locations,
�: DCT basis,
r : Number of spectrum detectors randomly

deployed,
M: Total number of spectrum detectors,

Output: S: Set of candidate locations with spectrum
detectors.

1 S ← ∅; �d ← ∅;
2 for i = 1 to r do
3 Randomly choose a location l̂ f rom V \ S;
4 Deploy a spectrum detector at location l̂;
5 S ← S ∪ {l̂};
6 �d ← [�T

d ,�
T
l̂
]T ;

7 for i = r + 1 to M do
8 yd ← Measurement result under �d ;
9 σ 2

ini ← var(yd )/100;
10 [μd ,
d , σ

2] ← BC S(yd ,�,�d , σ
2
ini );

11 l̂ ← Next Detector(V , S,�,
d );
12 Deploy a spectrum detector at location l̂;
13 S ← S ∪ {l̂};
14 �d ← [�T

d ,�
T
l̂
]T ;

15 return S

where 
d = ( 1
σ 2�

T�T
d�d� + A)−1. After the data recon-

struction, we try to find the currently best location to deploy
next spectrum detector. Since the estimated posterior on x
is a multivariate Gaussian distribution with means E(x) and
covariances Cov(x), the differential entropy [11] of x is

h(x) = −
∫

p(x)logp(x)d x

= 1

2
log|Cov(x)| + c1

= 1

2
log|�
d�

T | + c1

= 1

2
log|
d | + c2

= −1

2
log

∣∣∣∣
1

σ 2�
T�T

d�d� + A

∣∣∣∣+ c2, (26)

where c2 is independent of the sampling matrix �d . Min-
imizing the differential entropy is equal to maximizing the
information we get [18]. So, when deploying the next spectrum
detector, we choose a location that minimizes the differential
entropy in equation (26). Actually, the differential entropy
based method has been previously studied in the machine
learning community under the name of experimental design
or active learning [28], [29]. Deploying one more spectrum
detector means adding C rows into �d . Hence, we cannot
directly apply the result presented by [18] (equation (5)).
If we deploy the next spectrum detector at location l ∈ V \ S,
we add an extra C × (NC) matrix �l to �d ,

�l = (�l,1,�l,2, · · · ,�l,N ), (27)
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where �i, j is defined in equation (16). The new sampling
matrix after deploying a spectrum detector at location l is

�new =
[
�d

�l

]
. (28)

We define hnew(x) as the differential entropy under the new
sampling matrix �new , and have

hnew(x)− h(x)

= −1

2
log

∣∣∣∣
1

σ 2�
T�T

new�new� + A

∣∣∣∣

+1

2
log

∣∣∣∣
1

σ 2�
T�T

d�d� + A

∣∣∣∣

= −1

2
log

∣∣∣∣
1

σ 2�
T�T

d�d� + A + 1

σ 2�
T�T

l �l�

∣∣∣∣

+1

2
log

∣∣∣∣
1

σ 2�
T�T

d�d� + A

∣∣∣∣

= −1

2
log

∣∣∣∣

−1
d +

1

σ 2�
T�T

l �l�

∣∣∣∣+
1

2
log

∣∣∣
−1
d

∣∣∣

= −1

2
log

∣∣∣∣INC + 1

σ 2�
T�T

l �l�
d

∣∣∣∣, (29)

where INC is an (NC)×(NC) identity matrix. Since it is time
consuming to calculate the determinant of the (NC) × (NC)
matrix INC + 1

σ 2�
T�T

l �l�
d , we transform equation (29)
to:

hnew(x)− h(x)

= −1

2
log

∣∣∣∣INC + 1

σ 2�
T�T

l �l�
d

∣∣∣∣

= −1

2
log

( |�l�| · |INC + 1
σ 2�

T�T
l �l�
d | · |�T�T

l |
|�l�| · |�T�T

l |

)

= −1

2
log

( |�l��
T�T

l + 1
σ 2�l��

T�T
l �l�
d�

T�T
l |

|�l��T�T
l |

)

= −1

2
log

( |�l�
T
l + 1

σ 2�l�
T
l �l�
d�

T�T
l |

|�l�
T
l |

)

= −1

2
log

( |�l�
T
l | · |IC + 1

σ 2�l�
d�
T�T

l |
|�l�

T
l |

)

= −1

2
log

∣∣∣∣IC + 1

σ 2�l�
d�
T�T

l

∣∣∣∣, (30)

where IC is a C × C identity matrix. We now just need to
calculate the determinant of IC + 1

σ 2�l�
d�
T�T

l , which is

a C ×C matrix. Minimizing hnew(x) is equal to maximizing
|IC + 1

σ 2�l�
d�
T�T

l |, where σ 2 and 
d can be calculated
based on the current measurement results. For each of the
remaining candidate location l without spectrum detector
(l ∈ V \ S), we generate its corresponding �l , and deploy
the next spectrum detector at location l̂, which maximizes
|IC+ 1

σ 2�l̂�
d�
T�T

l̂
|. This process is shown in Algorithm 2.

In this way, we choose the current most informative location
by minimizing the differential entropy. We repeat the above
process (lines 8-14 in Algorithm 1) until all the spectrum
detectors are deployed.

Algorithm 2 Next Detector(V , S,�,
d )

Input : V : Set of all candidate locations,
S: Set of candidate locations with spectrum

detectors,
�: DCT basis,

d : Covariance matrix.

Output: l̂: Location of next spectrum detector.
1 Ê ←−∞;
2 foreach l ∈ V \ S do
3 E ← |IC + 1

σ 2�l�
d�
T�T

l |;
4 if E > Ê then
5 Ê ← E ; l̂ ← l;

6 return l̂

Algorithm 3 Spectrum Detector Location Adjustment

Input : V : Set of all candidates locations,
S: Set of candidate locations with spectrum

detectors,
�: DCT basis.

Output: Sad : Set of deployment locations after
adjustment

1 Sad ← S;
2 repeat
3 errormin ← +∞; lmin ← 0;
4 foreach l ∈ Sad do
5 L ← Sad \ {l};
6 yL ← Measurement result under �L ;
7 yl ← Measurement result under �l ;
8 σ 2

ini ← var(yL)/100;
9 [μ,
, σ 2] ← BC S(yL ,�,�L, σ

2
ini );

10 E(x)← �μ;
11 error ← ‖yl −�l E(x)‖2/‖yl‖2;
12 if error < errormin then
13 errormin ← error ; lmin ← l; 
min ← 
;

14 Sad ← Sad \ {lmin};
15 l̂ ← Next Detector(V , Sad ,�,
min );
16 Sad ← Sad ∪ {l̂};
17 until lmin = l̂;
18 return Sad ;

Our incremental spectrum detectors deployment method
does not rely on any training data. Since the first r detectors are
randomly deployed, the locations selected may be not optimal,
especially when the number of spectrum detectors is small.
In order to improve the system performance, we adjust
locations of some spectrum detectors after the incremental
deployment. The detailed adjustment method is shown in
Algorithm 3. Sad stands for the set of deployment locations
after adjustment, and is initialized as Sad ← S. For each
location l ∈ Sad , we estimate the TV channels’ signal strengths
at it only based on the knowledge of the other locations with
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spectrum detectors deployed L = Sad \ {l}. Then, we compare
the estimated values with the measured ones at location l,
and calculate the relative error (line 11), where for any vector

v ∈ R
n , ‖v‖2 =

√∑n
i=1 v

2
i . A small error indicates that the

channels at location l can be accurately estimated based on the
readings at the other locations L, and thus l is not an essential
location. If we take away the spectrum detector at location l,
and only use those at L, we can also get a good estimation
result. In contrast, a large relative error means that l is an
essential location, because we cannot correctly reconstruct the
values at location l based on the other locations’ readings.
Hence, we calculate the relative reconstruction error for every
location in Sad , choose the location lmin with the minimum
relative error, and remove it from Sad . After that, we add a
new location l̂ based on our incremental deployment method
(lines 15-16). We repeat the above process until the location
we remove from Sad is the same as the location that we add
based on the incremental deployment method, which means
lmin = l̂.

D. Proper Number of Spectrum Detectors

In the previous subsection, we presented the incremental
algorithm for deploying all the M spectrum detectors, such
that the differential entropy is minimized in each iteration.
However, in practice, to reduce the cost of system deployment,
it is always desirable to deploy an appropriate and possibly
smaller number of spectrum detectors, if the expected recon-
struction accuracy can still be acceptable. Therefore, in this
part, we study the problem of determining a proper number
of spectrum detectors.

In our work, we determine the proper number of spectrum
detectors based on the error bars of the reconstructed data x.
In Algorithm 1, we randomly deploy a number of detec-
tors, and then incrementally deploy the remaining detec-
tors according to the intermediate data reconstruction result.
In the incremental deploying process, before deploying each
detector, we perform a Bayesian compressive sensing based
data reconstruction (line 10 in Algorithm 1), and get ω’s
covariance 
d . According to equation (25), the covariance
of x is Cov(x) = �
d�

T . We define the error bar as the
diagonal of Cov(x)

errbar = diag(�
d�
T ), (31)

to measure the uncertainty of x. We set AvgErr as the
average error that we can tolerate in reconstructing x. In each
iteration, after getting the reconstructed data, we calculate
errbar . If the average value in errbar is less than AvgErr ,
we stop the deployment, otherwise we keep on repeating the
above process. We note that the above presented spectrum
detector location adjustment algorithm can also be applied to
the allocation reached in this part. For example, we can stop
the adjustment when errbar meets the requirements.

V. PERFORMANCE EVALUATION

In this section, we perform extensive experiments to eval-
uate the performance of TIME. First, we compare the per-
formance of TIME with two state-of-the-art training-based

indoor white space exploration mechanisms, WISER [9] and
FIWEX [10]. Then, we evaluate the performance of TIME at
different locations with different channels. Next, we study the
performance of the incremental spectrum detectors deployment
method by comparing with a random deployment. We also
show the feasibility of our deployment method. After that,
we evaluate the algorithm determining the proper number
of spectrum detectors. At last, we combine TIME with the
geo-location database approach, and study the corresponding
performance improvement.

A. Methodology

The evaluation is based on our indoor white space mea-
surement experiment. In Section III, we measure the signal
strengths of 45 TV channels at 66 indoor locations for a period
of two weeks, and get 14 spectrum measurement data sets
(X and x). Although due to limitations of time, we can only
consider 66 locations in the experiment, which may not cover
all the rooms and corridors in our complex, the evaluation
results can still give a good indication of the performance of
our mechanism. In practice, if a sufficient number of candidate
locations are considered, TIME is expected to have satisfac-
tory performance. Furthermore, TIME is not limited to any
specific indoor environment, because it explores and utilizes
the general correlations of indoor white spaces [9], [10]. In the
evaluation, we feed the first day’s measurement results into our
mechanism for the seek of spectrum detectors deployment,
and evaluate its performance using the following 13 data sets.
We randomly deploy the initial 2 spectrum detectors (r = 2),
and then incrementally deploy the remaining spectrum detec-
tors based on the intermediate sensing results. The protection
range P R is set to -0.7 by default. We consider FA Rate,
WS Loss Rate, and Reconstruction Error as the metrics of
system performance. Their definitions are as follows.
• False Alarm Rate (FA Rate): is the ratio between

the number of channels mis-identified as vacant and
the total number of vacant channels identified by the
system.

• White Space Loss Rate (WS Loss Rate): is the ratio
between the number of channels mis-identified as occu-
pied and the total number of actually vacant channels.

• Reconstruction Error: is defined as

‖x̂ − x‖2
/‖x‖2,

where x ∈ R
NC is the real indoor white space information,

and x̂ ∈ R
NC refers to the reconstructed value.

B. Comparison With Existing Mechanisms

In this set of evaluations, we compare the performance of
TIME with the existing training-based indoor white space
exploration mechanisms (WISER and FIWEX). We train
WISER and FIWEX based on 4 data sets, and evaluate their
performance using the remaining 10. We also use the same
10 data sets to evaluate TIME.

We first run the 3 mechanisms with 3 different numbers of
spectrum detectors deployed: 10, 30 and 50. Evaluation results
on FA Rate and WS Loss Rate are shown in Fig. 6(a)-(c).
For the FA Rate, FIWEX performs the best with 2 different



2598 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 34, NO. 10, OCTOBER 2016

Fig. 6. Comparison results in terms of FA Rate and WS Loss Rate.

number of spectrum detectors (10 and 30), while WISER gets
the largest FA Rates. When there are 50 spectrum detectors,
FIWEX gets the largest FA Rate, while WISER gets the
smallest. TIME has the smallest WS Loss Rate when there
are 10 spectrum detectors, while FIWEX performs the best
in terms of WS Loss Rate, when the number of spectrum
detectors are 30 and 50.

When different white space exploration mechanisms are
used, we may have different distributions of WS Loss Rate
over the indoor locations. Fig. 6(e)-(g) illustrate the Cumu-
lative Distribution Function (CDF) curves of WS Loss Rates
at the 66 locations corresponding to the 3 different number
of spectrum detectors deployed. We can observe that the
performance of TIME is competitive to that of WISER and
FIWEX generally, and is even superior to the other two
when there are 10 spectrum detectors available. As shown in
Fig. 6(e), there are 83.6% locations in TIME having WS Loss
Rates less than 40%. The numbers are 71.6% and 65.7% for
FIWEX and WISER, respectively. Furthermore, the number of
locations with WS Loss Rate 0 increases as the increment of
deployed spectrum detectors: 10, 30, 50.

Fig. 6(d) shows the FA Rates when we vary the number
of spectrum detectors from 3 to 66. When the number of
spectrum detectors is small (< 7), the FA Rates of TIME are
higher than the others. This is because we randomly choose
the beginning 2 spectrum detectors. When the number of
spectrum detectors is small, there exists randomness among
the selected spectrum detectors deployment locations, and thus
the best locations may not be chosen. As the number of
spectrum detectors increases, the influence of the incremental
spectrum detector deployment method becomes more signif-
icant, and makes the FA Rate of TIME decreases quickly.
Actually, the average FA rate (from 3 spectrum detectors to
66 spectrum detectors) of TIME is 2.21%, which is almost
the same as WISER (2.18%), and only a little bit higher than
FIWEX (1.49%).

We show the WS loss Rates in Fig. 6(h). TIME’s WS Loss
Rates are almost the same as FIWEX. Both of TIME’s and
FIWEX’s WS Loss Rates are lower than those of WISER.
The average WS Loss Rate is 19.9% for WISER, 14.2% for
FIWEX, and 15.6% for TIME.

The above results show that TIME achieves competitive
performance to the two representative existing training-based
mechanisms. This is because that although TIME does not
know the detailed correlations among white spaces at different
indoor locations, it utilizes the general redundancy that exists
in the indoor white spaces.

Yet, another observation from Fig. 6 is that the FA Rates of
TIME (2.21% on average) are much smaller than its WS Loss
Rates (15.6% on average). This is caused by the protection
range P R. In this way, the licensed signal transmissions can
be protected.

C. Differences Among Channels and Locations

In this set of evaluations, we evaluate the performance
of TIME on different channels and at different locations.
We use TIME to deploy 30 spectrum detectors, and calculate
its FA Rates and WS Loss Rates on different channels at
various locations.

Fig. 7(a) illustrates the FA Rates and WS Loss Rates
on different channels. We observe that the FA Rates and
WS Loss Rates differ on different channels. For example, the
FA Rates and WS Loss Rates of channel 13 and 37 are all 0.
This is because channel 13 and 37 are always occupied at
all the locations, and thus their availabilities can be correctly
predicted. Channel 1 and 21 suffer relative large FA Rates and
WS Loss Rates, since the signal strengths on them are near to
the white space threshold, making their availabilities differs
at different locations. Hence, it is more difficult to perform
accurate prediction on them. Another important observation
is that more than half of the channels have an FA Rate of 0,
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Fig. 7. Performance of different channels and locations when there are 30 spectrum detectors.

Fig. 8. CDF curves at different locations.

which is caused by the protection range we set (equation (23))
to protect the licensed users.

Fig. 7(b) shows the FA Rates and WS Loss Rates at different
locations. Similar to Fig. 7(a), the FA Rates and WS Loss
Rates differ at different locations, since the correlations among
different locations are different. For example, the FA Rate
and WS Loss Rate are relatively small at location 38. This
may be because that location 38 is tightly correlated to the
locations with spectrum detectors deployed. On the contrary,
the correlations between location 40 and the locations with
spectrum detectors may be relatively weak, which lead to the
high FA Rate and WS Loss Rate. Specially, the FA rates and
WS loss rates at locations with spectrum detectors deployed
are always 0.

We also evaluate the FA Rates and WS Loss Rates at dif-
ferent locations with different numbers of deployed spectrum
detectors. We vary the number of spectrum detectors from
10 to 60 with a step of 10, and calculate the CDF curves of FA
Rates and WS Loss Rates. As shown in Fig. 8, the CDF curves
are “higher”, when more spectrum detectors are deployed. This
means that the number of locations with high FA Rate or WS
Loss Rate decreases as increment of the number of deployed
spectrum detectors.

D. Performance of Spectrum Detector Deployment

In this set of evaluations, we study the performance of the
incremental spectrum detector deployment method. We deploy

Fig. 9. Incremental deployment vs random deployment.

spectrum detectors based on the first day’s measurement,
and compare TIME’s performance with a random spectrum
detector deployment using the first day’s data. Fig. 9(a) shows
the reconstruction errors of our incremental deployment and
the random deployment, when number of spectrum detectors
is from 2 to 66. The initial 2 spectrum detectors of TIME and
the random deployment method are the same, which leads
to the same reconstruction error. As the number of spectrum
detectors increases, the reconstruction error of our incremental
deployment method decreases quicker than that of the random
way. The average reconstruction error (from 2 spectrum detec-
tors to 66 spectrum detectors) of our incremental deployment
method is 0.0398, which is 12.1% lower than that of the
random deployment.

Then, we evaluate the feasibility of our spectrum detector
deployment method. Since the signal strengths of indoor white
spaces vary over time, a feasible deployment method should
guarantee that if we deploy spectrum detectors according to the
current sensing result, the deployed detectors should also lead
to a good system performance in the future. In Section III, we
have shown the stability of correlations among indoor white
spaces, which means that the locations of coefficients in ω with
large absolute amplitudes are stable over time. If we deploy
spectrum detectors at candidate locations which collect the
information of “large” coefficients in ω, the deployed spectrum
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Fig. 10. Spectrum detector location adjustment.

Fig. 11. Proper number of spectrum detectors.

detectors would also yield “large” coefficients at different
times. Hence, we believe that our incremental spectrum detec-
tor deployment method is feasible. Here, we deploy spectrum
detectors according to the first day’s data set, and calculate
the reconstruction errors under other data sets, and then draw
their average in Fig. 9(b). The average reconstruction error
(from 2 spectrum detectors to 66 spectrum detectors) of our
incremental deployment method is 0.04, while 0.0446 for
the random deployment, which means that our incremental
deployment get a relatively 10.3% lower reconstruction error.

We also study the effect of the spectrum detector location
adjustment. We compare the reconstruction errors before and
after adjustment with typical numbers of spectrum detectors.
Fig. 10 illustrates this comparison when the numbers of
spectrum detectors are 3, 5, 7, 10, 15, 30, and 60. When there
are only a small number of spectrum detectors, the adjustment
has an obvious impact on the reconstruction error. For exam-
ple, when there are 5 spectrum detectors, the reconstruction
error is 0.0743 before adjustment, and drops to 0.0643 after
adjustment. Similarly, when there are 7 spectrum detectors, the
reconstruction errors are 0.0648 and 0.0590, respectively. The
impact of the spectrum detector location adjustment algorithm
decreases as the number of spectrum detectors increases, since
the incremental deployment method performs better when
there are a larger number of spectrum detectors. For example,
when there are 60 spectrum detectors, the reconstruction error
is 0.0211 before adjustment and 0.0196 after that.

After that, we evaluate the algorithm determining the proper
number of spectrum detectors. Fig. 11(a) shows the error
bars with different numbers of spectrum detectors. We show
the maximum value, minimum value, and mean of errbar
(equation (31)). We observe that the mean of error bar
decreases while the number of spectrum detectors increases.
Fig. 11(b) shows the error bar threshold and the correspond-
ing number of spectrum detectors. The number of spectrum

TABLE I

COMPARISON OF THE INDOOR AND OUTDOOR MEASUREMENT

detectors needed decreases as the the error bar threshold
increases. We can determine a proper number of spectrum
detectors based on the average error that can be tolerated.

E. Combining With Geo-Location Database

In this set of evaluations, we first study the performance of
the geo-location database approach in exploring indoor white
spaces. Then, we show that the geo-location database could
help TIME to improvement its performance.

As we have mentioned before, the geo-location database
estimates the signal strengths of TV channels at different
outdoor locations based on the signal propagation model.
However, the indoor obstacles (e.g., walls) are not considered
by the geo-location database when calculating the signal
strengths. This means that directly applying the geo-location
database to explore indoor white spaces would lead to the
overly conservative results. In order to study the perfor-
mance of the geo-location database, we first compare the
results of geo-location database with the indoor measurement
results, and then compare the geo-location database approach
with TIME.

Since there does not exist a publicly accessible geo-database
in the country we perform the indoor white space measure-
ment, we alternatively use the outdoor measurement results
as a substitution of the geo-location database. Actually, we
have measured the outdoor TV channels at the same time with
the indoor white space measurement as shown in Section III.
Apart from the 66 indoor locations, we also perform the
measurement on the rooftop of our measured building, and
get 14 vectors containing the corresponding signal strengths
of the 45 TV channels. TABLE I shows the comparison of
the indoor and outdoor measurement results. We calculate
the number of vacant TV channels in the 14 data sets, and
then average them. Specially, for the indoor measurement
results, we also take the average of the 66 indoor locations.
In the indoor environment, there are 7.05 more vacant channels
than the outdoor. The 7.05 extra vacant channels are about
15.67% of all the 45 channels, and lead to the 56.4 MHz
extra spectrum. The above results tell us that there are more
white spaces in the indoor environment than the outdoor.
If we directly apply the outdoor results (i.e., geo-location
database results) to the indoor environment, we may lose a lot
of white spaces. We also compare the geo-location database
with TIME. We deploy 30 spectrum detectors for TIME, and
compare its reconstruction results at the 66 indoor locations
with the geo-location database approach, which considers that
the white space availabilities at the 66 indoor locations are
the same as the outdoor results. The results are illustrated in
Fig. 12. Fig. 12(a) shows the FA Rates and WS Loss Rates.
We observe that the FA Rate of the geo-location database
approach is 0 whereas its WS Loss Rate (73.5%) is much
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Fig. 12. Comparison between TIME and geo-location database.

Fig. 13. Combination of TIME and the geo-location database.

higher that TIME (17.0%). This means that the geo-locations
database loses a lot of indoor white spaces. Fig. 12(b) illus-
trates the corresponding CDF curves about the WS Loss Rates.
The results are consistent with Fig. 12(a).

Although directly applying the geo-location database
approach into the indoor scenario would lead to a very
conservative result, it can help us to improve the performance
of TIME. Intuitively, if a channel is vacant in the outdoor
scenario, it must be vacant in the indoor scenario. Hence,
we can combine TIME with the geo-location database in the
following way: according to the geo-location database or the
outdoor measurement results, TIME considers the outdoor
vacant channels always vacant at different indoor locations,
and only focus on the following channels. We compare the FA
Rates and WS Loss Rate of TIME before and after considering
the results of the geo-location database (TIME+Database). As
shown in Fig. 13, both of the FA Rate and WS Loss of
TIME decrease after using the geo-location database results.
On average, TIME gets a relatively 10.8% smaller FA Rate and
a relatively 27.7% smaller WS Loss Rate after considering the
results of the geo-location database.

VI. DISCUSSION

In this section, we discuss limitations of the training-
free indoor white space exploration mechanism, TIME, and
introduce the corresponding future works. We first discuss the
indoor white space exploration in the relatively small indoor
environment, and then talk about the candidate locations. After
that, we introduce the necessity of a dynamic indoor white
space exploration system. At last, we discuss the quality of
the white spaces.

A. White Space Exploration of Small Indoor Environment

Our training-free indoor white space exploration
mechanism, TIME, mainly focuses on the large indoor

environments, such as shopping malls and office buildings.
This is because the training process in such a large indoor
environment requires considerable time, devices, as well
as human power. Hence, a training-free indoor white space
exploration mechanism is highly attractive, even if its
performance may be not as good as the training-based
mechanism.

However, in a relatively small indoor environment, such
as a single home scenario, we may prefer to indoor white
space exploration with high accuracy, since it is much easier
to collect the training data. Hence, in a relative small indoor
environment, a training-based indoor white space exploration
mechanism is more appropriate.

B. Spectrum Detectors and Candidate Locations

The RF spectrum detectors used to identify white spaces
are usually expensive. For example, the measurement device
we used in Section III, which consists of a USRP N210 with
SBX daughter-board and a log periodic PCB antenna, costs
around 2K US dollars. Moreover, if we utilize the devices
with a higher accuracy (e.g., ThinkRF WSA5000 [26]), the
costs would be much higher and is out of our budget. Hence,
reducing the total device cost should be an important design
consideration of TIME.

Just like prior works [9], [10], the spectrum detectors
can only be deployed at the candidate locations. Hence, the
positions and number of the candidate locations would affect
the number of needed spectrum detectors. Since all prior works
as well as TIME assumed that the candidate locations are
given beforehand, it will be an interesting future work to study
how to determine the positions and number of the candidate
locations.

C. Dynamic Indoor White Space Exploration

As shown in [9], the correlations among TV channels of the
licensed user are stable in a long period of time (e.g., years).
Hence, we could find a set of candidate locations based on
the current measurement results, and deploy static spectrum
detectors at them. The stability of the correlations makes
the static deployment of the spectrum detectors a feasible
approach. However, in a near future, when secondary users
can hopefully coexist in the TV bands, the spectrum will have
more temporal variations indicating the need of a dynamic
mechanism.

In a dynamic indoor white space exploration system, the
locations of the spectrum detectors must be dynamically
adjusted according to the current measurement results. The
location adjustment is difficult in a dynamic system, because
the location correlation and channel correlation are not sta-
ble. Besides, we cannot get the complete correlations, since
we can only measure a part of the indoor environment
in each time slot. We thus set the design of a dynamic
indoor white space exploration system as another future
work.

D. Quality of TV White Spaces

In practice, the secondary users care about not only whether
a channel is vacant or not, but also the quality of the
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white spaces (or TV channels). Intuitively, there should be
little interference when communicating through a high quality
vacant channel. However, due to the limitation of budget
and run time cost, existing indoor white space exploration
mechanisms (including TIME) only deploy spectrum detectors
at a part of the indoor locations, and recover the white space
information of the whole indoor environment using the data
reconstruction techniques. This means that there exist errors
in the reconstruction results. For instance, it is possible that
an occupied channel is incorrectly identified as vacant. The
unlicensed signal transmissions in such mis-identified vacant
channels would be interfered with the licensed TV signal
transmissions.

Different from the prior works, TIME not only provides
the values of the reconstruction but also provides their uncer-
tainties, which can be described by the variance of the
reconstruction results. Actually, the variance is equal to the
error bar we defined in equation (31). A channel with a
smaller variance means that we are more confident about
its status, which reduces the potential interference with the
licensed users. Hence, the variance of the reconstruction
results can be set as a criterion of the quality of the white
spaces.

VII. RELATED WORK

In this paper, we study the training-free indoor white
space exploration based on the Bayesian compressive sens-
ing technique. Indoor white space exploration and Bayesian
compressive sensing are two attractive research topics, which
have been widely studied in recent years.

A. Bayesian Compressive Sensing

The theory of compressive sensing has been widely
studied [16], [17], [30]–[32] and utilized in different fields,
such as network traffic estimation [12], time-varying sig-
nals estimation [14], localization in mobile networks [33],
soil moisture sensing [15], and data gathering [13], [34].
The sampling matrices in traditional compressive sensing
theory [16], [17] are certain random matrices. Bayesian Com-
pressive sensing [18] is a new type of data reconstruction
technique, which presents an incremental way to design the
sampling matrix. Ji et al. [19] proposed the multitask com-
pressive sensing with an empirical Bayesian procedure for the
estimation of hyperparameter. Qi et al. [20] considered the
Dirichlet Process Priors in the multitask compressive sens-
ing. As an efficient data reconstruction technique, Bayesian
compressive sensing has been widely utilized in many
realms, such as image representation [35], wideband spec-
trum sensing [36], encoding and decoding acceleration [37],
and so on.

B. White Spaces

In recent years, TV white spaces have been receiving a lot
of attentions from researchers. For example, Deb et al. [38]
proposed a dynamic white space allocation system.
Bahl et al. [39] designed a white space Wi-Fi like network.
Radunovic et al. [40] designed a mechanism enabling
low-power nodes to coexist with high-power nodes in white

space networks. Radunovic et al. [41] studied the dynamic
channel, rate selection and scheduling for white spaces.
Vaze and Murthy [42] proposed a white space identification
method using random sensors. Ding et al. [43] studied the
cellular-base-station assisted device-to-device communications
in TV white space. Zhang et al. [8] proposed a vehicle-based
enhancing for white space spectrum database.

Most of the prior works focus on the outdoor white spaces.
Spectrum sensing is an important approach to explore white
spaces. For example, Ding et al. [44] studied the robust spec-
trum sensing with crowd sensors. Zou et al. [45] analyzed the
impact of spectrum sensing overhead. Cooperative spectrum
sensing has been shown to be a more effective way to improve
the detection performance, and has been widely studied in
past years [46]–[51]. However, most white space devices and
standards are designed based on the geo-location database
approach [52]–[54] proposed by FCC, because it is energy
efficient and easy to implement.

Recently, indoor white space receives more and more
attentions, because there are more indoor white spaces than
outdoor and the geo-location database exploration approach
cannot be directly applied to the indoor scenarios. In 2013,
Ying et al. [9] proposed the first indoor white space explo-
ration system, WISER, using a correlation based clustering
algorithm. Then, Zhang et al. [55] designed the first framework
for indoor multi-AP white space network, namely WINET.
After that, Liu et al. [10] proposed a cost-efficient indoor white
space exploration mechanism FIWEX by carefully studying
the dependence between channels and locations. However,
both of them need a training process, where indoor white space
information should be collected before deploying spectrum
detectors. In this paper, we propose the first training-free
indoor white space exploration mechanism, namely TIME,
based on the Bayesian compressive sensing technique. Our
training-free approach, TIME, has competitive performances
against the existing training-based indoor white space explo-
ration mechanisms.

VIII. CONCLUSION

In this paper, we have performed indoor white space mea-
surement in a complex of offices and labs. The measurement
results demonstrate the correlations of indoor white spaces, as
well as their stability over time. Based on the measurement
observations, we propose a Training-free Indoor white space
exploration MEchanism, namely TIME. TIME mainly contains
a Bayesian compressive sensing based data reconstruction part
and a method of incremental spectrum detectors deployment,
which achieves an average of 10.3% improvement compared
with the random deployment. Compared with the state-of-
the-art training-based indoor white space exploration mech-
anisms, TIME can achieve competitive performances without
training.
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