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Abstract—Wearable devices with various sensors are useful
instruments to monitor human health. Due to the limited size,
these wearable devices, however, always encounter critical energy
problem, which further hinders their widely application. Con-
sidering that wireless communication dominates the total energy
consumption, we make an in-depth study on the problem of
communication energy consumption in body sensor networks.
We first observe that the communication signals from wearable
devices have strong correlation with human movements. Based
on this correlation, we propose a Movement-based Adaptive
Prediction Mechanism (MAPM). Specifically, we exploit Gaussian
process regression to precisely fit and predict the transmission
power combined with the characteristics of human movements.
This prediction enables transmitters to automatically control
their transmission power without feedback. Through simulation,
we demonstrate that MAPM can save more than 40% energy
compared to the sate-of-the-art methods.

I. INTRODUCTION

Nowadays, healthcare monitoring is becoming a more and
more important issue that people pay attention to, especially
the health of the old and the people who have chronic disease.
It is necessary to have long-term and continuous monitor for
their physiological indices. With the rapid development of
wearable devices [3] [18], it is becoming possible to use wear-
able devices to continuously monitor people’s physiological
indices [4], such as blood oxygen, blood pressure, cardiac rate
and body temperature. From these collected data, doctors and
patients can obtain clear and prompt information about the
body condition for a further disease diagnosis and treatment.

Body sensor network (BSN) is a wireless network of
wearable computing devices. One of the most critical problems
in BSNs is the energy conservation, which heavily affects the
lifetime of a BSN. Wearable devices communicate with each
other to exchange necessary information, such as collected
sensory data and control instructions, to coordinate their
individual operations. Compared with computation and data
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measurement, the energy consumption of wireless communi-
cation is much higher, and dominates the energy consumption
in BSNs. Therefore, finding an appropriate scheme to control
the transmission power is an effective way to lower the energy
consumption, and can prolong the lifetime.

In the literature, there are many efforts having contributed in
energy conservation in BSNs. However, most of these works
ignore the role of human movements. We observe that human
movements have some particular patterns. Considering the
highly correlation between human movements and wireless
signals, we can exploit the patterns of human movements to
predict the transmission power from wearable devices. Based
on this prediction, sensor nodes dynamically transmit data with
power as low as possible, while guaranteeing the transmission
performance. Benefitting from the prediction, the receiver does
not need to send current condition back, which reduces a lot
of energy overhead of communication.

To design a practical energy conservation mechanism for
BSNs, we have to consider the following main challenges.
First, the relationships between channel states and human
movements can be described by many indicators such as
Received Signal Strength Indication (RSSI), link quality in-
dication (LQI) [2], acceleration, and angle acceleration. All
these indicators can be sensed by sensors, however, some of
sensors cost large energy. Therefore, it is important to select
only some suitable indicators in order to balance the energy
consumption and sensing accuracy. Second, the change of
RSSIs are strongly related to the human activities, however it
has no exact expression describe their relationship. It is hard to
to depict the signal patterns and further to predict the optimal
transmission power.

In this paper, we make an thorough study on the problem
of energy conservation in BSNs, jointly considering the above
challenges: First, although accelerator and gyroscope can
accurately detect the conditions of human movements, they
are energy-intensive, thus unsuitable to estimate human move-
ments. Considering the wide availability and stability [7] [16]
of RSSI, we adopt RSSI as our predict indicator. Second,
We introduce a general regression model, Gaussian process
regression (GPR) [10], to fit the movement pattern. GPR can
represent the relationship between variables obliquely, that is,
give data more rights to represent themselves. This property
allows the prediction model to predict these approximate
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periodical activities.
Integrating these components, we devise a movement-based

adaptive prediction mechanism, namely MAPM, to conserve
the energy consumption in BSNs. Finally, we implement
MAPM on the smartphone and USRP to evaluate its effective-
ness. Compared to conventional transmission power schemes,
the proposed MAPM saves more than 40% energy.

The contributions of this paper are as follow:
• Taking the human activities into account, we propose

the novel MAPM to minimize the transmission power
consumption in body sensor networks.

• The Gaussian process regression (GPR) and the move-
ment patterns are adopted into MAPM to predict the op-
timal transmission power according the real-time posture
during the periodic activity. We exhibit that GPR is a
satisfactory approximation to regress the human activity.

• Extensive simulations are conducted to evaluate the
MAPM. The performance results demonstrate that MAP-
M can dramatically reduce the energy consumption and it
significantly outperforms existing power control methods
in body sensor networks.

The remainder of this paper is organized as follows. In Sec.
II, the energy conservation problem in body sensor networks
is stated. The observations of strong correlation between
received signals and human movements is describes in Sec.
III. The design details of Movement-based Adaptive Prediction
Mechanism is depicted in Sec. IV and simulated in Sec. V.
Sec. VI gives a brief account of the related work. And Sec.
VII is our conclusion and future prospect for this paper.

II. PROBLEM STATEMENT

In this section, first, we present the motivation of this
problem. We then demonstrate the main idea and model for
MAPM.

A. Motivation

Let’s consider the following scenario: two wearable devices
are worn on wrist and waist, marked as Sender and Receiver
separately. The Sender can measure some physiological in-
dices, e.g. pulse information. After the Sender sends this infor-
mation to Receiver, the Receiver sends a feedback containing
signal’s RSSI to inform Sender that it has received! This
wireless communication process is common and consumes
plenty of energy. Being lightweight, wearable devices whereas
have little energy storage. Hence communication overhead
determines the lifetime of wearable devices in some way. What
we would like to do is to reduce this energy consumption as
much as possible.

Humans are always in motion, the channel states of body
sensor networks correspondingly always vary. Changing the
transmission power according to the channel states thus is an
effective method to save energy. Some of works have already
made contribution by using RSSI contained in feedback. How-
ever, the frequent feedback is still a big expense in wireless
communication. How to dynamically change the transmission
power, meanwhile, reduce the feedback expense is our main
concern.

Fig. 1. The main model for MAPM.

B. System model

Since the main users of these wearable devices are the
older or chronic patients, we classify the daily movements into
three activities: stable, slow walk and quick walk (excluding
run, since these groups of people seldom do such strenuous
exercise). From the statistical data, every activity usually lasts
for a long time, and there exists an obvious transition when
activities change. For example, normally, people walk with a
near-constant speed. When they plan to run or stop, there will
be an accelerate or slower trend.

Based on this common sense, we extract our model out
and display in Fig. 1. The dotted lines in the model repre-
sent the necessary communication in our model. Our model
comprises stable, slow walk, quick walk activities, and some
transition states. First, the Sender sends signal at a constant
power in different activities, and gets corresponding Received
Signal Strength Indication (RSSI) from Receiver. Then, the
Sender analyses and obtains the correlation between RSSI
and different activities. Finally, the Sender adopts our energy
control mechanism to send signal in accordance with this
correlation. Our model saves energy in two main aspects:
little feedback and adaptive transmission power. Instead of
utilizing the feedback from Receiver, the Sender uses some
of RSSI as training data to predict RSSI in the future, then
change transmission power autonomously. At the same time,
a threshold ought to be set to guarantee the performance of
the system. If current predictions are unmatched with the real
data, we will re-train the prediction model.

III. DATA OBSERVATIONS

In our experiment, the Sender is implemented on an Android
phone Samsung GT-I9505, and the Receiver is implemented on
USRP N210 platform. USRP, which is an expert in wireless
communication simulation, measures signal more accurately
than smartphone. In above section, certain activities have been
classified. In this section, the patterns of them will be shown,
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Fig. 2. RSSI in different activities

and our design is all based on these patterns. Fig. 2(a), 2(b)
and 2(c) respectively demonstrate RSSI in Stable, Slow walk,
Quick walk activity separately, and each figure contains RSSI
sent by Receiver with transmission power of two different
levels .

• Stable: At this activity, both USRP and smartphone are
in a stable state. The RSSI is fairly stable, with some
fluctuations. This phenomenon is reasonable because of
the variable communication channels. And RSSI sent by
different transmission powers are distinct. High transmis-
sion power obviously leads to high RSSI.

• Slow walk: This is a quite common activity for our target
people: the older and chronic. When the wearable device
swings from front to back of the body, RSSI is first
increased and then decreased according to the period of
hand swing.

• Quick walk: Similar to slow walk, quick walk has the
approximate periodical pattern as well. For activity with
high frequency or complexity, sampling rate is necessary
to be high. However, in our scenario, we only need to
consider moderate and periodic exercise and our current
sample rate 6M Hz is high enough to sample quick walk.
Relatively lower sampling rate can help reduce energy
consumption.

We can deduce that if people keep doing one certain activity,
the RSSI will keep some particular approximate periodicity.
This periodicity is the basis of our mechanism.

IV. MOVEMENT-BASED ADAPTIVE PREDICTION
MECHANISM

Based on our observations in Sec. III, we come up with
a novel energy conservation mechanism: Movement-based
Adaptive Prediction Mechanism (MAPM).

A. Design overview

There are two main phases in our scheme: prediction and
adaptive transmission power control. We first list some nota-
tions used in our scheme: Tx and Rx respectively represent the
Sender and the Receiver. Ptx and Prx separately represent the
transmission power and Received Signal Strength Indication
(RSSI). P ′

rx is the prediction of Prx. Thl and Thu are the
lower bound and upper bound of the threshold.

The prediction phase is:

1) Tx transmits α packages with Ptx = maximum trans-
mission power.

2) Rx receives these α packages and gets corresponding
Prxs.

3) Rx sends package containing Prx back.
4) Tx makes Gaussian process regression using Prxs as

training data, and predicts P ′
rxs.

5) Tx dynamically changes Ptx according to P ′
rxs.

Adaptive transmission power control phase is shown in
Algorithm 1.

Algorithm 1: Movement-based adaptive prediction mech-
anism

1 while True do
2 call prediction phase
3 Count = β
4 Countl = γl
5 Countu = γu
6 while Count do
7 if Prx < Thl then
8 if Ptx ̸=maximum transmission power then
9 Countl = Countl − 1

10 else
11 Countl = γl

12 else if Prx > Thu then
13 if Ptx ̸=minimum transmission power then
14 Countu = Countu − 1
15 else
16 Countu = γu

17 else Thl ≤ Prx ≤ Thu

18 Countl = γl
19 Countu = γu

20 if Countl = 0 or Countu = 0 then
21 Break from this while

22 Count = Count− 1

The main idea inside MAPM is using prediction rather
than feedback to adaptively change the transmission power. It
derives from the fact that RSSI in different activities has par-
ticular pattern. Obtaining enough training data, i.e. RSSI, sent



by Receiver, we use Gaussian process regression to predict
forthcoming RSSI. In order to save power meanwhile ensuring
the performance, we need to change the transmission power
to maintain RSSI within specific threshold where received
signal can be correctly decoded. If the prediction is precise,
RSSI should maintain at a certain value and fluctuate between
threshold Thu and Thl. Otherwise, the prediction is deemed
as not correct and a new training should restart.

Followings are details of MAPM.

B. Prediction: Gaussian process regression

Gaussian process regression (GPR) has three critical func-
tions: covariance(kernel) function, mean function and like-
lihood function. As the most significant part in GPR, the
covariance function should be selected depending on the
practical application. As for likelihood function, parameters
in covariance and mean function are calculated by it.

After determining these three functions, we could make
time series forecasting using GPR. K is the matrix form of
kernel function k(y, y′) and y ∼ N (0, K). The size of y is
equal to parameter α, which is also the training size of GPR.
For the sake of fitting performance, α should larger than a
particular value depending on practical scenario. For a new
(x∗, y∗), the joint distribution can be expressed as:[

y
y∗

]
∼ N

(
0,

[
K KT

∗
K∗ K∗∗

])
From the property of Gaussian distribution, we can get:

y∗|y ∼ N(K∗K
−1y,K∗∗K

−1KT
∗ )

By now, according to the conditional distribution, we can get
the prediction of y∗ using expectation of it.

There are several differences between the GPR and those
specific regression models, e.g. logistic regression and cos
regression. Those specific regression models require data to
obey explicit functions, so that people could choose one to
describe the data. However, the given data sometimes cannot
be expressed by explicit functions. Even if it can, finding this
function is not an easy task. As for GPR, it can predict values
depending on the relative relationship between the values
other than human selection. In addition, the result of GPR
is not a simple value, but rather the whole distribution of
the values. The distribution of random variable could offer us
complete information which gives us enough space to apply.
This property benefits from Bayes theorem, the foundation of
the GPR.

C. Adaptive power control

In order to maintain Received Signal Strength Indication
(RSSI) within a certain threshold, the Sender should adaptively
change transmission power on the basis of prediction. This
threshold has a lower and upper bound (Thl and Thu). Thl is
the minimum RSSI for Receiver to correctly decode the signal,
which has already been determined by lower layer design. Thu

is user-specified and the setting of it determines the granularity
of power changing. If the RSSI exceeds the range of Thl

Fig. 3. Comparison of different kernels. The shadow in figure is the 95%
confidence interval.

TABLE I
TRANSMISSION POWER LEVEL AND OUTPUT

level 1 2 3 4 5

output(dBm) 4 11 18 25 32

and Thu, the system will update the regression to find an
appropriate model for the current signal strength variation.

As far as the power change is concerned, in practical, the
values of transmission power in wearable device are usually
discrete (e.g. only have several levels). And there is a trade-off
in setting transmission power same as Thu. If we set different
transmission power with a very little interval, it may control
the transmission power precisely. However, the switches of
transmission power will consume amounts of resource as well.

In theory, if people keep doing a certain activity, RSSI will
follow the prediction. And it will maintain the periodicity until
people transform to another activity. Nevertheless, for the sake
of system performance, we set Count = β to calibrate the
prediction. This action aims at regularly re-train the model in
case of the superposition errors.

V. SIMULATION AND ANALYSIS

To verify the energy efficiency of our mechanism, we
implement the Sender on an Android smartphone Samsung
GT-I9505 while the Receiver on USRP N210 platform. Wi-Fi
signal applying 802.11 standard is regarded as the transmitted
signal. Our experiments are done in a small room which is
nearly 6m2 with glass walls. Some unknown interference is
in this room, e.g. Wi-Fi signal transmitted by APs. Because
wireless communication distances from these APs to body
sensors are much further than distances between body sensors
themselves. And signal attenuation is usually proportional to
the square of the distance. Thus these noises are negligible.
Specifically, RSSI of these noises, which are nearly -60 dBm
measured by USRP, are insignificant compared to communi-
cation within body sensor network demonstrated in Fig. 2.
Moreover, other noises, which in general satisfy the Gaussian
distribution, can be offset by some filters.

In the simulation, we first show the performance of Gaussian
process regression. Fig. 3 displays the fitting effect using



Fig. 4. Stable Predict

four different kernel functions: periodic kernel, SEiso kernel,
SEiso times periodic kernel and SEiso add periodic kernel.
These four functions are widely used in many applications.
We can see directly that Periodic covariance function can fit
and predict the RSSI best.

This result is also credible from theoretical analysis.
From our observations, human activities are approximate
periodical, thus the variation of the variable should follow
some periodicity. While both addition of functions and
multiplication of functions will alter the periodicity, it is
reasonable to use this Periodic covariance function alone to
depict human activities. In the same way, through a series of
experiments, we determine the best covariance function (eq.
1), mean function (eq. 2) and likelihood function (eq. 3) to
depict human activity movements.

k(x, x′) = s2fexp

(
−2 sin2(π|x− x′|/p)

l2

)
(1)

where sf , p and l are parameters.

m(x) = ax+ b (2)

where a and b are parameterss

lik(t) =
Z

cosh(τ(y − t))2
(3)

where τ = π
2
√
3sn

, Z = τ
2 , y is the mean and s2n is the

variance.
Fig. 4 and Fig. 5(a) are our fitting and prediction rendering

for different activities. And we can get that if we keep doing
same activity and maintain the movement as same as possible,
the fitting and prediction results are pretty good.

We divide transmission power into 5 levels from 4dBm to
32dBm for demonstration. Division can be seen in TABLE I.
In our simulation, parameters Countl and Countu are set as
3 and the thresholds are set as Thl = -46, Thu = -38. The
number of training data α is set as 100, while the number of
prediction data β is set as 500.

The blue line in Fig. 5(c) shows the transmission power
applying MAPM, and corresponding RSSI is depicted in Fig.
5(b). Comparing Fig. 5(a), Fig. 5(b) and Fig. 5(c), we could
clearly see that except the signal sent by level-1 transmission
power, all the RSSI fluctuate between −46 and −38dBm. We

(a) Training process

(b) Received power
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Fig. 5. Power control

do not consider signal sent with level-1 transmission power,
because level-1 transmission power is the lowest power and
its corresponding RSSI cannot be lower anymore.

To demonstrate the energy conservation ability of MAPM,
we compare our scheme with some state-of-the-art works.

• Max: Transmitter transmits data with the maximum pow-
er.

• TPC [16]: On the basis of feedback from receiver, if the
received signal power is too low, transmitter will double
the transmission power and if the received signal power
too high, the transmission power will be subtracted by a
constant value.

Although, Max needs no feedback from receiver, it requires
the maximum transmission power, which is an energy waste.
TPC could change its transmission power adaptively. However,



every time it makes change, it requires the feedback of receiv-
er, which is also a large consumption of energy. MAPM can
both reduce feedback and change transmission power adaptive-
ly. Fig.5(c) shows the transmission power in different methods.
Compared to Max and TPC, our mechanism can dramatically
reduce the energy consumption in two main aspects. First, it
needs little feedback from receiver, which saves much wireless
communication overhead. Second, it can adaptively change
transmission power, which is the minimum power required. In
our simulation, only considering the transmission power, our
mechanism can save 43.2% energy compared to Max and save
26.7% energy compared to TPC. Further, if we take feedback
into consideration, MAPM needs little feedback while TPC
needs feedback every time, which will reduce nearly half of
energy.

VI. RELATED WORK

Intuitively, body sensor networks (BSN) can be regard as
a special kind of wireless sensor networks (WSN). However
we cannot directly transplant the energy conservation scheme
from WSN to BSN. Although BSN has the same features that
WSN has so that they have some same posers need to be
solved, e.g. energy conservation[1] [2] [5] . BSN also has some
unique features that make the its energy conservation scheme
different from WSNs. First, BSN is more mobile than WSN.
WSN are usually deployed in a stable or homogenous chang-
ing environment. But for BSN, along with the movements of
human body, the channel state varies a lot[17].

By and large, there are two categories of methods for energy
conservation: the hardware design and the firmware design.We
are more interested in the firmware design, which uses existing
hardware and save power basically at the cost of system
performance. [6] makes advantage of feedback information
to dynamically change MAC parameters and a better perfor-
mance will be achieved according to current condition. [8]
designs a new MAC protocol. It enables a body sensor to
choose an appropriate timing to send packets lest collision
happens. In [16], they bought up a method similar to TCP
congestion control protocols. Concrete details is demonstrated
in V. [12] proposes a data-driven predict-based scheme. The
sensors and sink node have the same predict model. Only the
outlier readings will be sent by sensors, otherwise, the data
is obtained by prediction of sink node. However, this scheme
only suitable for the scenario where the value of data has some
specific pattern.

In our work, we make use of Wi-Fi to obtain correlations be-
tween signal changing and human movement. Actually, many
work have used Wi-Fi to do movement recognition. [9] uses
Doppler effect to distinguish different gesture, and transform
the received signal into a narrowband pulse to amplify the
Doppler effect on the basis of OFDM. [11] harnesses the
Angle-of-Arrival values of transmission signal to judge the
track of hand. The work derived from the idea that hand could
block the signal, which is similar with our work exploiting the
body shadow effect. By introducing Mouth Motion Profile,
[13] extracts features of signal for distinguish different mouth

motion, and exploits machine learning methods to classify the
motion. [14] [15] use channel state information (CSI) to find
certain change pattern among this information.

VII. CONCLUSION

Because of limited battery on wearable devices, energy
conservation is crucial for body sensor networks. As a main
consumption, the wireless communication overhead needs
to be reduced. Considering the strong correlation between
human movements and RSSIs, we proposed a Movement-
based adaptive prediction mechanism(MAPM), which is used
for minimizing the transmission power consumption, tailoring
for body sensor networks. Energy is saved in both using little
feedback and dynamically changing transmission power to an
appropriate level. The simulation demonstrates that MAPM
could efficiently and dramatically save energy compared to
existing methods.
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[5] B. Latré, B. Braem, I. Moerman, C. Blondia, and P. Demeester. A survey
on wireless body area networks. Wireless Networks, 17(1):1–18, 2011.

[6] H. Li and J. Tan. An ultra-low-power medium access control protocol
for body sensor network. In 2005 IEEE Engineering in Medicine and
Biology 27th Annual Conference, 2005.

[7] S. Lin, J. Zhang, G. Zhou, L. Gu, J. A. Stankovic, and T. He. Atpc:
adaptive transmission power control for wireless sensor networks. In
SenSys, 2006.

[8] B. Otal, L. Alonso, and C. Verikoukis. Highly reliable energy-saving
mac for wireless body sensor networks in healthcare systems. Selected
Areas in Communications, IEEE Journal on, 27(4):553–565, 2009.

[9] Q. Pu, S. Gupta, S. Gollakota, and S. Patel. Whole-home gesture
recognition using wireless signals. In MobiCom, 2013.

[10] C. E. Rasmussen. Gaussian processes for machine learning. 2006.
[11] L. Sun, S. Sen, D. Koutsonikolas, and K.-H. Kim. Widraw: Enabling

hands-free drawing in the air on commodity wifi devices. In MobiCom,
2015.

[12] D. Tulone and S. Madden. Paq: Time series forecasting for approximate
query answering in sensor networks. In European Workshop on Wireless
Sensor Networks. 2006.

[13] G. Wang, Y. Zou, Z. Zhou, K. Wu, and L. M. Ni. We can hear you
with wi-fi! In MobiCom, 2014.

[14] W. Wang, A. X. Liu, M. Shahzad, K. Ling, and S. Lu. Understanding and
modeling of wifi signal based human activity recognition. In MobiCom,
2015.

[15] Y. Wang, J. Liu, Y. Chen, M. Gruteser, J. Yang, and H. Liu. E-eyes:
device-free location-oriented activity identification using fine-grained
wifi signatures. In MobiCom, 2014.

[16] S. Xiao, A. Dhamdhere, V. Sivaraman, and A. Burdett. Transmission
power control in body area sensor networks for healthcare monitoring.
Selected Areas in Communications, IEEE Journal on, 27(1):37–48,
2009.

[17] S. Yang, J.-L. Lu, F. Yang, L. Kong, W. Shu, and M.-Y. Wu. Behavior-
aware probabilistic routing for wireless body area sensor networks. In
GLOBECOM, 2013.

[18] J. Yick, B. Mukherjee, and D. Ghosal. Wireless sensor network survey.
Computer networks, 52(12):2292–2330, 2008.


