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Abstract—The connected vehicles have been considered as a
remedy for modern traffic issues, potentially saving hundreds
of thousands of lives every year worldwide. The Dedicated
Short-Range Communications (DSRC) technology is an essential
building block of this promising vision. DSRC faces volatile
vehicular environments, where not only wireless propagation
channels but also network topologies vary rapidly. Moreover, traf-
fic congestions during rush hours may lead to an unprecedentedly
high density of broadcasting radios, resulting in compromised
reliability, efficiency and fairness of DSRC.

In order to optimize the performance of DSRC, we develop a
novel Online Control Approach of power and Rates (OnCAR).
Supported by systematic control theories, OnCAR performs
stably even in the dynamic and unpredictable vehicular environ-
ments. To the best of our knowledge, OnCAR is the first solution
to address the strong coupling between communication variables.
It adopts a multi-variable control model to synchronously adjust
transmission power and data rates, which are two major variables
determining the performance of DSRC. In addition, OnCAR
leverages receiver-side measurements of performance metrics
to strike a balance between overall performance and fairness.
Compared with the state of the art, OnCAR enhances the
overall reliability and efficiency of DSRC by 23.7% and 30.1%,
respectively. Meanwhile, these numbers are achieved with a
40.1% improvement in fairness.

I. INTRODUCTION

According to a study [1] led by the U.S. Department of
Transportation (U.S. DOT), connected vehicles can avoid 74
percent of car crashes. This would save hundreds of thousands
of lives and billions of dollars every year worldwide. To realize
this promising vision, the U.S. DOT has committed to the use
of Dedicated Short-Range Communications (DSRC) devices
on new light-duty vehicles1. The DSRC technology enables a
variety of safety-critical applications including adaptive cruise
control, lane change assist, forward collision warning, and
etc [2]. Reliability, efficiency and fairness of DSRC are major
concerns for these new applications. While high reliability
and efficiency bring a comprehensive understanding of traffic
situations, good fairness protects overall safety from being
jeopardized by a few vehicles oblivious to the surrounding.

Unlike its counterparts such as Wi-Fi and Zigbee [3],
DSRC works in highly volatile vehicular environments. Rapid
changes in wireless channels and network topology usually

1U.S. DOT, DSRC: The Future of Safer Driving, http://www.its.dot.gov/
factsheets/dsrc factsheet.htm.

bring unpredictable disturbances. Moreover, traffic congestions
during rush hours lead to communication congestions in the
DSRC safety channel (i.e., Channel 172), compromising the
driving safety. Rush hours are of vital importance, as the num-
ber of traffic accidents arrives its peak during them (statistics
are to be presented in Section II).

To adapt to these unique environments, the transmission
power and data rates (i.e., the modulation/coding rates) must
be adjusted appropriately, as they are two fundamental vari-
ables dominating DSRC performance [4]. However, there is
still a gap between the optimal performance and the per-
formance provided by existing power and rate adaptation
solutions. This is mainly due to the facts that 1) the strong
coupling between communication variables has not been fully
addressed, and that 2) heuristic algorithms have been adopted
in volatile scenarios. Previous solutions either focus on the
adaptation of one single variable (e.g., transmission power [5],
[6] or data rates [7], [8]), or adjust them one by one [9], [10].
These sequential approaches could lead to error propagation
in the two-stage variable adjustment, and thus performance
degradation. In addition, heuristic algorithms may fail to pro-
vide consistent performance in highly dynamic environments.

Therefore, we are in need of a joint and online approach
to control transmission power and data rates. This mission is
non-trivial due to the following challenges. (i) The coupling
between power and rates is implicit and hard to fully charac-
terize in advance. (ii) Real-life traffic is dynamic, introducing
rapid variations to network topology and wireless channels.
(iii) The DSRC performance, especially the fairness, degrades
due to the lack of feedback and coordination.

In order to allow connected vehicles to “talk” with each
other louder (with increased efficiency), clearer (with en-
hanced reliability) and fairer (with improved fairness), we
develop an Online Control Approach of power and Rates
(OnCAR) based on systematic control theories. OnCAR takes
the effective Packet Delivery Ratio (ePDR) as the metric of
reliability and considers the effective throughput (eTPUT) as
the metric of efficiency. It considers power and rate settings
as inputs to the DSRC system, and takes ePDR and eTPUT
as outputs that are adaptively and synchronously controlled
by the inputs. In this way, OnCAR embraces the coupling in
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its online Multiple-Input Multiple-Output (MIMO2) controller,
and adapts to the traffic dynamics rapidly. At the same time,
by adopting receiver-side measurements of these two metrics,
OnCAR takes the performance of neighboring vehicles into
consideration, and improves the fairness as well.

The main contribution of this paper is two-fold.
• We systematically study the critical problem of syn-

chronous control of transmission power and data rates in
DSRC. To the best of our knowledge, we are the first to tackle
the strong coupling between power and rates in the context of
connected vehicles.
• We develop OnCAR - an online control approach of

power and rates for DSRC. OnCAR is fundamentally different
from existing approaches in that it adjusts power and rates of
DSRC in an adaptive, joint and synchronous manner based on
systematic control theories. OnCAR improves the reliability,
efficiency and fairness of DSRC by 23.7%, 30.1% and 40.1%,
respectively.

The remainder of this paper is organized as follows. In
Section II, we discuss two important observations that motivate
our work, and present the challenges in developing OnCAR.
In Section III, we present the design of OnCAR, and discuss
how OnCAR tackles the challenges. In Section IV, we conduct
trace-driven simulations to evaluate of OnCAR in large-scale
networks and reveal several interesting findings. We discuss
the related work in Section V, and conclude the paper in
Section VI.

II. OBSERVATIONS AND CHALLENGES

A. Background of Dedicated Short-Range Communications
To foster the development of Vehicle Safety Communica-

tions (VSC), the DSRC technology has been actively promoted
by the U.S. DOT. The most widely accepted DSRC protocol in
North America employs IEEE 802.11p as its PHY and MAC
layer standards [2]. There are several important features of the
IEEE 802.11p based DSRC. First of all, DSRC functions in
highly dynamic vehicular environments, where unpredictable
disturbances may undermine DSRC performance. Secondly,
among all the DSRC channels, Channel 172 is designated to
exchange safety messages, which are broadcast with neither
handshaking nor feedback. Furthermore, DSRC channel con-
gestions can be really severe due to traffic jam during rush
hours.

B. Observations and Challenges
In this paper, we consider rush hours (i.e., 16:00 to 20:00

in this paper) to be far more critical than other time periods.
This is motivated by the following observation.

Observation 1: The number of traffic accidents arrives its
peak during rush hours.

Observation 1 is supported by government sources such as
Texas Motor Vehicle Crash Statistics3, North Carolina Crash
Data4 and New York State Department of Motor Vehicles5. To

2In this paper, the term MIMO refers to the multiple control inputs and
control outputs of a control model [11].This is different from the concept of
multiple antennas and multiple I/O data streams in wireless communications.

3http://www.txdot.gov/government/enforcement/annual-summary.html
4http://nccrashdata.hsrc.unc.edu
5http://dmv.ny.gov/about-dmv/statistical-summaries
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Fig. 1: Traffic accident rate across different time of day.

Fig. 2: The simulated highway scenario.

demonstrate and validate this observation, we use the crash
data of year 2014 from Texas, and that of year 2013 from
North Carolina and New York (the latest available data). Figure
1 presents the traffic accident rate, i.e., the percentage of traffic
accidents, across different time of day. Figure 1 confirms
Observation 1, as the peaks of traffic accident rates appear
during rush hours for all three states. In addition, the shapes
of accident rates are very similar in different states, indicating
a strong correlation between traffic accident rate and time.

To improve DSRC performance during both rush and regu-
lar hours, the coupling between transmission power and data
rates must be carefully considered. This is motivated by the
second observation as follows.

Observation 2: The coupling between transmission power
and data rates is implicit and complicated, and may lead to
degraded performance of DSRC.

For example, higher transmission power could support
higher data rates for higher DSRC throughput. Yet, it also
intensifies the interference, to which higher data rates are
vulnerable. Lower power could alleviate interference for better
DSRC reliability. However, it only support lower data rates,
which deliver less information for safety. In addition, packets
with lower data rates may be more vulnerable to hidden
terminals due to longer propagation delays. Such a correlation
can hardly be captured by existing heuristics, resulting in
degraded performance of DSRC.

We further demonstrate Observation 2 with trace-driven ns-2
simulations in a bi-directional highway scenario as illustrated
in Figure 2. This highway is of 2000 meters long and 30
meters wide with four lanes in each direction. There are two
entrances and one exit along each direction.
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Fig. 3: Illustration of performance degradations due to negli-

gence of the power-rate coupling.

We first implement a Transmission Power Adaptation (TPA)
approach [5], [6] and a Data Rate Adaptation (DRA) ap-
proach [7], [8] (Both of them are state-of-the-art approaches on
individual power or rate adaptation). TPA fixes the data rate as
3Mbps (the default data rate of DSRC) and adaptively adjusts
transmission power. DRA fixes transmission power as 20dBm
(the default power setting) and adaptively changes data rates.
We then combine them sequentially to build a Joint Power and
Rate Adaptation (JPRA) approach, which is extended from that
proposed in [9]). JPRA first selects power based on TPA, and
then chooses a rate based on DRA.

Figure 3 compares ePDR and eTPUT (i.e., metrics of
reliability and efficiency, to be defined in Section II-C) of
the three approaches under different traffic density conditions.
We observe that the joint approach JPRA performs much
worse than the individual approach DRA in terms of both
ePDR and eTPUT. This result suggests that the data rates
selected by JPRA are not well supported by the chosen
transmission power. Adjusting these two variables one by one
(which is common practice in existing solutions) can lead to
a mismatched pair of power and rate settings.

This observation indicates that a good approach must cal-
culate and conduct the adjustments of power and rates at
the same time (i.e., synchronously), instead of changing them
sequentially. To design such a joint and synchronous control
approach for DSRC, we have to tackle several challenges.

Challenge 1: The coupling of variables, as well as their
impacts on DSRC performance, is implicit and hard to be
captured in advance.

Challenge 2: The vehicular environment is extremely
volatile, introducing a variety of unpredictable disturbances
to the control and adaptations of variables.

Challenge 3: Due to the high density during rush hours and
the lack of coordination between vehicles, the overall fairness
of DSRC is degraded by egocentric power/rate adaptations.

C. Metrics
In this paper, DSRC reliability is captured by the effective

Packet Delivery Ratio (ePDR), DSRC efficiency is described
by the effective throughput (eTPUT), and DSRC fairness is
represented by the Coefficient of Variation (CV) of ePDR.

The ePDR of a vehicle i is defined as

ePDRi =

∑
j∈Ωi

Nr(i, j)
∑

j∈Ωi
Nt(j)

, (1)

where i and j are vehicle IDs, Nt(j) denotes the number of
packets transmitted by j, Nr(i, j) represents the number of
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Fig. 4: Architecture of OnCAR.

packets transmitted by j while successfully received by i, and
Ωi represents the set of neighbors within the effective range
of i. Ωi is expressed as

Ωi = {j|j �= i and d(i, j) � deff}, (2)

where d(i, j) is the distance between i and j.
The eTPUT of a vehicle i is defined as

eTPUTi = Nr(i, j)× Γ, (3)

where Γ is the packet length of safety messages.

III. DESIGN OF ONCAR

In this section, we present the design details of OnCAR.
Note that OnCAR aims to improve the DSRC performance
during both rush hours and regular periods.

A. Overview of OnCAR
We first introduce the fundamental components of OnCAR.

Figure 4 presents the architecture of OnCAR. It is a controller
that runs on each in-vehicle DSRC radio in a distributed
manner. The objective of OnCAR is to optimize the system
outputs (i.e., ePDR and eTPUT) of the target system by
adjusting the system inputs (i.e., transmission power and data
rates). Meanwhile, it takes the fairness into consideration.
OnCAR is composed of a feed forward control loop and
an adaptive feedback control loop. The feed forward loop
provides a baseline initiation to the feedback loop, so as to
increase the convergence speed of OnCAR. Moreover, the
feedback loop improves the baseline initiation and further
increases the performance of OnCAR.

To address Challenge 1, the feed forward loop utilizes
a MIMO model based predictor. This predictor takes mea-
surements of environment parameters (i.e., vector X of SINR
value and neighbor density) to select a pair of transmission
power and data rate settings to optimize ePDR and eTPUT.
The selected pair is used as the predicted inputs (denoted
as Up) to the target system. The parameters of this MIMO
model are updated periodically. They describe the input-output
mapping, and capture the coupling between two system inputs
(i.e., transmission power and data rates) as well.

However, the MIMO model used in the predictor can only
serve as an approximation of the dynamic target system. The
predicted ePDR and eTPUT (denoted as predicted outputs Yp)
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Fig. 5: Architecture of the MIMO model based predictor.

may be off from the measured ePDR and eTPUT (denoted as
system outputs Y), resulting in “residual” errors. In addition,
the unpredictable disturbances in the vehicular environment
enlarge these errors.

To address Challenge 2 and correct residual errors, we
further develop an adaptive feedback control loop in OnCAR.
This loop first compares the system outputs Y with the
predicted outputs Yp to calculate the residual errors (denoted
as ΔY). Then an online adaptive controller estimates a regres-
sion model of residual errors using these measurements. With
this online trained regression model, the adaptive controller
produces input adjustments (denoted as ΔU) to minimize the
residual errors. The adaptive nature of this controller helps us
cope with dynamic disturbances in the vehicular environment.

To address Challenge 3, OnCAR utilizes receiver-side
measurements of system outputs and environment parameters
to feed the aforementioned control loops. Adopting such
measurements makes each vehicle to consider the performance
of its neighbors, and thus improves the overall fairness.

B. Design of MIMO Model Based Predictor

The core module of the feed forward control loop in OnCAR
is the MIMO model based predictor, whose architecture is
shown in Figure 5. For every pair of power and rate settings
in DSRC, the predictor first uses a MIMO model to predict
its corresponding output of ePDR and eTPUT. Based on these
outputs, an optimizer selects the best pair to maximize ePDR
and eTPUT. This selected pair is then provided to the objective
system as the predicted inputs Up, while the corresponding
ePDR and eTPUT pair is provided to the feedback loop as the
predicted outputs Yp. Note that measurements of environment
parameters (i.e., SINR and neighbour density) are needed
as the inputs of the MIMO model. We leave the detailed
measurement process till Section III-D.

1) The MIMO Model: The mathematical expression of
the MIMO model is a function F mapping the environment
parameter vector X and input vector U to output vector Y:

Y = F (X,U). (4)

Note that this MIMO model F is a general model that
can generalize most existing algorithms. To achieve model
parameters, we adopt an approach that is more consistent
with industry practice. Considering the potentially large mea-
surement results of DSRC from current and future industry
simulations and tests, we propose to train the MIMO model

with them. This approach can be easily applied by automobile
industry in deployments with their test data. In this paper,
the MIMO model is trained with fine grained ns-2 simulation
traces. We collected training data of 244 pairs of inputs (i.e.,
power and rate settings U) in 3660 traffic conditions. We also
recorded SINR values, and collected another group of training
data for environment parameters X. The total size of training
data is over 1TB in binary format. Applying the least squares
model fitting technique [12] on the training data, we obtained
our MIMO model F .

2) The Optimizer: Based on the MIMO model F and
measurements of the environment parameters X, the opti-
mizer produces the predicted inputs and outputs. Denote the
predicted inputs as Up = {up

1, u
p
2}, where up

1 denotes the
predicted selection of transmission power and up

2 represents
the predicted selection of data rate. Denote the predicted
outputs as Yp = {yp1 , yp2}, where yp1 is the predicted ePDR
and yp2 is the predicted eTPUT. The optimizer is designed to
maximize a weighted sum of yp1 and yp2 as follows.

Maximize
Up

yp1 + λyp2 ,

Subject to Yp = F (X,Up),

up
1 ∈ U1, u

p
2 ∈ U2,

where λ is a parameter that scales ePDR to the level of eTPUT,
U1 is a finite set of available power levels, and U2 is a finite
set of available data rates.

C. Design of Adaptive Controller

As mentioned in Section III-A, the predicted outputs Yp

of the MIMO model predictor may be off from the measured
system outputs Y. This leads to “residual” errors. In addition,
these errors can be enlarged by the unpredictable disturbances
in vehicular environments. To eliminate these errors and adapt
to the dynamic environment, we further introduce an adaptive
feedback control loop.

The key component of this adaptive feedback control loop
is an adaptive controller, which is illustrated in Figure 6. This
controller is composed of an online parameter estimator with a
control law. The online estimator provides estimates of time-
varying parameters at each control instant. Based on these
estimates, the control law calculates control inputs to achieve
the control objective. Here the control objective is to minimize
the residual errors. The calculated control inputs are then used
to adjust the predicted inputs given by the MIMO model based
predictor. We adopt a direct adaptive control scheme [11] for
this adaptive controller.

In the design of the parameter estimator, we apply a linear
regression model to capture the relation between control inputs
S(k) and control outputs R(k). Here S(k) represents the input
adjustments ΔU at time interval k, while R(k) corresponds
to the residual errors ΔY at time interval k. Note that this
regression model (which maps ΔU to ΔY) is different from
the MIMO model F (which maps U and X to Y). The
adaptive feedback control scheme is described by a difference
equation model as

A(q−1)R(k) = B(q−1)S(k) + e(k), (5)
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Fig. 6: Architecture of the adaptive controller.

where

A(q−1) = 1− a1q
−1 − · · · − anq

−n, (6)

B(q−1) = b0q
−1 + · · ·+ bn−1q

−n, (7)

q−1 is the back shift operator, n is the order of the regression
model, and e(k) is a sequence of independent, identically
distributed (i.i.d.) random vectors with zero means. Note
that the digital implementation of the controller introduces
a one-step delay between the current control inputs and the
corresponding control outputs. In this case, the control inputs
at time interval k − 1 (i.e., S(k − 1)) will affect the control
outputs at time interval k (i.e., R(k)).

In order to cope with the disturbances in the vehicular en-
vironment, the model parameters are updated periodically. At
each sampling interval, control outputs are measured and fed
into the online parameter estimator. The estimator combines
these outputs with the corresponding past control inputs to
estimate the model parameters ai(i = 1, · · · , n) and bj(j =
1, · · · , n). Based on these estimates, the controller calculates
future control inputs to correct the residual errors. To this end,
we apply a Recursive Least Square (RLS) scheme [13] for the
online parameter estimator. Denote

φ(k) = [R(k − 1), · · · ,R(k − n),S(k − 1), · · · ,S(k − n)]T ,
(8)

and

θ(k) = [a1(k), · · · , an(k), b0(k), · · · , bn−1(k)]
T . (9)

We convert Eq. (5) to an RLS-friendly format:

R(k) = φT (k)θ(k). (10)

In Eq. (10), θ(k) denotes the true parameters to be estimated
at time interval k. Applying the RLS algorithm, we can obtain
the estimated parameters θ̂(k) at time interval k. In detail, the
RLS algorithm works by solving the following three equations.

ε(k) = R(k)− φT (k)θ̂(k − 1), (11)

P (k − 1) = P (k − 2)− [1 + φT (k)P (k − 2)φ(k)]−1

·P (k − 2)φ(k)φT (k)P (k − 2), (12)

θ̂(k) = θ̂(k − 1) + P (k − 1)φ(k)ε(k). (13)

The estimated parameters θ̂(k) contain the estimates of model
parameters ai and bj . The RLS algorithm updates Eq. (12)
and (13) in each sampling interval, and thus the model

parameters are estimated in an online manner. The initial
condition of the above RLS algorithm is P (−1) = p0I , where
p0 > 0 and I is an identity matrix.

Based on the estimated parameters θ̂(k), the control law is
calculated by solving the following formula

φT (k)θ̂(k) = R∗(k), (14)

where R∗(k) is the control reference. As stated in the begin-
ning of this section, the adaptive controller aims to minimize
the residual errors. Hence, we set R∗(k) = 0. As defined
in Eq. (8), φ(k) encapsulates past control outputs R(k −
1), · · · ,R(k−n), past control inputs S(k−2), · · · ,S(k−n),
and current control inputs S(k − 1). By solving Eq. (14), we
achieve current control inputs S(k − 1). Note that S(k − 1)
correspond to input adjustments ΔU in Figure 6.

Directly applying the control law based on Eq. (14) may
result in large variations in two consecutive control inputs,
jeopardizing the stability and convergence of OnCAR. In
addition, abrupt oscillations of transmission power and data
rate would introduce undesirable disturbances to neighbor
vehicles. To address this issue, we integrate a smooth control
mechanism in the control law. The corresponding smooth
control law aims to minimize the following cost function

J =E{||W (R(k + 1)−R∗(k + 1))||2
+ ||Q(S(k)− S(k − 1)||2}, (15)

where ||.|| is the 2-norm operation, W and Q are weighting
matrices. Their relative magnitude controls the tradeoff be-
tween performance and stability. In this paper, W and Q are
diagonal matrices, which are consistent with common practice.
(Interested readers can refer to [11] for more details on settings
of W and Q.) The goal of Eq. (15) can be interpreted as
approaching the desired system outputs while controlling the
changes of inputs.

Theorem 1: The smooth control law is realized with the
following control inputs

S(k) =
(
(Wb̂0)

TWb̂0 +QTQ
)−1 · (QTQS(k − 1)

+ (Wb̂0)
TW (R∗(k + 1)− θ̂(k)φ̃(k))

)
.

(16)

The proof of this theorem is reported in [14]. We skip the
details for brevity.

D. Measuring System Outputs and Environment Parameters
As we mentioned earlier, OnCAR needs the measurements

of system outputs (i.e., ePDR and eTPUT) and environment
parameters (i.e., SINR and neighbor density) to feed the
aforementioned MIMO model based predictor and adaptive
controller. Adopting receiver-side measurements also moti-
vates each vehicle to improve the performance of its neighbors,
reducing selfish behaviors significantly. The reason is two-
fold. 1) Due to the channel reciprocity6 in DSRC, receiver-side
measurements serve as a good estimation of a vehicle’s own
transmission performance. To enhance its own performance,
a vehicle would improve receiver-side measurements. 2) Each
vehicle would like to obtain more safety messages from its

6We are aware of the debate on the existence of channel reciprocity in
general. In the context of DSRC, field tests [4] already confirmed the existence
of channel reciprocity.
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neighbor, so as to enhance its own driving safety with more
information. Therefore, each vehicle is also self-motivated to
improve the performance of its neighbors.

The measurements of system outputs work as follows. At
each sampling interval, each DSRC radio measures eTPUT
by counting the number of received packets sent by neighbors
within the effective range. To measure ePDR, each DSRC
radio leverages the 12-bit sequence number in the sequence
control field of an IEEE 802.11 MAC header. The expected
number of transmitted packets is approximated by the differ-
ence between the maximum and minimum sequence numbers.
Then ePDR is estimated as the ratio of the number of received
packets to the expected number of transmitted packets.

To measure the density of neighbor, there exist several
candidates such as the one proposed by Kong et al. in [15].
For the sake of robustness, in this paper, we resolve to a
light-weight solution as follows. Each DSRC radio extracts the
sender’s MAC address encapsulated in the MAC header, and
counts the number of neighbors based on this distinct MAC
address. To measure the SINR value, each DSRC radio first
measures the SINR value of each packet sent by a neighbor
with the effective range. Then an average value of SINR is
calculated.

IV. TRACE-DRIVEN EVALUATION

In this section, we evaluate OnCAR with trace-driven ns-
2 simulations. We demonstrate that OnCAR perform consis-
tently well all the time including rush hours. Concretely, we
first present the performance improvement of OnCAR during
the most critical period (the rush hours), with real-life traces.
We then adopt simulations with synthetic traces to demonstrate
that OnCAR bring improvements in all time periods.

A. Evaluation Setup
1) Traffic Traces: We establish real-life traffic scenarios

with two real-life traffic data sets. One data set [16] records
the traffic density of Berkeley on Jan. 17, 2007. The other
data set [17] traces the traffic density of San Diego on Oct.
1st, 2014. The traffic densities of Berkeley and San Diego data
sets are presented in Figure 7. In both scenarios, traffic density
achieves the maximum value during rush hours.

Real-life traffic traces are mostly available in metropolis
areas. There may be cases that are not covered by currently
accessible traces. To cover as many those cases as possible,
we also conduct simulations in ten synthetic scenarios repre-
senting a diverse group of traffic conditions.

Traffic data sets in the real-life and synthetic scenarios
provide density information from the view of a highway.

To generate microscopic vehicle dynamics, we combine the
density information with a vehicle movement trace generator
SUMO 7. In this way, we obtain a set of traces on vehicle
dynamics, which describe the time-varying speeds, positions
and destinations of all vehicles on a bi-directional highway.
This highway has a speed limit of 100 kilometers per hour.
The layout of this highway has been illustrated in Figure 2.
This highway is of 2000 meters long and 30 meters wide with
four lanes in each direction. It has a median strip to separate
two directions. Upon arriving at the end of one direction,
vehicles re-enter the highway at the beginning of the other
direction. There are two entrances and one exit along each
direction.Vehicles that leave through the exits will re-enter the
highway through the entrances.

2) DSRC Propagation Model: To capture the signal propa-
gation in real DSRC scenarios, we adopt the field-test results
reported in [18]. Due to the limited space, we report the model
details in [14].

3) DSRC Radio Settings: Each DSRC radio follows the
DSRC standards and broadcasts safety messages periodically
on DSRC Channel 172. The broadcasting period of messages
is 0.05 seconds. The effective range of communication is
300 meters. The data encapsulated in each packet is of 500
bytes, while the packet headers are added based on IEEE
802.11p protocols. The options of data rates include 3Mbps,
6Mbps, 12Mbps, and 24Mbps. The available transmission
power ranges from 10dBm to 30dBm, with a 2dBm step. In
addition, each vehicle is equipped with one DSRC radio.

B. Approaches Studied
We implement and evaluate the following four power/rate

adaptation approaches on our testbed.
• OnCAR is our proposed approach. It combines a MIMO

model based predictor with an online adaptive controller.
OnCAR runs on each vehicle distributively.
• Transmission Power Adaptation (TPA) is an individual

transmission power adaptation approach. It is developed based
on state-of-the-art individual power adaptation approaches
proposed in [5], [6]. TPA uses a fixed data rate of 3Mbps.
• Data Rate Adaptation (DRA) is an individual rate adap-

tation approach. It is implemented based on state-of-the-art
individual data rate adaptation approaches proposed in [7], [8].
DRA fixes transmission power as 20dBm and adapts data rates
based on its measured environment parameters (i.e., channel
SINR and neighbor density).
• Joint Power and Rate Adaptation (JPRA) is a joint

and heuristic adaptation approach. We leverage state-of-the-
art designs of joint approaches proposed in [9], [10], [19] to
develop JPRA. It combines TPA and DRA sequentially: it first
determines the transmission power, and then selects a data rate.

C. Evaluation in Real-life Scenarios
In this section, we present the evaluation results in both

Berkeley and San Diego scenarios.
1) DSRC Reliability in Real-life Scenarios: We first evalu-

ate the reliability in terms of ePDR. We focus the rush hours,
i.e., 16 : 00 to 20 : 00. The Cumulative Distribution Functions
(CDFs) of ePDRs at rush hours are presented in Figure 8. It

7Simulation of Urban Mobility: http://sumo-sim.org/
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Fig. 8: CDFs of ePDRs in real-life scenarios at rush hours.

TABLE I: Statistics of ePDRs at rush hours of Berkeley.

Approach mean Improvement

by OnCAR

max min

TPA 0.4431 53.9% 0.7691 0.2084

DRA 0.5624 21.2% 0.8038 0.4091

JPRA 0.5593 21.9% 0.7686 0.3126

OnCAR 0.6818 −− 0.8469 0.4768

TABLE II: Statistics of ePDRs at rush hours of San Diego.

Approach mean Improvement

by OnCAR

max min

TPA 0.4631 51.2% 0.8973 0.3507

DRA 0.5636 24.2% 0.8650 0.4628

JPRA 0.5659 23.7% 0.9052 0.4387

OnCAR 0.7002 −− 0.9335 0.5728

is shown that OnCAR achieves the best reliability with the
largest ePDR.

We summarize several statistics of ePDRs at rush hours in
Table I (for Berkeley scenario) and Table II (for San Diego sce-
nario). The statistics include mean, maximum and minimum
values of ePDRs, as well as the mean ePDR improvements
of OnCAR over other approaches. Compared with JPRA, On-
CAR improves the average reliability of DSRC by 21.9% and
23.7%, respectively. Moreover, OnCAR achieves the highest
minimum and maximum ePDR among all approaches. This
suggests that the improvement in reliability benefits every
vehicle. In addition, we observe that the joint approach JPRA
achieves a lower ePDR than that of the individual approach
of DRA. This again confirms that sequential adjustments of
power and rates sometimes result in a mismatched pair of these
two variables, leading to a compromised DSRC performance.
The synchronous control adopted by OnCAR address this issue
by embracing the strong coupling with a MIMO control model.
It enables OnCAR to select the optimal choices of power
and rates. Hence, OnCAR addresses Challenge 1, and greatly
enhances DSRC reliability of all vehicles

2) DSRC Efficiency in Real-life Scenarios: We further
evaluate the efficiency of OnCAR in terms of eTPUT. We
present the CDFs of eTPUT for all approaches during rush
hours in Figure 9. It is shown that OnCAR achieves the largest
eTPUT and thus the best efficiency of DSRC. Therefore, we
conclude that among all the approaches, OnCAR provides the
highest efficiency of DSRC.
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Fig. 9: CDFs of eTPUT in real-life scenarios at rush hours.

TABLE III: Statistics of eTPUT at rush hours of Berkeley.

Approach mean Improvement

by OnCAR

max min

TPA 1.4287 70.3% 1.8768 0.6808

DRA 1.9280 26.2% 0.7364 3.0836

JPRA 1.8869 28.9% 0.6840 2.9088

OnCAR 2.4324 −− 0.9816 3.4264

TABLE IV: Statistics of eTPUT at rush hours of San Diego.

Approach mean Improvement

by OnCAR

max min

TPA 1.3986 88.9% 1.6732 1.1120

DRA 2.0479 29.0% 2.6728 1.0512

JPRA 2.0307 30.1% 2.9300 1.1288

OnCAR 2.6416 −− 3.5072 1.1040

We also summarize the mean, minimum and maximum
of eTPUT, as well as the mean eTPUT improvement by
OnCAR over other approaches, in Table III and Table IV.
Note that the unit of eTPUT in Table III and Table IV
is Mbps. Compared with the state-of-the-art joint approach
JPRA, OnCAR enlarges the overall efficiency of DSRC by
28.9% and 30.1%, respectively. Furthermore, we find that
OnCAR’s improvements in eTPUT is larger than that in ePDR
(in terms of percentage). In other words, OnCAR further
enlarges the eTPUT beyond the increment brought by an
enhanced ePDR.

3) DSRC Fairness in Real-life Scenarios: The metric of
fairness, i.e., the CV of ePDRs, is presented in Figure 10. It is
shown that, in both scenarios, OnCAR achieves the lowest CV
and hence the best fairness among all approaches. To quantify
the improvement in fairness, we summarize the decreases in
CV of ePDRs brought by OnCAR in Table V. Compared to
JPRA, OnCAR improves the fairness across all vehicles by
up to 44.0% and 40.1%, respectively. These improvements
are brought by the receiver-side measurement mechanism of
OnCAR. This mechanism establishes an implicit feedback
loop, which forces vehicles to consider the performance of
their neighbors. Therefore, OnCAR helps vehicles achieve
enhanced reliability and improved fairness simultaneously, and
indeed addresses Challenge 3.

4) Convergence in Real-life Scenarios: We further evaluate
the convergence of different approaches. We compare OnCAR
with JPRA, while omitting TPA and DRA as they only adjust
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TABLE V: OnCAR’s improvements in fairness over others.

Fairness Improvement Berkeley San Diego

Over TPA 65.8% 54.2%

Over DRA 29.4% 29.8%

Over JPRA 44.0% 40.1%

one individual variable. Due to the limitation of space, we
focus on the convergence of San Diego scenario, and leave
the details of Berkeley scenario in [14]. We extract the results
at the very beginning of the simulations, when all vehicles
just start to adapt their power and rates. Fig. 11 presents the
selections of power and rates across time. It is demonstrated
that power and rates of OnCAR converge much faster than
those of JPRA. While OnCAR achieves a convergence of
both variables in only 3 control iterations, JPRA requires
almost 30 control iterations. This is because the sequential
adaptation procedure in JPRA is sensitive and vulnerable to
the dynamics in the environment. Changes in one variable
sometimes evoke cascading oscillations across two variables
for a relatively long period. OnCAR avoids this problem with
a synchronous control of both variables. In this way, OnCAR
addresses Challenge 2 and increases the convergence speed.

D. Evaluation in Synthetic Scenarios
In this section, we demonstrate that OnCAR achieves large

improvements in both rush and regular periods. To this end, we
establish ten synthetic scenarios, each of which is generated
with an unique synthetic traffic density trace. The traffic den-
sity in each synthetic scenario varies randomly and arbitrarily
across time, from 0.025 to 0.15 vehicles per meter. To better
compare the approaches, we group simulation results into
different sets according to the corresponding densities. Due to
the limited space, we focus on the results of a low density set
(i.e., density 0.075), a medium density set (i.e., density 0.1), a
high density set (i.e., density 0.15). We summarize OnCAR’s
improvements in mean ePDRs, mean eTPUT and CV of
ePDRs over other approaches in Table VI. It is confirmed
that OnCAR delivers the most reliable, efficient and fair
performance across different traffic densities.

V. RELATED WORK

In this section, we only discuss the work that is most
pertinent to ours, due to the space limitation.

Transmission power control and data rate adaptation in
stationary wireless networks have been extensively studied.
However, they cannot adapt to the dynamic vehicular en-
vironments directly. In mobile ad hoc networks (MANETs)
and vehicular ad hoc networks (VANETs), power and rate
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Fig. 11: Convergence in San Diego Scenario.

TABLE VI: OnCAR’s improvements in synthetic scenarios.

Density Approach ΔePDR ΔeTPUT ΔCV

0.075 TPA 39.7% 53.9% 65.8%

DRA 12.9% 17.4% 39.1%

JPRA 18.8% 21.0% 44.1%

0.1 TPA 63.7% 78.1% 62.8%

DRA 21.0% 25.6% 27.2%

JPRA 21.6% 31.0% 48.4%

0.15 TPA 87.0% 98.5% 45.3%

DRA 42.4% 30.8% 26.9%

JPRA 29.0% 35.7% 38.5%

adaptation methods explicitly consider the impact of mobility.
For power control, Torrent-Moreno et al. in [20] developed a
distributed power control method D-FPAV, which aims to im-
prove the transmission fairness of safety-critical information.
Guan et al. in [5] proposed to control the transmission range
by adapting the power level of DSRC nodes. The proposed
algorithm FPC requires feedback beacons from neighbouring
vehicles. For rate adaptation, Holland et al. in [21] developed
RBAR, which adapts the data rate based on a receiver-based
SNR measurement approach. Chen et al. in [8] proposed a
rate adaptation method named RAM to handle the channel
asymmetry. Vutukuru et al. in [22] designed a rate adaptation
method SoftRate, which adjusts the data rate according to
the channel bit error rate. Shankar et al. in [7] proposed to
leverage context information such as velocity and distance
in rate adaptation and developed CARS based on this idea.
However, the above-mentioned methods focus on either power
control or rate adaptation, and may fail to select the optimal
combination of both.

There also exist a number of joint adaptation methods.
Nevertheless, most methods are based on handshaking or
feedback messages, and thus are not suitable for DSRC safety
communications. This is because DSRC safety communica-
tions are based on broadcast and provide neither handshaking
nor feedback messages. Ramachandran et al. in [9] developed
Symphony, which is a fully distributed synchronous two-phase
power and rate adaptation strategy. The first step of Symphony
is to estimate the best performance and selects the corre-
sponding data rate. The second step is to tune transmission
power to approach estimated performance with the selected
data rate. However, tuning the power setting in the second
step costs Symphony much time, and thus reduces Symphony’s
efficiency in the vehicular environment.



Other variables have also been utilized in reducing channel
congestion and improving DSRC performance. CAM-DCC
proposed by European Telecommunication Standards Institute
(ESTI) in [23] and LIMERIC proposed by Bansal et al. in [24]
are two candidates for the congestion control in DSRC. While
CAM-DCC adjusts the generation rate of safety messages ac-
cording to vehicle dynamics (e.g., position, heading and speed
changes), LIMERIC adapts this rate based on the channel load.
Huang et al. in [25] proposed a joint transmission probability
and power adaptation method to enhance the safety of driving.
Rawat et al. in [19] proposed to jointly select transmission
power and contention window (CW) size. Zhang et al. in [6]
improved QoS of VANETs with a joint adaptation of power
and sub-carrier allocation. Tielert et al. in [10] designed a
joint approach that adjusts transmission power and beacon
frequency to reduce congestion and collisions in the wireless
channels. Xiang et al. in [26] developed a context-aware data
dissemination scheme, which adjusts the contention window
size of CSMA according to the preference of information
captured in each DSRC packet. Gao et al. in [27] designed a
two-step network coding based data dissemination approaches,
which separates the coding operation and the transmission op-
eration into two threads. By carefully adjusting and scheduling
these two threads, the proposed approach manages to reduce
data dissemination delays. However, to achieve the optimal
DSRC performance, these approaches should be integrated
with power and rate control. Moreover, the coupling among
control parameters (e.g., power, data rates, message generation
rates, CW sizes, and etc.) have not been fully explored.

VI. CONCLUSION

In this paper, we develop and implement OnCAR to enhance
the reliability, efficiency and fariness of DSRC by joint and
synchronous control of transmission power and data rates.
OnCAR handles the coupling between power and rates with a
MIMO model based predictor to produce a synchronous pair
of variables. Furthermore, OnCAR tackles the disturbances in
the dynamic vehicular environment with an online adaptive
controller. In addition, by adopting receiver-side measure-
ments, OnCAR manages to deal with the lack of coordination
between vehicles and improve fairness across all. Several
interesting findings are revealed. (i) OnCAR achieves its
largest improvement during rush hours. (ii) OnCAR enhances
average reliability and at the same time improves fairness
across all vehicles. (iii) OnCAR leverages a combination of
high transmission power and high data rates to combat the
network congestion.
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