
A Public Vehicle System with Multiple
Origin-Destination Pairs on Traffic Networks

Ming Zhu∗, Linghe Kong†∗, Xiao-Yang Liu∗, Ruimin Shen∗, Wei Shu‡∗, Min-You Wu∗
∗Shanghai Jiao Tong University, China

†McGill University, Canada.
‡University of New Mexico, USA

∗{zhumingpassional, linghe.kong, yanglet, rmshen, mwu}@sjtu.edu.cn, ‡shu@ece.unm.edu

Abstract—Substantial technology advances have been made
in areas of autonomous and connected vehicles, which open a
wide landscape for future transportation systems. We propose a
new type of transportation system, Public Vehicle (PV) system,
to provide effective, comfortable, and convenient service. The
PV system is to improve the efficiency of current transportation
systems, e.g., taxi system. Meanwhile, the design of such a system
targets on significant reduction in energy consumption, traffic
congestion, and provides solutions with affordable cost. The key
issue of implementing an effective PV system is to design efficient
scheduling algorithms. We formulate it as the PV Path (PVP)
problem, and prove it is NP-Complete. Then we introduce a
real time approach, which is based on solutions of the Traveling
Salesman Problem (TSP) and it can serve people efficiently
with lower costs. Our results show that to achieve the same
performance (e.g., the total time: waiting and travel time), the
number of vehicles can be reduced by 47%-69%, compared with
taxis. The number of vehicles on roads is reduced, thus traffic
congestion is relieved.

I. INTRODUCTION

Public transportation systems such as buses or subways
provide a low-cost travel option with a fixed geographic route
and a fixed schedule for passengers. However, passengers may
need to transfer by walking with inconvenience. In modern
cities, cars and taxis serve majority of transportation needs
for personal travel and daily commuting. Private cars or taxis
provide convenient services at high cost. Impacts of non-
shared rides on social cost, such as energy consumption,
pollution, and traffic congestions, are paid attention to recent
years. The amount of consumed fuels, e.g., gasoline, diesel,
and biofuels increases with population growth. How to use
less number of vehicles and consume less amount of energy
to meet the demands of transportation efficiently is a hot topic
to be addressed.

In order to overcome the inefficiency of non-shared rides,
vehicle sharing is certainly a direction to pursue. Intelligent
Transport Systems (ITS) are promising for modern cities
aiming at providing innovative services. Cloud and mobile
computing [1] makes it possible for traffic resource sharing
between strangers. Researchers have proposed methodologies
and incentives for carpool or ridesharing to share trips with
low-cost and fun. With the advances in area of autonomous
cars and connected vehicles, autonomous transportation ser-
vices will become possible in the near future. Google has built
a driverless or autonomous car, which may be used in traffic

system [2]. Electric vehicles are more and more popular and
may be greatly used in future transportation systems, therefore
the charing-scheduling problem [3] become an important issue.
We propose such a system, Public Vehicle (PV) system, to
provide convenient and low-cost transportation service. In this
system, public-owned vehicles will serve people on demand.
A PV can pick up or drop off people at required locations
upon requests. The price will be much less than cars or taxis,
depending on travel distance, sharing demands, and advanced
requests. The system has several advantages compared to
current taxi or bus system. It is of low cost compared to taxis.
It provides a more convenient solution to the last mile problem
compared with buses, because people do not need to walk to
stops or transfer. With well-designed incentives, this platform
will improve traffic efficiency, reduce the energy consumption
and lower the cost of current transportation systems. Recent
years, ridesharing systems, e.g., Uber [4], become popular in
many countries, while they are not as dynamic as PV system.

Current ridesharing [5] or carpool [6] provide services
for people with common subpaths (similar origins and des-
tinations). Zhang et al. propose one method [7] to reduce
total trip distance, and a fare model prompting passengers
to join. Nevertheless, there is one geographical constraint:
the carpool starts at the locations where passengers are to-
gether, e.g., airports or stations, and the destinations should
be close. Certainly, it is important to build a model [8] to
analyze transportation systems with presence of uncertainty.
Dutta et al. introduce a solution of calibration to obtain
optimal parameters when creating a reliable model [9]. Ma
et al. propose a taxi searching algorithm [11] to retrieve
candidate taxis that are likely to satisfy a user query. Dial-
a-ride problem (DARP) [10] is proposed to construct vehicle
routes for people, and some settings should be satisfied: the
time windows, precedence constraints, and capacity.

Multi hop ride sharing (MHRS) is proposed to combine
multiple rides to improve the ride sharing solution [12].
However, the comfort of passengers would be greatly reduced
with too many transfers.

Some solutions of the above are based on personal de-
cisions, which may be far from the good/optimal solutions.
PV system has several constraints compared with traditional
carpool/ridesharing or taxi sharing, and it is not based on
personal decisions. The paths of PVs are calculated by our

proposed algorithm. The contribution of this paper is: (1). We
propose a new type of vehicles, public vehicles to improve traf-
fic efficiency and reduce congestions on traffic networks. (2).
We formulate the PVP problem under several constraints, e.g.,
capacity, precedence, and prove it is NP-Complete. (3). Then
we introduce a practical algorithm, through which requests
can be tackled efficiently. (4). We analyze the performance of
PVs and taxis through large-scale simulations with 100,000
requests of one day.

The rest of this paper is organized as follows: In section II,
we introduce the scenario of PV system and then formulate
the PVP problem. Section III proves the NP-Completeness of
this problem. Section IV describes the proposed algorithm.
Section V shows the simulations of PVs and taxis, and then
analyzes the performance. Section VI concludes this work.

II. PUBLIC VEHICLE AND PROBLEM FORMULATION

In this section, we first introduce public vehicle, then
analyze the difference between PVs and carpool. Finally,
we propose a linear programming solution under practical
constraints.

A. Public Vehicle

Conceptually, PV system keeps the flexibility and speed of
private cars or taxis with lower cost at the expense of a little
inconvenience (picking or dropping others). The scenario of
PV system is shown by Fig. 1: in the traffic networks, some
users need trips with pickup points (origins) and dropoff points
(destinations). A user sends requests through a smart phone
to a central server. The server assigns some PVs to pick up
these users, and schedule optimized paths for PVs. Then PVs
move according to updated paths. If the paths of PVs are not
well designed, persons may spend more time on waiting or
traveling on roads. Thus, how to devise the paths to reduce
the whole travel distance and meet the demands of users are
a topic we are focusing on, which is named as the PV Path
(PVP) problem. We suppose there are no transfers between
PVs. For the PVs already having persons inside, PVs have
to arrive at the destinations of these persons. At the same
time, they may pickup new persons and change their paths
dynamically following the commands of server.

PV system is one new type transportation system, which is
different from traditional carpool or carpooling. Carpool is a
personal decision based on plenty of factors, e.g., trip length,
travel time, number of participants. To start a carpool, a driver
needs to communicate with other potential participants and
negotiate with them to get an agreement. PV system is based
on the decisions of the central server, which make decisions
for all the PVs and persons who need service, and devise new
paths for PVs dynamically.

B. Problem Formulation

Assume at time ts, there are Np PVs, denoted by set P ,
and total m requests, denoted by R = R1

∪
R2, where R1

is a set of requests currently being served by PVs and R2

is a set of requests to be assigned to PVs. Let m1 = |R1|,

Server computes

new paths of PVs

to serve new

persons

PVs carry on the

commands of

server to move as

new paths

Server

PVs

Persons send

requests

Server sends

commands to PVs

Persons send

requests to PV

Server

Fig. 1. PV frame.

and m2 = |R2|. Temporarily, assume each request is corre-
sponding to one passenger. Let r denote a request r ∈ R, and
p denote a PV p ∈ P . For R1, since requests are currently
being served, their origins are not meaningful any more but
their destinations need to be reached. Thus, let V 1

d to be a set
of the destinations of requests existing in R1. For R2, both
origins and destinations of requests need to be considered.
Thus, for requests in R2, let V 2

o and V 2
d be a set of their origins

and destinations, respectively. Consider a weighted complete
graph, G = (V,E), V = Vp

∪
V 2
o

∪
Vd, and E is a set of

edges between two vertices of V . Vp is the set of locations
of PVs. Vd = V 1

d

∪
V 2
d . The weight of edge between any pair

of vertices i and j, is di,j , the traveling distance based on
the shortest path between them. To describe our problem, the
other variables are summarized in Table I.

TABLE I
DENOTATIONS IN PV SYSTEM

Kp,i,j is 1, if both i and j are on the path of p, and i precedes
(not necessarily immediately) j, otherwise, 0.

Ip the set of locations p traverses (current location of p
is not included).

Ip,i is 1, if i is on path of p, otherwise, 0.
P set of PVs.
cp capacity of PVs. Assume Np ∗ cp ≥ m.
ap current location of p.
bp last location of p traverses.
re the earliest start time of r
µp a set of requests currently being served by p.
ep the number of requests currently being served by p.

ep = |µp|,
∑Np

p=1 ep = m1.
τp,i,j travel time on path of p from vertex i to j.
Qp,r is 1, if p serves r, otherwise, 0.
xp,i,j is 1, if p traverses edge (i, j) ∈ E, and i precedes j

immediately, otherwise, 0.
f+
p,i number of picked requests of p before vertex i.

f−
p,i number of dropped requests of p before vertex i.

g+p,i is 1 if p picks one request at vertex i, otherwise, 0.
g−p,i is 1 if p drops one request at vertex i, otherwise, 0.

The formulation of PVP is shown by Eqns (1-14), where
Eqn (1) is the objective function, and Eqns (2-13) are con-
straints. Eqn (1) means the sum of travel distance of each
PV. Eqns (2-3) detail the matching between PVs and requests:
Eqn (2) ensures that, if r is currently being served by p, p

has to complete serving r by traversing through its destination
rd. Eqn (3) ensures that there are exactly m one-to-one
assignments among PVs and requests. Eqn (4) implies that,
if r is yet to be served, and it has been assigned to one
PV p, p has to traverse through its origin and later on its
destination. Eqn (5) denotes the total number of picked or
dropped passengers when p traverses the edge {i, j}. Eqns
(6)(7) imply that, if p traverses the origin of one request it
will pick him up, and if the destination, it will drop him off.
Eqns (8-12) are similar to linear programming formulation of
PCTSP (precedence constrained traveling salesman problem).
Eqn (8) implies that, any location on the path of p except
the last one (bp) has only one successor. Eqn (9) implies that,
any location on the path of p except the first one (ap, current
location of p) has only one precursor. Eqn (10) points out the
relationship between Kp,i,j and xp,i,j : Kp,i,j is not less than
xp,i,j , which can be inferred from our definitions. Eqn (11)
details two cases: If neither edge {i, j} nor {j, i} is not on
path of p, Kp,i,j = Kp,j,i = 0. If edge {i, j} or {j, i} is on
the path of p, only either one of Kp,i,j and Kp,j,i is 1, and
the other is 0. Eqn (12) prevents the occurrence of subtours.
Eqn (13) implies the constraint of capacity of PVs. Eqn (14)
implies the constraint of the earliest start time.

Objective: min
∑
p∈P

∑
{i,j}∈E

di,jxp,i,j (1)

Subject to:
r ∈ µp ⇒ Qp,r = 1, Ip,rd = 1 (2)

r ∈ R,
∑
p∈P

Qp,r = 1 (3)

r ∈ R2, Qp,r = 1⇒ Ip,ro = 1, Ip,rd = 1

Kp,ro,rd = 1 (4)
xp,i,j = 1⇒ f+

p,i + g+p,i = f+
p,j , f

−
p,i + g−p,i = f−

p,j (5)

i ∈ {Ip
∩

V 2
o } ⇒ g+p,i = 1 (6)

i ∈ {Ip
∩

Vd} ⇒ g−p,i = 1 (7)

i ∈ {Ip
∪
{ap}\{bp}} ⇒

∑
j∈Ip,j ̸=i

xp,i,j = 1 (8)

j ∈ Ip ⇒
∑

i∈Ip
∪
{ap},i ̸=j

xp,i,j = 1 (9)

Kp,i,j ≥ xp,i,j (10)
Kp,i,j +Kp,j,i ≤ 1 (11)
Kp,i,j +Kp,j,j′ +Kp,j′,i ≤ 2 (12)
i ∈ Ip ⇒ ep + f+

p,i − f−
p,i + g+p,i − g−p,i ≤ cp (13)

r ∈ R2, Qp,r = 1⇒ ts + τp,ap,ro ≥ re (14)

f+
p,i, f

−
p,i ≥ 0. xp,i,j ,Kp,i,j ,Kp,j,j′ ,Kp,j′,i,

Qp,r, g
+
p,i, g

−
p,i, Ip,ro , Ip,rd ∈ {0, 1}

III. NP-COMPLETENESS

In this section, we prove the NP-Completeness of the PVP
problem by reducation from the TSP problem.

0

PV1

Ad

Cd

Bo

Bd

Do

Dd

Ed

Fo

Fd

PV2 PV3

Fig. 2. Transformed graph of PVP.

Theorem III.1. The PV Path (PVP) problem is NP-Complete,
as it can be reduced from Traveling Salesman Problem (TSP).

Proof: First, we show that PV Path (PVP) problem is NP.
Given any instance of PVP, we use as a certificate the paths
and tasks of all PVs. Here, tasks include picking/dropping
locations of any request. The verification algorithm checks that
any request r ∈ R is served by p ∈ P . We check whether all
the requests can arrive at their destinations through the paths
and service tasks of PVs. Clearly, this process can be done in
polynomial time. Therefore, PVP belongs to NP.

Second, we prove that PVP is NP-Hard by showing that
it can be reduced from the Traveling Salesman Problem
(TSP), which is NP-Hard. We construct a new graph G̃,
which is shown by Fig. 2. First, we introduce a virtual vertex
(denoted by 0) and connect it to all the PVs (denoted by
PV1, PV2, PV3) corresponding to a salesman with zero-cost
edges. Points in TSP are mapped to the locations of PVs,
origins and destinations of requests. Assume that a virtual
salesman first goes to the location of PV1. For requests
µ1 = {A,C} already in PV1, the salesman has to reach
the corresponding destinations Ad and Cd. In addition, the
salesman will take more requests and assign PV1 to serve
them. In Fig. 2, B is selected with its origin and destination Bo

and Bd, resulting in an updated path {PV1, Ad, Bo, Cd, Bd}.
Then the salesman moves to another PV PV2, and so on....
This process repeats until all the requests are served.

At last, the salesman moves back to his origin (denoted
by 0), and the corresponding cost is zero. In Fig. 2, all the
edges with zero costs are denoted by dash lines. At last, the
edges (dash lines) with zero costs are eliminated to reduce
to the PVP problem. Therefore, for any instance of TSP,
a corresponding instance in PVP can be mapped, and the
reduction is polynomial. The solution to the instance in PVP
is also the solution to TSP. Thus, PVP is NP-Complete.

IV. HEURISTICS

In this section, we propose our heuristic algorithm and
analyze its approximation ratio.

PV1

Ad

Cd

Bo

Bd

Do

Dd

Ed

Fo

Fd

PV2

PV3

Fig. 3. Assignment graph constituted by PVs, origins and destinations of
requests.

A. Origin-Destination Pair Insertion

If we design paths for any request which is not yet being
served by PVs, the precedence between origin and destination
both should be considered. First, we introduce an assignment
graph (Fig. 3) which consists of PVs, origins and destinations
of requests, where R1 = {A,C,E} and R2 = {B,D,F}.
More specifically, µ1 = {A,C}, µ3 = {F}, and origins of
requests in R1 are excluded since they are not in a range
of interesting. Requests in R2 can be served by any of PVs,
PV1, PV2, or PV3. In general, for the requests in set µp of
p (by definition, they exist in R1), there is no precedence
among their destination locations. On the other hand, for a
new request r ∈ R2, its origin ro has to be visited before its
destination rd. Therefore, if p decides to take request r ∈ A2,
both ro and rd need to be inserted into the current path of p
with the precedence constraint being satisfied.

Definition IV.1. The insertion cost (IC) at location of (i,j)
πr,p,i,j . Assume r is taken by p. On the current path of p, insert
one origin-destination pair (ro, rd) of r, where ro precedes
rd, leading to a new path. The cost πr,p,i,j is the difference
between the distance of the two paths.

Definition IV.2. The least insertion cost (LIC) πr,p = πr,p,i′,j′

will be the least cost for all possible insertion locations of i
and j of p for request r.

Definition IV.3. The minimum insertion cost (MIC) πr =
πr,p′ = πr,p′,i′,j′ will be the minimum cost of request r for
all possible PVs in P .

For p, let listp be the list of requests either currently
being served or will be served by it. Now, let the curren-
t path {θ0, θ1, . . . , θLp}, consisting of its current location
θ0 = ap. In order to insert new request r, select one location
θi (1 ≤ i ≤ Lp + 1) of path of p to insert ro in front of
θi. Then from the locations after ro select another location
θj (i + 1 ≤ j ≤ Lp + 2) to insert rd. Thus, there are
(Lp − i+ 2) locations to select rd for every selected ro. The
insertion complexity is O(L2

p).

Algorithm 1 Algorithm of PCPI
Input:

R1, R2, P .
Output:

Paths of PVs, χ = {χp|p ∈ P}.
1: for p ∈ P do
2: listp ← µp.
3: Calculate the initial path χp through µp using

Christofides’s algorithm [13], then remove duplicate
points.

4: end for
5: for r ∈ R2 do
6: for p ∈ P do
7: Use Eqn (15) to calculate IC πr,p,i,j at all possible

locations {i, j} on the path χp of p. Then obtain LIC
πr,p = min(πr,p,i′,j′).

8: end for
9: From the LIC of i in every PV calculate MIC πr =

πr,p′ = min{πr,1, πr,2, . . . , πr,Np}.
10: if πr ̸=∞ then
11: Insert origin ro and destination rd of r at the locations

of i′ and j′ on the path χp′ of p’.
12: listp′ ← listp′

∪
{r}. // Schedule request r in the list

of p’.
13: end if
14: end for

Let d{θi−1, θi} denote the shortest distance between θi−1

and θi on road networks. Let d{θi, . . . , θj} = d{θi, θi+1} +
. . . ,+d{θj−1, θj} denote the distance of shortest path from θi
to θi+1,... and to θj .

πr,p,i,j =



d{θi−1, ro, rd, θi} − d{θi−1, θi},
if 1 ≤ i ≤ Lp, j = i+ 1.

d{θLp , ro, rd},
if i = Lp + 1, j = i+ 1.

d{θi−1, ro, θi}+ d{θLp , rd} − d{θi−1, θi},
if i ≤ Lp, j = Lp + 2.

d{θi−1, ro, θi}+ d{θj−1, rd, θj}
−d{θi−1, θi} − d{θj−1, θj},

if i ≤ Lp, j ≤ Lp + 1, j ̸= i+ 1.

(15)

B. Algorithm

Now, we consider an ideal scenario without PV capacity
and passengers’ detour constraints, which is named as SI . And
SII is the scenario with the two constraints. First, we discuss
solution of SI .

PCPI (Precedence Constrained origin-destination Pair Inser-
tion) Algorithm is shown in Algorithm 1. For p, initial path
χp denotes the path constituted by its current location and
the destinations of requests in µp. Lines (1-4) compute the
initial path of each PV. Lines (6-8) calculate the least cost of
inserting r of by p’. Lines (5-14) get the minimum cost of

serving r among all the PVs, and then insert the origins and
destinations of r at appropriate locations. Line (10) means that,
if the cost of serving r is infinite, r is denied.

The operation of inserting origins and destinations is carried
out by line (11) and the corresponding path should be updated
afterwards. We know that the complexity of insert one origin-
destination pair on path of p is O(L2

p). From lines (1-4),
the complexity is nc3p. From lines (5-14), the complexity is
O(m2Npc

2
p) = O(mNpc

2
p). Generally, m ≥ cp. Finally, the

complexity of PCPI is O(mNpc
2
p).

Theorem IV.1. Approximation ratio of PCPI is 3.5.

Proof: Let d′p denote the distance of initial path for p
calculated by line (3) in Algorithm 1, and d′ =

∑
j d

′
p. Let d′′p

denote the total MIC when p serves additional requests outside
(d′′p =

∑
r∈R2

πr,p), and d′′ =
∑

p d
′′
p . Let dOPT denote

the distance of optimal solution. The approximation ratio of
Christofides’s algorithm is 1.5, and clearly, d′ ≤ 1.5dOPT .

Now, we discuss d′′. D. Rosenkrantz et al. have proved
approximation ratio of cheapest insertion and nearest merger
methods [14] is 2. In fact, we can name PVP as a multiple-
cycle TSP: we add a virtual point to denote the root, and the
origin and destination of any request consist of a cycle. Set the
weight of the arc returning to virtual point zero. Bockenhauer
et al. point out that, the approximation ratio of Algorithm
4 in [15] is not worse than 2. We can get d′′ ≤ 2dOPT .
Let dT denote the finally total distance of PV paths. We get
dT = d′ + d′′ ≤ 3.5dOPT .

Then we discuss the solution for the other scenario SII .
With respect to r, the travel distance dr is not less than dsr,
the shortest distance from its origin to destination. Detour(r)
(detour ratio of r) is the percentage of additional distance
compared with dsr, i.e., Detour(r) =

dr−ds
r

ds
r

. Let Detouravg
denote the average detour ratio of all requests: Detouravg =∑

r dr−
∑

r ds
r∑

r ds
r

. Make sure that the detour ratio of any re-
quest does not exceed a threshold DetourTh: Detour(r) ≤
DetourTh.

Let nmax
r,p,i,j denote the maximum number of passengers

among all locations if p picks request r at location i and
drops it at j. Let π′

r,p,i,j of SII replace πr,p,i,j in SI , and the
relationship between them is shown by Eqn (16). If p serves
request r, there will be no seat for him, or there would appear
large detour for other requests in schedule list of this PV. This
request would not be selected by p.

π′
r,p,i,j =


∞, if nmax

r,p,i,j > cp

or Detour(r) > DetourTh

πr,p,i,j , otherwise.
(16)

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
algorithm compared with taxis.

Our simulation is based on the road networks of Shanghai
in China, particularly, in the downtown area of about 50
km2. Within in a 24-hour time window, there are 100,000

3:00 8:00 13:00 18:00 23:00
0

5

10

15

Time (hour)

Pe
rc

en
ta

ge
 o

f t
rip

 re
qu

es
ts

 (%
)

Fig. 4. Distribution of trip requests by time of the day.

trip requests generated and geographically distributed in that
area. We use Shanghai daily traffic characteristics [16] to
configure our peak and nonpeak traffic patterns. Fig. 4 shows
the distribution of trip requests by time of the day (24 hours).
For simplicity, we assume there is a single passenger for every
trip request. The simulations run until all the trip requests
complete, therefore, will extend certain minutes beyond 24
hours.

A taxi also follows the shortest path to pick the next
assigned request (as unloaded) and then to reach its destination
(as occupied). With respect to the shortest path algorithm, we
use Dijkstra Algorithm. Up on arrival of destination, a taxi
will stop there, remaining as its on-call status, until the next
trip request being scheduled. Thus, taxis have three statuses:
occupied, on-call, and unloaded. Similarly, a PV also has three
types of statuses as a taxi does, but will use our PCPI algorithm
to determine its paths. cp is set to 15. Considering of the
comfort of passengers, DetourTh is set to 0.2. Table II lists
the variables and definitions used in simulations. Here, we do
not consider traffic congestion, and PVs or taxis travel as the
speed we set all the time. Finally, we put 500-1,500 PVs to
the system to compare the performance with taxis.

TABLE II
VARIABLES USED IN SIMULATIONS

Variables Definition Values
st speed of taxis. Unit: km/h. 40
sp speed of PVs. Unit: km/h. 40
Nt total number of taxis. 2,300
ct capacity of taxis. 4
tp time spent in picking one request. Unit: second. 6
td time spent in dropping one request. Unit: second. 6
nsh number of passengers sharing one request. 1∼4
dlb lower bound of distance from origin to destination.

Unit: km
5

A. Results

For time being, let number of passengers per request, nsh,
be 1, and leave discussion of its general values later.

In Fig. 5, the black bars denote the waiting time, and white
bars denote the travel time. Here, take Nt = 2, 300 as a
benchmark, and the total time is about 20 minutes. We see
that, if more PVs join to serve passengers, the average waiting

600 700 800 900 taxis
0

5

10

15

20

25

Number of PVs and taxis

A
v
e
ra

g
e
 w

a
it
in

g
 a

n
d
 t
ra

v
e
l
ti
m

e

Waiting time
Travel time

Fig. 5. Waiting and travel time for PVs and taxis.

600 700 800 900
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Number of PVs

A
v
e
ra

g
e
 d

e
to

u
r

ra
ti
o

Fig. 6. Average detour ratio of requests.

1 2 3 4
0

200

400

600

800

1000

1200

Number of passengers sharing one request.

N
u
m

b
e
r

o
f
P

V
s

Fig. 7. Required number of PVs when nsh varies.

and travel time decrease. The total distance of taxis is 8.2×105
km, and distance of 700 PVs is about 3.3× 105 km, reduced
by 60%. Fig. 6 denotes the average detour ratio of passengers.
If more PVs join the transportation, passengers can enjoy less
detour distance. In our algorithm, considering of comfort of
passengers, the detour ratio of any request should not exceed
the threshold we set.

At last, we discuss the scenario when more passengers share
one request. When nsh = 2, 3, and 4, we put 500-1,500 PVs
to the system and compare their performances with taxis. The
result is shown by Fig. 7. If more passengers share one request,
more PVs should join to achieve corresponding performance
(total time, waiting time plus travel time). When 4 passengers
share one request, the performance of PVs is not as well as
the one with 2 or 3 passengers. For Nt = 2, 300, the number
of vehicles in PV system is reduced by 47%-69% compared
with taxis when nsh varies from 1 to 4.

VI. CONCLUSION

In this paper, we propose one public vehicle system to
improve efficiency of conventional carpool and taxi system.
To reduce the total travel distance, we introduce a solution
through linear programming method. Then we propose an
algorithm to design paths for PVs to serve user requests.
Through large simulations, we find the number of vehicles
can be greatly reduced using PV system compared with taxis.
Therefore, heavy traffic congestions in modern cities can be
mitigated. The proposed algorithm is efficient, real time, and
can be practical in the future traffic systems. In this paper,
congestion is not considered, and in future, we would build
better simulations showing the effects of traffic congestion,
which would be more actual than this one, and better compare
the performance between PV system and other transportation
systems.

ACKNOWLEDGMENT

This work was supported by the Natural Science Founda-
tion of China (NSFC) projects (Nos. 61373155, 91438121,
61303202 and 61373156), the Key Basic Research Project
(No. 12JC1405400), China Postdoctoral Science Foundation

(2014M560334 and 2015T80433) and the Shanghai Pujiang
Program (No. 13PJ1404600) of the Shanghai Municipality.

REFERENCES

[1] S. Bitam and A. Mellouk, “Its-cloud: Cloud computing for intelligent
transportation system,” in IEEE Global Communications Conference
(GLOBECOM), pp. 2054–2059, 2012.

[2] “Roadtesting google’s new driverless car.” http://www.telegraph.co.uk/
motoring/11382073/Roadtesting-Googles-new-driverless-car.html.

[3] M. Zhu, X.Y. Liu, L. Kong, R. Shen, W. Shu, and M.Y. Wu, “The
charging-scheduling problem for electric vehicle networks,” in IEEE
Wireless Communications and Networking Conference (WCNC), p-
p. 3178–3183, 2014.

[4] https://www.uber.com/.
[5] M. Furuhata, M. Dessouky, F. Ordóñez, M.-E. Brunet, X. Wang, and

S. Koenig, “Ridesharing: The state-of-the-art and future directions,”
Transportation Research Part B: Methodological, vol. 57, pp. 28–46,
2013.

[6] G. Correia and J. M. Viegas, “Carpooling and carpool clubs: Clarifying
concepts and assessing value enhancement possibilities through a stated
preference web survey in lisbon, portugal,” Transportation Research Part
A: Policy and Practice, vol. 45, no. 2, pp. 81–90, 2011.

[7] D. Zhang, Y. Li, F. Zhang, M. Lu, Y. Liu, and T. He, “coride: carpool
service with a win-win fare model for large-scale taxicab networks,”
in Proceedings of the 11th ACM Conference on Embedded Networked
Sensor Systems, p. 9, 2013.

[8] A. Guasch, J. Figueras, C. Montañola-Sales, J. Casanovas-Garcia, et al.,
“Simulation analysis of a dynamic ridesharing model,” in IEEE Proceed-
ings of the Winter Simulation Conference, pp. 1965–1976, 2014.

[9] P. Dutta, E. Arnaud, E. Prados, and M. Saujot, “Calibration of an
integrated land-use and transportation model using maximum-likelihood
estimation,” IEEE Transactions on Computers, vol. 63, no. 1, pp. 167–
178, 2014.

[10] M. Firat and G. J. Woeginger, “Analysis of the dial-a-ride problem of
hunsaker and savelsbergh,” Operations Research Letters, vol. 39, no. 1,
pp. 32–35, 2011.

[11] S. Ma, Y. Zheng, and O. Wolfson, “T-share: A large-scale dynamic
taxi ridesharing service,” in IEEE International Conference on Data
Engineering (ICDE), pp. 410–421, 2013.

[12] F. Drews and D. Luxen, “Multi-hop ride sharing,” in Sixth Annual
Symposium on Combinatorial Search, 2013.

[13] N. Christofides and S. Eilon, “Algorithms for large-scale travelling
salesman problems,” Operational Research Quarterly, pp. 511–518,
1972.

[14] D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis, II, “An analysis of
several heuristics for the traveling salesman problem,” SIAM journal on
computing, vol. 6, no. 3, pp. 563–581, 1977.

[15] H.J. Böckenhauer, J. Hromkovič, J. Kneis, and J. Kupke, “On the
approximation hardness of some generalizations of tsp,” in Algorithm
Theory–SWAT, pp. 184–195, Springer, 2006.

[16] http://sh.eastday.com/qtmt/20110309/u1a863059.html.

