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Abstract—Data collection is a crucial operation in wireless sensor networks. The design of data collection schemes is challenging

due to the limited energy supply and the hot spot problem. Leveraging empirical observations that sensory data possess strong

spatiotemporal compressibility, this paper proposes a novel compressive data collection scheme for wireless sensor networks. We

adopt a power-law decaying data model verified by real data sets and then propose a random projection-based estimation algorithm for

this data model. Our scheme requires fewer compressed measurements, thus greatly reduces the energy consumption. It allows

simple routing strategy without much computation and control overheads, which leads to strong robustness in practical applications.

Analytically, we prove that it achieves the optimal estimation error bound. Evaluations on real data sets (from the GreenOrbs, IntelLab

and NBDC-CTD projects) show that compared with existing approaches, this new scheme prolongs the network lifetime by 1:5� to

2� for estimation error 5-20 percent.

Index Terms—Compressive data collection, wireless sensor networks, compressive sensing, random compression, nonuniform random

projection
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1 INTRODUCTION

WIRELESS sensor networks (WSNs) are adopted in many
military, civilian and commercial applications recent

years [1]. A crucial operation of WSNs [2] is to perform data
collection, where sensor readings are collected from sensor
nodes and then transmitted to the sink through multi-hop
wireless communications. Various applications rely on effi-
cient data collection, such as battlefield surveillance [3], [4],
[5], habit monitoring [6], infrastructure monitoring [7], and
environmental monitoring [8].

A primary challenge of designing data collection schemes
lies in prolonging the network lifetime. First, each sensor
node, being a micro-electronic device, can only be equipped
with a limited power source while in many applications,
recharging is impractical (impossible or not worth it). Thus,
a WSN can only support limited volume of traffic load.
Second, the information that aWSN can effectively transport
is even less undermulti-hop transmissions since the network
capacity decreases as the number of nodes increases [9], i.e.,
the multi-hop scheme requires lots of packet forwardings.
Third, the many-to-one traffic pattern, called convergecast

[10], of data collection induces load unbalance. It leads to the
hot spot problem [11], i.e., the sensor nodes closer to the sink
will run out of energy sooner. Therefore, the network lifetime
ofWSNswill be significantly shortened.

Furthermore, designers have to deal with the following
constraints: the unreliability of low-power wireless commu-
nication, and the limited computational ability of sensor
nodes. Low-power transceivers induce poor link quality,
therefore packet loss occurs frequently [12], [13]. Actually,
real-world WSN projects suffer from serious data loss with
loss rates as high as 23-64 percent [12]. To ensure reliable
transmission will cost unconscionable amount of energy as
it induces an exceptionally huge number of retransmissions,
which is not cost-effective. On the other hand, sensor nodes
can only support simple computing tasks, therefore the pre-
processing or compression of data collection schemes
should be easy to implement.

Existing solutions have limitations and thus are unsatis-
factory. Generally, data collection in WSNs follows two
approaches: raw-data collection and aggregated-data collec-
tion. WSNs are typically composed of hundreds to thou-
sands of sensor nodes generating tremendous amount of
sensory readings, as the packet loss problem and the hot
spot problem surface, raw-data collection is rather ineffi-
cient or problematic [11], [13]. This approach will lead to a
large number of retransmissions in real-world situations
and node failures (cluster headers, or tree node, etc.) as bat-
teries run out. Aggregated-data collection takes advantage
of spatiotemporal correlations (or compressibility) within
sensory data to reduce communication costs. More specifi-
cally, in-network data compression [14] is adopted to
reduce global traffic, such as distributed source coding [15]
or transform coding [16]. However, they incur significant
computation and control overheads, i.e., the former one
relies on communications between neighbor nodes, while
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the later one requires complicated transforming computa-
tion, which are not suitable for WSNs.

Compressive sensing theory (CS) [17], [18] exhibits suc-
cessful application in designing effective data collections
[11], [19]. The authors in [11] propose a compressive data
gathering (CDG) scheme which reduces global-scale com-
munication costs while achieving tempting load balancing.
However, it assumes a perfectly reliable routing tree, thus is
vulnerable to packet loss or node malfunctioning. Maintain-
ing such routing infrastructure will cause large control over-
heads. Although in simulations it behaves well under
careful controls, the practical performance is unsatisfactory.

Main contributions. First, we propose a novel compressive
data collection scheme for wireless sensor networks. Our
scheme compresses sensory readings “on the fly” under an
opportunistic routing.

Second, wemodel the data collection process as a nonuni-
form sparse random projection (NSRP), we propose a NSRP-
based estimator which guarantees optimal error bound.

Finally, based on real data sets, we show that our scheme
prolongs the network lifetime by 1:5� to 2� for estimation
error 5-20 percent, compared with the baseline scheme and
the CDG [11] scheme.

2 RELATED WORK

Energy conservation [20] is an important issue in wireless
sensor networks. In-network compression is a promising
approach to reduce the amount of information to be trans-
mitted by exploiting sensory data’s redundancy. We classi-
fied existing data collection schemes into three categories:
conventional compression, distributed source coding, and
compressive sensing.

Conventional compression. Conventional compression tech-
niques assume specific data structures and thus require com-
munication among sensor nodes [20]. In joint entropy coding
approach, nodes use relayed data as side information to
encode their readings. If the data are allowed to be communi-
cated back and forth during encoding, sensor nodes may
cooperatively perform transforms to better utilize the corre-
lation, such as the gossip-based technique used in [19]. There
are two main problems with this approach. First, the route
heavily influences the compression performance [14]. To
achieve high compression ratio, data compression and
packet routing are required to be optimized jointly, which is
proved to be NP-hard [21], [22]. Second, structure-aware
data compression induces computational and communica-
tion overheads [14], [23], [24], rendering this kind of data col-
lection schemes to be inefficient.

Distributed source coding. Distributed source coding intends
to reduce complexity at sensor nodes and to utilize correla-
tion at the sink [15]. After encoding sensor readings indepen-
dently, each node simply sends the compressed message
along the shortest path to the sink [8]. Distributed source cod-
ing performs well for static correlation patterns. However,
when correlation pattern changes or anomaly readings show
up, the estimation accuracywill be greatly affected.

Compressive sensing. Recently, compressive sensing gains
increasing attention in wireless sensor networks [11], [16],
[19], In both static and mobile sensor networks [23], the
interplay of routing with compressive sensing is a key issue

[25]. Some of them conclude that although sparsity exists in
the environment, the restricted isometry property (RIP) is
required by traditional compressive sensing decoder, and
hardly good approximations can be achieved. Then some
proposed network-layer compression [26] to avoid this kind
of problem. Our scheme adopts opportunistic routing with
quite simple compression, therefore the data collection pro-
cess is dynamic. This dynamic feature leads to energy bal-
ancing and finally benefits energy consumption.

Note that there are several solvers that are related with our
work. Actually, all compressive sensing solvers are designed
for random projections. Few of them use sparse random pro-
jections [26], [27]. Our work are motivated by [26], however,
that solver cannot be applied directly for wireless sensor net-
works since uniform sampling is hard to achieve and thus
will require complicated control overhead. Belief propagation
[27] exploits sparse encoding, however it also works for uni-
form sampling while our estimator is the first solver that can
deal with nonuniform sampling. The probability distribution
is also used in their decoding process,which is treated as prior
information while we use the sampling distribution in the
generation of a projectionmatrix for decoding.

3 SYSTEM MODEL AND DESIGN OVERVIEW

3.1 Network Model

We consider a wireless sensor network consisting of n sensor
nodes and a sink. Sensor nodes are distributed in the target
field to sense the physical conditions and then report sensory
readings back to the sink throughmulti-hop transmissions.

Since wireless sensor networks use low-power trans-
ceivers, the link quality is bad, as revealed in [12] and [13].
We assume that the wireless channel is lossy. It is the moti-
vation of adopting the opportunistic routing in Section 4.1.

The monitoring period is evenly divided into T time
slots, denoted as f0; 1; . . . ; t; . . . ; T � 1g. A record at the
sensor node includes sensor reading, node ID, position
(longitude and latitude), and time stamp. The format of a
record is:

Let Ui;t denote the sensor reading of the ith node at slot t,
which may be temperature, humidity, illumination, etc.
Then, a physical condition, say temperature, can be repre-
sented as a data matrix:

U ¼

U0;0 . . . U0;t . . . U0;T�1

U1;0 . . . U1;t . . . U1;T�1

. . . . . . . . . . . .
Un�1;0 . . . Un�1;t . . . Un�1;T�1

2
664

3
775; (1)

where the ith row is the ith node’s reading sequence, and
the tth column is the whole network’s readings at slot t.

Notations. U refers to either a matrix or a vector, depend-

ing on the context; throughout the paper, N ¼ n� T ; UT is
the transpose of U ; juj denotes the magnitude of coefficient
u; kUk2 is the ‘2 normal of U ; C denotes the transform
basis. A packet at the sink is called a measurement
throughout the paper.

3.2 Data Model

We consider a data vector U 2 RN�1, and an orthonormal

transformC ¼ ½C1;C2; . . . ;CN � 2 RN�N .C can be a wavelet
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or a Fourier transform basis [28]. The coefficients vector

u ¼ ½C1U;C2U; . . . ;CNU �T can be reordered decreasingly in
terms ofmagnitude, such that jujð1Þ � jujð2Þ � � � � � jujðNÞ.

Power-law decaying data model. The coefficients’ magni-
tude decays according to the power law [29], i.e., the ith
largest coefficient satisfies

jujðiÞ � Ci�1=$; i ¼ 1; 2; . . . ; n; (2)

where C is a constant and�1=$ controls the compressibility
of the data.

Optimal error bound. The optimal approximation for the
power-law decaying data [29] is keeping the largest K coef-
ficients and setting the others as zero. The optimal estima-
tion error bound is

kU � Ûoptk22 ¼ ku � ûoptk22 ¼ h$CK
�1=$þ1=2; (3)

where h$ is a constant that only depends on �1=$.
We verify this data model based on the data set listed

in Table 1. Please refer to our online supplementary file,
which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TPDS.2014.2345257. Note that our estimator in Section
4.5 is robust to noise, which is an inherent capability
from the above data model. However, our model cannot
deal with anomaly readings (sensor faults and outliers).

3.3 Design Overview

The framework of our scheme is shown in Fig. 1. It has two
major components: an opportunistic routing and an estima-
tor. The opportunistic routing is responsible for data com-
pression and packet relaying. By modeling it as a Markov
chain, the compression probability of each node can be cal-
culated. Then, we prove that nonuniform sparse random
projection preserves inner product of two vectors and apply
this property to design a simple but quite accurate
estimator.

At the beginning, data U (u ¼ UT V ) is stored locally in
sensor nodes. Each sensor node generates a TOKEN with
probability p. Therefore, initially there are L ¼ np (in expec-
tation) TOKENs across the network.

The compressive data collection scheme works in the fol-
lowing way:

� Each node with a TOKEN generates one packet des-
tinationed to the sink.

� The packets are relayed under an opportunistic rout-
ing. Compression is performed at each newly
encountered node.

� At the sink, the compression process is modelled as
YL�1 ¼ WL�NUN�1. Projecting the basis V by M, we

have V 0. Then, û ¼ Y T V 0 is an estimation of u.
� Finally, Û ¼ ðûV �1ÞT , where V �1 is the inverse of V .
Key issues.

� How to determine p? Since p ¼ L=n while n is
known, we will show how to determine L.

� The classic result of linear algebra says that û ¼ Y T V 0

is solvable only when L � N . To make the data col-
lection efficient, we are faced with the question: how
to exploit the compressibility of sensory data by
designing an estimation algorithm for the case
L 	 N . Compressive sensing theory [17], [18] points
out that this is possible.

In Section 4, we first describe how our data collection
scheme works and then model it mathematically. Finally,
an estimator and the corresponding results for L are pre-
sented in Section 4.5.

4 DESIGN

4.1 Opportunistic Routing with Compression

The opportunistic routing has two tasks: packet forward-
ing and data compression. We first describe a data collec-
tion path, and then the compression process along this
path.

Packet forwarding. For node si, we define a nearer-to-sink
neighbor set as the one-hop neighbors that are closer to
the sink than itself, i.e., NðiÞ ¼ fjjdðj; sinkÞ � dði; sinkÞ&
dði; jÞ � Rcg where Rc is the communication range. When
a packet arrives at node si, si compresses its sensory read-
ing into the packet and then sends it out according to the
opportunistic routing [30], [31], [32], i.e., forwarding the
packet to a randomly selected one of its nearer-to-sink
neighbors sj 2 NðiÞ. In this way, each packet is guaran-
teed to be successfully delivered to the sink.

Data collection path. The trajectory of the lth packet from a
source node to the sink is called a data collection path, denoted
as Pl ¼ hp0; p1; . . . ; prli with prl ¼ sink, i.e., the packet travels

across rl sensor nodes before it reaches the sink.
Since opportunistic routing is adopted, the data collec-

tion paths are dynamic and random. It turns out to bring
about two good features: energy balancing and security.
These non-deterministic data collection paths will balance
energy consumption among nodes, as well as preventing
possible attacks.

Data compression. As the packet travels towards the sink,
the compression scheme adds or substracts the sensory
reading of a newly encountered node, as shown in Fig. 2a.
The format of the data packet is

Let ui (i ¼ 0; 1; . . . ; rl � 1) be the reading of the ith node
along path Pl. The data compression is performed as
following:

Fig. 1. The framework of CDC.

record: reading ID position time stamp

Packet: value ID list coefficient list time stamp list
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Step 1. A node with the lth TOKEN becomes node p0 of
Pl. It generates a packet containing data y0 ¼ 
u0, then
transmits the packet to one of its nearer-to-sink neighbors
according to the opportunistic routing.

Step 2. The packet arrives at sensor si, who adds or sub-
stracts its own sensor ready with probability 1=2 as

yi ¼ yi�1 þ riui: (4)

Sensor ID, the coefficient ri and the current time slot is
added to the packet’s header. Then si transmits it to one of
its neighbors closer to the sink according to the opportunis-
tic routing.

Step 3. The encoding process continues along path Pl

until the packet reaches the sink.
From the proof of Lemma 1 (in Section 4.2), we know that

the random coefficients ri can be real values in ½�1; 1� or
chosen from f�1;þ1g. We use the set f�1;þ1g because the
nodes will only need to perform addition or substraction
operations.

In the end of the data compression process, L ¼ np pack-
ets are collected by the sink. Next, we consider the sink’s
strategy to estimate the sensor readings.

4.2 Problem Formulation for Estimation

Traditional compressive sensing approach. In traditional com-
pressive sensing approach [11], [23], [24], the sink estab-
lishes the following equation:

YL�1 ¼ AL�NUN�1; (5)

where A is an matrix with elements corresponding to ri in
Eqn. (4). The sink can extract A from the collected packets’
headers.

Assuming that data U is sparse. To be exact, there exists a
transform basis VN�N under which UN�1 can be represented

using K 	 n nonzero coefficients, i.e., u ¼ UT V with
kuk0 ¼ K. Compressive sensing theory [17], [18] claims that,
with probability at least 1� n�g (g is set to be large), U can
be reconstructed exactly as the solution to the following

‘1-minimization problem, i.e., U ¼ ðûV �1ÞT , where

û ¼ min
u

XN
i¼1

juij; s:t: YL�1 ¼ AL�NUN�1

L ¼ OðKm2
ðA;V ÞlogN=KÞ; mðA;V Þ ¼ max

1�i;j�N

��AT
i Vj

��: (6)

Existing approaches suggest to densely compress WSNs’
data to get random measurements as in [11], [19]. Compres-
sive sensing allows one to use convex optimization to esti-
mate sensory readings under the condition of the RIP
property [17], [18], i.e., to decouple the matrix A and the
basis V to have small value of m. However, the RIP prop-
erty does not hold for opportunistic routings, which post-
pones its utilization [24], [25].

Problem formulation. We take another approach by regard-
ing the compression process as nonuniform sparse random
projections (shown in Fig. 2b), modeled as two mutually
independent processes nonuniform sampling processIð�Þ and
linear encoding A as

IðUjÞ ¼
Uj; prob: pj

0; prob: 1� pj

�
; Aij ¼

1; prob: 1
2

�1; prob: 1
2

�
; (7)

where pj 6¼ 0; j 2 1; 2; . . . ; N corresponds to the chance of Uj

being compressed in the collected packets. Thus, we model
the compression scheme as

YL�1 ¼ AL�NIðUN�1Þ: (8)

Our problem becomes:

û ¼ min
u

kU � Ûk22;

s:t: YL�1 ¼ AL�NIðUN�1Þ;
(9)

where Û ¼ ðûV �1ÞT .
The opportunistic routing provides load balancing in the

cost of nonuniform compression probability of each node
[24], [25]. This leads to the failure of the traditional compres-
sive sensing approach. In the following section, we provide
a method to calculate the compression probability for each
node. Then in Section 4.5, we introduce a new estimation
algorithm by using the information of compression proba-
bility of each node.

4.3 Compression Probability Estimation

Modeling the opportunistic routing as a Markov chain. The
packet forwarding process can be modeled as a Markov
Chain: the states are the nodes, and the forwarding proba-
bility constitutes the transition probability matrix (each
entry specifies the probability that a packet is transmitted
from one node to one of its nearer-to-sink neighbors).

First, we estimate the transition matrix P based on the
“incomplete observation” version of maximum likelihood
estimation (MLE). Once the transition matrix P is known,
the compression probability distribution p can be derived.

The incomplete observation problem. For each pair of nodes,
assume that there is a transition linkwith two states: ON and
OFF. If we have complete observations of all links’ states in
each time slot, then the estimation of the transition matrix is to
maximize the log-likelihood of the posterior probability, i.e.,
logP ððP1; P2; . . .PLÞ jP Þ with ðP1; P2; . . .PLÞ denotes the
data collection paths of the L collected packets. Maximum
likelihood estimation is the most used routine to solve this
problem [33].

However, the observation of a transition link’s state is to
try a “packet-transmitting test,” which is contradict to our
goal as the data collection aims to minimize the number of

Fig. 2. (a) Along Pl, the packet adds or subtracts the sensor reading of a
newly encountered node. (b) The left process is modelled as: A sampling
process I randomly selects a subset of sensor readings, and a compres-
sion process sums them up with random coefficients chosen from the set
f�1;þ1g to get one measurement.
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packets transmitted. Therefore, with “incomplete” or under-
sampled observations, the traditional MLE scheme can not
be used here.

MLE with incomplete observation. Here, we adopt an
“incomplete observation” version of MLE [34]. Let Oijt

denote the number of observed transition from node si
to node sj occurring over t time slots and ðPtÞij the ijth

element of the matrix Pt (the probability of a packet in
node si arrives at node sj after t time slots), this new
MLE is defined as

P̂ ¼ max
P

log P ððP1; P2; . . .PLÞ jP Þ

¼ max
P

X
i

X
j

X
t

Oijt log ðPtÞij:
(10)

It is proved in [34] that the expectation maximization algo-
rithm converges to the global maximum. Which means that
with high probability, the above maximizer can produce an
accurate transition matrix.

Estimation of the compression probability p. The compres-
sion probability closely relates with the Markov chain-like
occurrence, except that we should only count one time if the
packet stays at a node waiting for transmission. The estima-
tion algorithm is described as following:

Step 1. Initially, p0 ¼ fL=n; . . . ; L=ng.
Step 2. Get �P by setting P ’s diagonal elements to 0.
Step 3. Calculate the nodes’s occurrence frequency in

data collection paths during T time slots:

OiðT Þ ¼
XT�1

i¼0

p0
�Pi: (11)

Step 4. Average the occurrence frequency by
P

p0, we get
the probability distribution

pi ¼
OiðT ÞP

p0
¼
PT�1

i¼0 p0
�PiP

p0
; (12)

where the sum and division are element-wise operations on
row vectors.

4.4 Nonuniform Sparse Random Projection

Eq. (8) equals to the following linear equations:

YL�1 ¼ WL�NUN�1 ; (13)

Wij ¼
þ1; prob: 1

2pj

0; prob: 1� pj

�1; prob: 1
2pj

8<
: : (14)

Sparse and nonuniform raise from the fact that the oppor-
tunistic routing will neither pass all sensor nodes nor pass
them with equal probability, which is the case for most
existing routings. Sparse allows the collected packets to com-
press sensor readings from a random selected subset, while
traditional compressive sensing approaches require to com-
press all sensory readings together, or the subset are ran-
domly selected with equal probability [11], [19].

Correspondingly, we construct a projection matrix M 2
RL�N (where L 	 N) containing entries

Mij ¼
1

pj

þ1; if Wij ¼ þ1
0; if Wij ¼ 0
�1; if Wij ¼ �1

8<
: : (15)

The entries within each row are mutual-independent, while
the entries across different rows are fully independent. In
expectation, each row contains

Pn
j¼1 pj nonzero elements,

i.e., there are on average
Pn

j¼1 pj sensor readings encoded

in one collected packet.
Next, we prove in Lemma 1 that with high probability,

nonuniform sparse random projections preserve inner
products with predictable error. Therefore, using only their
random projections, we are able to estimate the inner prod-
uct of two vectors. The detailed proof is in the next section

Lemma 1. For any vectors U; V 2 RN�1, and W;M 2 RL�N in

Eqs. (14) and (15). The random projections Y ¼ 1ffiffiffi
L

p WU;

V 0 ¼ 1ffiffiffi
L

p MV , with the expectation and variance satisfying:

E½Y T V 0� ¼ UT V; (16)

VarðY T V 0Þ

� 1

L
ðUT V Þ2 þ �kUk22kV k22 þ ðk� 2� �Þ

XN
j¼1

U2
j V

2
j

 !
;

(17)

where � ¼ maxð pl
pm

Þðl;m 2 f1; 2; . . .ngÞ; k ¼ 1
minðpÞ denote the

degree of nonuniform and the expected times to sample the

“rarest” node, respectively.

4.5 NSRP-Based Estimator

The intuition for our estimator design is that nonuniform
sparse random projections preserve inner products within a
small error. Hence we can use random linear measurements
Y ¼ WU of the original data, and random linear projections
V 0 ¼ MV of the orthonormal basis, to estimate the coeffi-
cients vector u, as in the following way:

Step 1. Extract packets’ headers at the sink, get WL�N;
YL�1, and the projection matrixM.

Step 2. Set L1 ¼ C1
1þ�þkH2

�2
and L2 ¼ C2ð1þ gÞ logN such

that L ¼ L1L2.
Step 3. Partition YL�1 into L2 column vectors

fY1; Y2; . . . ; YL2
g with each of size L1 � 1, partition M into

fM1;M2; . . . ;ML2
g with each of size L1 �N , then project

the basis V to get fV 0
1 ¼ 1ffiffiffiffi

L1

p M1V; . . . ; V
0
L2

¼ 1ffiffiffiffi
L1

p ML2
V g.

Step 4. Compute zl ¼ Y T
l V 0

l ; l ¼ 1; 2; . . . ; L2. Set each ele-

ment of û as the median value of each column vector
z1; . . . ; zL2

.

Step 5. Keep the K largest coefficient in û and set the
remaining to zero.

Step 6. Return Û ¼ ðûV �1ÞT .
The following two theorems hold for the above estima-

tor. Please refer to the next section for the detailed proof for
Theorem 1. Since the proof of Theorem 2 is similar to that in
[26], for completeness, we include it in the supplementary
file, available online.

Theorem 1. For data vector U 2 RN�1 satisfying

kU1k
kUk2

� H: (18)
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Let V ¼ fV1; . . . ; VNg be the transform basis with each vector

RN�1, W;M 2 RL�N as in Eqs. (14) and (15) with the com-
pression probability p,

L ¼
O 1þg

�2
ð� þ kH2Þ log n

� �
; if ð� þ kH2Þ > Vð1Þ;

O 1þg

�2
log n

� �
; if ð� þ kH2Þ � Oð1Þ;

8<
: (19)

Then, with probability at least 1�N�g , the random projec-

tions Y ¼ 1ffiffiffi
L

p WU and V 0 ¼ 1ffiffiffi
L

p MVi can produce an estimate

ûi for UT Vi (Step 4 in the above estimator), satisfying

jûi � UT Vij � �kUk22kVik22; (20)

for all i ¼ 1; 2; . . . ; N .

Theorem 2. Suppose data U 2 RN�1 satisfies condition (18),

W;M 2 RL�N in Eqs. (14) and (15) with probability distribu-
tion p, and

L ¼
O 1þg

�2h2
ð� þ kH2ÞK2 log n

� �
; if ð� þ kH2Þ � Vð1Þ;

O 1þg

�2h2
K2 log n

� �
; if ð� þ kH2Þ � Oð1Þ:

8<
:

(21)

Let Y ¼ 1ffiffiffi
L

p WU , consider an orthonormal transform C 2
RL�N and the corresponding transform coefficients u ¼ CU .
If the K largest transform coefficients in magnitude give an

approximation with error kU � Ûoptk � hkUk22, then given
only Y;W;M, and C, the above NSRP-based estimator produ-

ces an estimate Û with error

kU � Ûk � ð1þ �ÞhkUk22; (22)

with probability at lest 1�N�g .

For the above estimator, Theorem 1 states that with
high probability, the nonuniform sparse random projec-
tions of data vector and any projected basis vector can
produce estimates of their inner products within a small
error. Thus Theorem 1 guarantees small estimation error
for each coefficient. Theorem 2 shows that with high
probability, nonuniform sparse random projections can
approximate compressible data with error being compara-
ble to the optimal error bound (by setting � to be small, i.
e, � ¼ oð1Þ.). Thus, with high probability, the above esti-
mator produces an estimation of the original data within
small error.

Note that compared with uniform sampling [26], nonuni-
from sampling requires bigger L. For the extra ð� þ kH2Þ
component, � can be regarded an indicator of the degree of
nonuniform, and k is a factor to guarantee successful decod-
ing for the “rarest” node.

5 PROOFS

5.1 Lemma 1

Proof. The pair of nonuniform sparse random projections

W;M 2 RL�n satisfies:

E½Wij� ¼ 0; E½Mij� ¼ 0;E½WijMij� ¼ 1;

E½WilMim� ¼ E½Wil�E½Mim� ¼ 0 if l 6¼ m;

E½WilMilWimMim� ¼ E½WilMil�E½WimMim� ¼ 1 if l 6¼ m;

E
�
W 2

ij

�
¼ pj; E

�
M2

ij

�
¼ 1

pj
; E
�
W 2

ijM
2
ij

�
¼ 1

pj
;

E
�
W 2

ilM
2
im

�
¼ E

�
W 2

il

�
E
�
M2

im

�
¼ pl

pm
if l 6¼ m:

The above results will be used in the following process
without explicit mention.

Define the random variables

vi ¼
Xn
j¼1

ujWij

 ! Xn
j¼1

vjMij

 !

z ¼ aTb ¼ 1

L

XL
i¼1

vi

so that v1;v2; . . . ;vM are independent.

EðviÞ ¼ E
Xn
j¼1

ujvjWijMij þ
X
l6¼m

ulvmWilMim

" #

¼
Xn
j¼1

ujvjE½WijMij� þ
X
l6¼m

ulvmE½WilMim�

¼ uTv

E½z� ¼ uTv:

Similarly, we can compute the second moments and
variance as following:

E
�
v2
i

�
¼ E

Xn
j¼1

ujvjWijMij

 !2

þ
X
l6¼m

ulvmWilMim

 !2
2
4

þ2
Xn
j¼1

ujvjWijMij

 ! X
l6¼m

ulvmWilMim

 !#

¼
Xn
j¼1

u2
j v

2
jE
�
W 2

ijM
2
ij

�
þ 2

X
l<m

ulvlumvmE½WilMilWimMim�

þ
X
l6¼m

u2
l v

2
mE
�
W 2

ilM
2
im

�
þ 2

X
l<m

ulvmumvlE½WilMilWimMim�

¼
Xn
j¼1

u2
j v

2
j

1

pj
þ 2

X
l6¼m

ulvlumvm þ
X
l6¼m

u2l v
2
m

pl

pm

Let � ¼ max
pl

pm

	 

; k ¼ 1

minðpÞ

	 


� 2
Xn
j¼1

u2j v
2
j þ 2

X
l6¼m

ulvlumvm

 !

þ �
Xn
j¼1

ujvj þ
X
l6¼m

u2l v
2
m

 !
þ ðk� 2� �Þ

Xn
j¼1

ujvj

¼ 2ðu0vÞ2 þ �kuk22kvk
2
2 þ ðk� 2� �Þ

Xn
j¼1

u2
j v

2
j

VarðviÞ ¼ E
�
v2
i

�
�E½vi�2

� ðu0vÞ2 þ �kuk22kvk
2
2 þ ðk� 2� �Þ

Xn
j¼1

u2j v
2
j
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VarðzÞ ¼ 1

L2

XL
i¼1

VarðviÞ

� 1

L
ðu0vÞ2 þ �kuk22kvk

2
2 þ ðk� 2� �Þ

Xn
j¼1

u2
j v

2
j

 !
:

tu

5.2 Theorem 1

Proof. Fix any two vectors u; v 2 Rn, with kuk1=kuk2 � H.
Set L ¼ L1L2, with L1; L2 are positive integers. Partition
the L� n matrix W and M into L2 matrices
fW1;W2; . . . ;WL2

g and fM1;M2; . . . ;ML2
g, each of size

L1 � n. The corresponding random projections are fa1 ¼
1ffiffiffiffi
L1

p W1u; . . . ;aL2
¼ 1ffiffiffiffi

L1

p WL2
ug, and fb1 ¼ 1ffiffiffiffi

L1

p W1v; . . . ;

bL2
¼ 1ffiffiffiffi

L1

p WL2
vg.

Define the independent random variables zl ¼ a0
lbl;

l ¼ 1; 2; . . . ; L2. Applying Lemma 1 to each zl, we derive
that E½zl� ¼ u0v and

VarðzÞ � 1

L1
ðu0vÞ2 þ �kuk22kvk

2
2 þ ðk� 2� �Þ

Xn
j¼1

u2
j v

2
j

 !
:

By the Chebyshev inequality and

P ðjzl � u0vj � �kuk2kvk2Þ �
VarðzlÞ

�2kuk22kvk
2
2

� 1

�2L1

ðu0vÞ2

kuk22kvk
2
2

þ �kuk22kvk
2
2

kuk22kvk
2
2

þ ðk� 2� �Þ
Pn

j¼1 u
2
j v

2
j

kuk22kvk
2
2

 !

ðBy the Cauchy� Schwarz inequality and Eq: ð18ÞÞ

� 1

�2L1
1þ � þ k

H2kuk22
Pn

j¼1 v
2
j

kuk22kvk
2
2

 !

� 1

�2L1
1þ � þ kH2
� �

, p:

Thus, we can obtain a constant probability p by setting

L1 ¼ Oð1þ�þkH2

�2
Þ.

We define the estimate â as the median of the indepen-
dent random variables z1; . . . ; zL2

, each of which lies out-

side of the tolerable approximation interval with
probability p. Formally, let Il be the indicator random
variable of the event that fjzl � u0vj � �kuk2kvk2g, which
occurs with probability p.

Let I ¼
P

l¼1 L2Il be the number of zl’s that lie outside
of the tolerable interval, whereE½I� ¼ L2p. When the event
that at least half of the zl’s are outside the tolerable interval
occurswith arbitrarily small probability, then themedian â
is within the tolerable interval. So, if we set p < 1=2, say
p ¼ 1=4, and apply the Chernoff bound,we get

P I > ð1þ cÞL2

4

	 

< e�c2L2=12;

where 0 < c < 1 is some constant.
Thus, for u and vi 2 v1; . . . ; vn � Rn, and the corre-

sponding random projections a and b produce an esti-
mate â for u0v that lies outside the tolerable

approximation interval with probability at most e�c2L2=12.
For the n estimates âi; i ¼ 1; 2; . . .n, the probability that
at least one lies outside the tolerable interval is upper

bounded by Pe � ne�c2L2=12.
Setting L1 ¼ Oð1þ�þkH2

�2
Þ obtains p ¼ 1=4, and setting

L2 ¼ Oðð1þ gÞ log nÞ obtains Pe � n�g for some constant

g > 0. Therefore, with L ¼ L1L2 ¼ Oð1þg

�2
ð1þ � þ kH2Þ

log nÞ, the nonuniform random projection pair W;M can
produce inner products of vectors with probability at

least 1� n�g . If ð� þ kH2Þ > Vð1Þ, then L ¼ Oð1þg

�2
ð1þ �þ

kH2Þlog nÞ. If ð� þ kH2Þ � Oð1Þ, then L ¼ Oð1þg

�2
log nÞ. tu

6 EVALUATION

6.1 Simulation Settings

Ground truth. We use data sets collected from the GreenOrbs
[35], IntelLab [36] and NBDC-CTD [37] projects, as summa-
rized in Table 1. In our simulations, time is divided into
slots of equal length, and the sensory data extracted from
these data sets are used in the corresponding slots.

Network topology. Nodes’ positions in these three WSNs
are also provided. More accurate link quality model can
provide more realistic simulation results. The RSSI value
is the best indicator. However, this information may not
be always known to the network protocol designer, then
the distance will serve an acceptable choice. We adopt the
following link quality models of the opportunistic routing
for simulation:

� For the GreenOrbs project, the RSSI value between
two neighbor nodes is given. We use a RSSI-Link-
Quality model [30] to control the successful probabil-
ity of transmitting a packet.

� For the IntelLab project, the aggregate connectivity
information is provided. The probability of success-
ful delivery in each link is averaged over all time.
Note that this is not a symmetric relationship, i.e.,
sensor A may hear B better than B hears A.

� For the NBDC-CTD project, such information is
absent, we use a Distance-LinkQuality model [31]
instead.

6.2 Compared Algorithms

Baseline. Packets are transmitted back to the sink along the
shortest path. Then the sink applies the k-nearest neighbors

TABLE 1
Data Sets for Evaluation

Name Environment Time period Physical conditions Selected Sub-Matrix Time interval

GreenOrbs [35] Forest Aug. 03 � 05, 2011 Temperature, light, humidity 326 � 750 5 minutes
IntelLab [36] Indoor Feb. 28 � Apr. 5, 2004 Temperature, light, humidity 54 � 500 30 seconds
NBDC CTD [37] Ocean Oct. 26 � 28, 2012 Temperature, salt, conductivity 216 � 300 10 minutes
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(KNN) [38] method to estimate the readings, i.e., by averag-
ing the k-nearest neighbors’ values. Since both the routing
and estimation are the most basic ones, therefore we use it
as the baseline algorithm.

CDG (MobiCom’09). The CDG scheme compresses all
sensor readings together in each collected packet. It uses the
following tree-based routing: a node waits for all its child-
ren’s packets, performs random linear compression, and
then sends the packet to its parent node. The estimation
uses the convex optimization method of traditional com-
pressive sensing theory. It is a bit different from [11] since
the link quality is not perfectly reliable as we allow the
transmission to fail through a controlled probability and
introduce the retransmission mechanism.

6.3 Metrics

Based on the network topology and sensory data sets of these
three wireless sensor networks, we run the above three
schemes to collect sensor readings back to the sink. For the
baseline algorithm and the CDC scheme, we vary the proba-
bility p of generating TOKENs to get different number of ran-
dommeasurements. For equality, the CDG schemewill collect
accordingly the same number of randommeasurements.

Estimation error. Each algorithm estimates a Û for the
original data U . The estimation error is defined as

E ¼ kU � Ûk2
kÛk2

: (23)

Delay. The data collection delay is defined as the time
when the last packet arrives at the sink, which is measured
in terms of the number of slots.

Network lifetime. The energy consumption is set according
to the energy consumptionmodel [39]. At the beginning, each

node have initial energy of 1;000;000 units which can support
the sensor node to run about amonth. The network lifetime is
defined as the time when the first node runs out of energy,
which is alsomeasured in terms of the number of slots.

6.4 Results

From Figs. 3a, 3b, and 3c, CDG and CDC perform much bet-
ter than the baseline algorithm and can reach estimation
errors as low as 5 percent. This is because they both exploit
the compressibility nature of the sensor readings and use
random compression techniques. However, CDG behaves
better in situations where less number of packets are col-
lected. Possibly, less collected packets can lead to (1) stron-
ger nonuniform nature of the compression probability of
sensor nodes, or (2) less observations of the routing process,
then less accurate of probability estimation in Section 4.3.

From Figs. 4a, 4b, and 4c, it is quite unexpected that the
delay of the CDG scheme is several or even hundreds of times
longer than the other two. The reason maybe that: CDG tries
to encode every node’s packets, and a parent node has to wait
for all its children’s packets before transmitting the com-
pressed packet to its own parent node. Because the network
size of the IntelLab project is smaller, the delay performance
is closer for these three schemes. The baseline algorithm
exhibits a good, stable, and moderate growth in delay since it
used the shortest path routing. The CDC’s routing strategy is
quite similar with the baseline scheme, therefore it experien-
ces quite similar performance in terms of delay.

From Figs. 5a, 5b, and 5c, we find that our scheme has
the best performance. For estimation error within 20 per-
cent, CDC prolongs the network lifetime by 1:5� � 2�.
This is because that CDC requires fewer measurements,
even fewer number of sensory readings in each measure-
ment, thus greatly reduces the energy consumption.

Fig. 3. The estimation error for Basline, CDG, and CDC in the GreenOrbs, IntelLab and NBDC-CTD projects.

Fig. 4. The delay for Basline, CDG, and CDC in the GreenOrbs, IntelLab, and NBDC-CTD projects.
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7 CONCLUSION AND FUTURE WORK

We have proposed a novel compressive data collection
scheme for wireless sensor networks. This scheme leverages
the fact that raw sensory data have strong spatiotemporal
compressibility. Our scheme consists of two parts: the
opportunistic routing with compression, and the nonuni-
form random projection based estimation. The proposed
scheme agrees with Braniuk’s [1] suggestion that sensory
data acquisition should be more efficient, and the new tech-
niques that combine sensing and network communication
together is a promising approach. We prove that this
scheme can achieve optimal approximation error, and trace
based evaluations show that its error is comparable with the
existing method [11]. More important, our scheme exhibits
good performance for energy-conservation.

In the future, we will apply this nonuniform random pro-
jection based estimator for adaptive data gathering [40] and
the multiple attributes scenario [41].
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