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ABSTRACT

Large-scale Lithium-ion batteries are widely adopted
in many systems such as electric vehicles and energy
backup in power grids. Due to factors such as manu-
facturing difference and heterogeneous discharging con-
ditions, cells in the battery system may have differ-
ent statuses such as diverse voltage levels. This cell
diversity is commonly known as the cell unbalance is-
sue, which becomes more critical as the system scale in-
creases. The cell unbalance issue not only significantly
degrades the system performance in many aspects, but
may also cause system safety issues such as the burning
of battery cells and thus increase system vulnerability.
In this paper, based on the advancement in reconfig-
urable battery systems, we demonstrate how to utilize
system reconfiguration flexibility for achieving an effi-
cient charging process for the battery system. With the
proposed reconfiguration-assisted charging, the cells in
the system are categorized according to their voltages,
and the charging process is evolutionarily carried out
in a category-by-category manner. For the charging of
cells in a given category, a graph-based algorithm is pre-
sented to obtain the desired system configuration. We
extensively evaluate the reconfiguration-assisted charg-
ing through small-scale implementation and large-scale
trace-driven simulations. The results demonstrate that
our proposed techniques can achieve a 25% increase on
average on charged capacities of individual cells while
yielding a dramatically reduced variance.

1. INTRODUCTION

Large-scale battery systems consisting of hundreds or
thousands of battery cells are widely adopted in elec-
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tric vehicles [19,22,23,25,40], residential power backup
systems [3], airplane electrical systems [1,5], etc. While
such large-scale systems are able to provide powerful
energy supply, it also introduces new challenges, among
which, the cell unbalance issue in the system is one of
the most critical problems [28, 31, 32].
Ideally, cells in a battery system are desired to have

similar capacity and characteristics [21]. However, due
to various reasons such as manufacturing difference, cell
aging, operational conditions, and chemical property
variations, the cells’ characteristics demonstrate signif-
icant dynamics during the operating cycles over an ex-
tended time [34]. The cell unbalance issue becomes
even more severe for large-scale battery systems, be-
cause many such systems can simultaneously support
multiple loads with different energy requirements [24].
This implies that cells in the system may have very dif-
ferent discharge profiles.
In battery systems with unbalanced cells, to avoid the

cell overheating and the thermal runaway issue, the sys-
tem operation is fundamentally limited by the weakest
cell [21, 33]. This is especially critical in a serial config-
uration of cells which is only as strong as the weakest
link. As a result, the imbalance among a set series con-
nected cells, which is commonly (but not only) reflected
by the difference among their voltages, prevents them to
supply their capacities fully or being charged fully, and
consequently degrades the cell operation time, state of
health, life cycles [7, 36]. The cell unbalance issue may
even cause severe system safety issues such as the burn-
ing of battery cells [5].
Exploring the system reconfiguration flexibility is a

new dimension to improve the battery system perfor-
mance [11, 28], in which the system can adaptively ad-
just the cells configuration (e.g., connected in series, in
parallel, or in a hybrid manner) based on the real-time
system conditions such as cell voltages [37], cell tem-
perature [31], and load requirements [28]. Many ex-
isting investigations focus on the discharging scenario
of the battery system with the objective of maximizing
the system energy utilization efficiency [24, 32]. Com-



plementary to these existing works, in this paper we
explore how the reconfiguration flexibility can assist the
charging scenario of the widely utilized Lithium-ion bat-
tery systems. Different from the system discharging sce-
nario where the discharging current of individual cells
is desired to be small due to the rate-capacity effect of
battery cells [29], the desired current when charging bat-
tery cells is determined by the cell’s voltage level [21].
Furthermore, with a fixed charging voltage as in many
off-the-shelf battery chargers [8], the cell voltage also di-
rectly affects the actual charging current, as we will see
in Section 3.
Our basic idea in the design of the reconfiguration-

assisted charging is the following: by adjusting the sys-
tem configuration, we can control the charging currents
for individual cells in the system to match them with
the desired current levels, so that the cells in the sys-
tem can be efficiently charged to their maximal capacity.
Our main contributions in this work include:

• To the best of our knowledge, our work is the first
attempt to explore the system reconfiguration flex-
ibility to achieve the optimal charging process in
large-scale battery systems.

• Observing the facts that cells with different volt-
ages may desire different charging currents and
that only cells with similar voltages should be con-
nected in series, we propose a novel cell catego-
rization method based on their individual voltages
and the system hardware constraints, with which
the cells with similar voltages (and thus desiring
similar charging currents) are organized into the
same category. Then the system charging is evo-
lutionarily carried out in a category-by-category
manner.

• For the charging of cells in a given category, we
transform the problem of identifying the optimal
system configuration for the charging process to a
path selection problem in the abstracted cell graph.
We prove the problem is NP-hard, and propose an
algorithm to obtain the near-optimal system con-
figuration. Moreover, to facilitate our control over
the charging currents of cells at finer granularity, a
set of adjustable resistor arrays is introduced into
the design while the additional energy loss on them
is minimized.

• We evaluate the proposed reconfiguration-assisted
charging process through both small-scale experi-
ments and large-scale trace-driven simulations. The
results show the reconfiguration-assisted charging
process can improve the average charged capacities
of individual cells by about 25% and dramatically
reduce their variance among cells.

Typical charge characteristics
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Figure 1: The desired charging process for the
Panasonic NCR18650 Lithium-ion battery [11].

The paper is organized as follows. The preliminar-
ies is presented in Section 2. The basic principle of
our design is introduced in in Section 3. The proposed
reconfiguration-assisted charging process is presented in
Section 4 and Section 5. Our experiment and simulation
are presented in Section 6 and Section 7, respectively.
Section 8 reviews the literature, and Section 9 concludes
the paper.

2. PRELIMINARIES

2.1 Problem Statement

The cell unbalance issue makes the efficient charging
of the large-scale battery systems challenging. This is
due to the facts that the charging of series connected
cells has to be terminated when any of the cells reaches
its voltage upper boundary [31] and cells with differ-
ent voltage levels may desire different charging cur-
rents [21]. As an example, the desired charging pro-
cess of the Panasonic NCR18650 Lithium-ion battery
cell [10] is shown in Fig. 1. We can see that during the
early phase of the charging process, the cell is desired
to be charged with a relatively large constant current
(e.g., about 0.825 A). This is referred to as the Constant
Current Charging (CC-Chg) phase. Then when the cell
voltage reaches a certain level (e.g., about 4.19 volt),
the charging process is changed to a Constant Volt-
age Charging (CV-Chg) phase, during which the cell is
charged with a constant voltage and the charging cur-
rent decreases to a small value (e.g., about 50 mA) till
the cell is fully charged (e.g., the cell voltage reaches
about 4.20 volts). Note although the specific current
and voltage voltages (e.g., 0.825 A and 4.19 V) are only
for the NCR18650 Lithium-ion battery cells, the CC-
Chg and CV-Chg phases are shared by all Lithium-ion
batteries. The detailed explanation on the charging pro-
cess of Lithium-ion cells can be found in [21].
This voltage-dependent charging currents indicate

that with the cell unbalance issue, individual cells in the
system may require different charging currents. How-
ever, most off-the-shelf multi-cell chargers treat the cells



identically, e.g., the LP2952-based 3-cell charger from
Texas Instruments always charges the cells with the
same current [8]. Clearly, this homogeneous charging
current causes deviation between the actual charging
currents and the desired charging currents for individ-
ual cells.
A charging current different from the desired level sig-

nificantly degrades the charging process [29]. When the
charging current is too large, not all the provided energy
can be effectively accepted by the cell, and thus reduces
the energy efficiency of the charging process. Further-
more, an over-large charging current also easily leads to
the cell overheating and thus the thermal runaway is-
sue [21]. The thermal runaway issue is especially critical
for Lithium-ion battery cells because of their high en-
ergy density, which have caused serious accidents, e.g.,
the Boeing 787 Dreamliner battery incidents [5]. On
the other hand, a too small charging current unneces-
sarily prolongs the charging time [39], increases the cell
internal resistance [35], and even prevents the cell from
being charged [7].
In this paper, we tackle the efficient charging of large-

scale Lithium-ion battery systems by exploring the sys-
tem reconfiguration flexibility. With the offered recon-
figuration flexibility, we can organize the cells with sim-
ilar voltages together, and then charge them with their
desired charging current. However, as the configuration
flexibility offered by the system is normally constrained,
we need to identify the optimal system configuration to
achieve a high charging performance, and adaptively ad-
just it according to the real-time cell voltages.

2.2 System Model

The system model overview for the reconfiguration-
assisted charging process is presented in Fig. 2, in which
the charger imposes a constant DC charging voltage
V to the N -cell reconfigurable battery pack1, and the
cell voltages can be monitored by the voltage sensors
equipped on them. Note that many research efforts
have been devoted to achieve high system reconfigura-
tion flexibility with low system complexity [13,26] (e.g.,
Figure 3 shows our implementation of a 4-cell recon-
figurable testbed based on the circuit design proposed
in [31]), and our aim in this work is to demonstrate how
this offered reconfiguration flexibility can be utilized to
improve the system charging process.
The system determines its optimal configuration to

accept the charging voltage (and power) to achieve the
optimal charging processes for individual cells. Note
that for many existing battery systems, the charging

1Here we assume the charger power is high enough for the
charging process under consideration. This is feasible in
practice because the capable charger is always selected ac-
cording to the corresponding battery system.

terminals can be directed connected to any cells through
the backbone buses [33]. In the following, we assume
this full connectivity of the charging terminals.
To facilitate the charging current control at finer gran-

ularity, we introduce a set of adjustable resistor arrays
(with unit resistor r0) into the system, as shown in
Fig. 4. The relays equipped on the resistors allow us to
control the number of resistors included in the charging
process and thus control the charging current. Clearly,
an additional questions with regard to these resistor ar-
rays is how much energy will be lost on them and how
to minimize it, which we will elaborate in Section 5.

Battery Pack

Charger

Figure 2: Overview of the system model.

Figure 3: Our 4-cell reconfigurable testbed.

conceptual implementation

=

r0 r0r0

Figure 4: Design of the resistor arrays.

2.3 Graph Representation

As proposed in our previous work [24], the cells in the
system can be represented by a weighted directed graph
G = {V , E ,W}, where 1) each vertex in V represents
a cell in the system, and thus |V| = N ; 2) E reflects
how these cells can be connected to each other and thus
captures the system configuration flexibility: an edge
vi → vj ∈ E if and only if the current can flow from vi
to vj without passing any other cells; 3) the weight set
W on the vertices captures the cell voltages.
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Figure 5: Charging cells connected in series.

This graph representation facilitates our design by
bridging the gap between the desired system configu-
ration for the charging process and the advancements
in graph theory, as will be seen in Section 5. Before de-
scribe our design on the reconfiguration-assisted charg-
ing process in detail, in the next section, we first inves-
tigate how to control the charging current of individ-
ual cells by adjusting the system configuration and the
amount of adopted resistors.

3. DESIGN PRINCIPLE

For a set of cells connected in series (i.e., a cell
string), the voltage they provide is the sum of their in-
dividual voltages and each cell has the same discharg-
ing/charging current [4]. This simple fact motivates us
the design principle of the proposed charging algorithm.
Let us consider the example shown in Fig. 5. If certain

subset of n cells in the system are connected in series
along with a resistor R, then with a charging voltage V ,
the charging current for these cells can be calculated as

I =
V −∑n

1 vi
∑n

1 ri +R
, (1)

where <vi, ri> is the voltage and internal resistance of
the ith cell, and (V − ∑n

1 vi) is the effective charging
voltage imposed on the cell string. Clearly, the condi-
tion that V >

∑n

1 vi must be satisfied to charge the
cells.
For many types of battery cells, their internal resis-

tances increase as the cells are being discharged [29,39].
For the charging process, this indicates a smaller ri as
vi increases. However, for Lithium-ion battery cells
widely adopted in large battery systems such as elec-
tric vehicles and airplanes [1,30], the internal resistance
is relatively stable during the charging/discharging pro-
cess [7]. Fig. 6 shows our measurement results on the
internal resistance of a Panasonic NCR18650 Lithium-
ion battery cell during the charging process. We can see
that the resistance is stable (about 0.06 ohm) through-
out the charging process. As a result, we simplify the
presentation by assuming a stable cell internal resistance
(denoted as r) during the charging process in the rest of
the paper. However, this simplification is not required in
our design, as the real-time cell resistance can be easily
measured (as shown in Fig. 6) and adopted in Eq. (1).
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Figure 6: Resistance of NCR18650 cell.

From Eq. (1), we can see that the charging current of
these series connected cells can be controlled by jointly
considering

• how many (and which) cells should be adopted
to compose the string (i.e., controlling

∑n

1 vi and
∑n

1 ri),

• the amount of additional resistance connected
along the string (i.e., controlling R).

Motivated by these observations, we first identify the
optimal system configuration for the charging process
(i.e., identifying how the cell strings should be formed),
and then involve a proper amount of resistors to achieve
the optimal charging process based on the system con-
figuration.
The proposed reconfiguration-assisted charging algo-

rithm consists of two steps. We first categorize the cells
according to their voltage levels, and then with the as-
sistance of system reconfiguration, the charging process
is carried out in a category-by-category manner. In the
next two sections, we introduce the two steps in detail
respectively.

4. VOLTAGE-BASED CLASSIFICATION

As mentioned in Section 3, the cells involved in the
same string have the same charging current, and thus
it is intuitive to compose a cell string only with cells of
similar voltages (and thus desire similar charging cur-
rents). This also agrees with the fact that connecting
cells with quite different voltages in series is not desired
in battery systems, which makes the cell unbalance is-
sue even more critical [4, 12]. In the first step of our
design, we categorize the cells with similar voltages into
the same category, based on which the charging process
is performed afterwards.

4.1 Basic Classification Idea

We discretize the range of cell voltages into a set
of voltage intervals and categorize cells accordingly.
Specifically, the range of all possible cell voltages is di-
vided into M intervals

{[v0c , v1c ), [v1c , v2c ), · · · , [vM−1
c , vMc ]},



where v0c = vcutoff (i.e., the voltage defines the empty
state of the cell) and vMc = vfull (i.e., the fully charged
cell voltage). For example, for most Lithium-ion bat-
tery cells, vcutoff ≈ 3.20 volt and vfull ≈ 4.20 volt. Then
a total number of M cell categories are formed accord-
ing to these voltage intervals. Denote the voltages of
individual cells as {v1, v2, · · · , vN}, then cell i is classi-
fied into the jth category if and only if vi ∈ [vj−1

c , vjc).
For the ease of description, we refer the interval (cate-
gory) with voltages [vj−1

c , vjc) as the jth voltage interval
(category).
After this classification, cells in the same category

have similar voltage levels and desire similar charging
currents. We use the mean of the voltages of these cells
to approximate the voltages of cells in the jth category,
denoted as v̂jc , and use the corresponding desired charg-
ing current at v̂jc as their desired charging current.
Clearly, with the proposed approximation, the more

voltage intervals we discretize, the higher the accuracy
in achieving the desired charging current. However, due
to the constraints of hardware components such as the
unit resistor r0 and the voltage sensor on each cell, an
excessively high discretization degree may not be nec-
essary. Next we explain how to discretize the voltage
range with given hardware constraints for the CC-Chg
and CV-Chg phases, respectively.

4.2 Discretization during CC-Chg Phase

The unit resistor r0 determines the minimum volt-
age changes we can differentiate by adjusting the addi-
tionally included resistors. To show this clearly, let us
consider an x-cell string with cell voltage v̂. We will
calculate the smallest v̂′ (v̂′ > v̂) that the system can
accurately differentiate from v̂ with a given r0. From
Eq. (1), we know







v̂ = V−x·r·Î−y·r0·Î
x

v̂′ = V−x·r·Î−y′·r0·Î
x

, (2)

where Î is the desired charging current, which is con-
stant during the CC-Chg phase, and y and y′ are the
numbers of unit resistors involved in the cell string when
the cell voltages are v̂ and v̂′, respectively. Since v̂′ > v̂,
it is clear that y′ < y. From Eq. (2), we can see that

v̂′ − v̂ =
(y − y′) · r0 · Î

x
. (3)

Because y, y′, and x can only take positive integer
values (i.e., y, y′, x ∈ Z+), the minimal voltage increase
is achieved when 1) y − y′ = 1, and 2) x reaches the
maximal number of cells that can be connected in series
in a feasible cell string. We refer a cell string to be

feasible for the charging process if this string can be
charged with a voltage V . From Eq. (1), we know

xmax = argmax
x

{ V − x · v̂
x · r + y · r0

= Î} (4)

s.t. {r, r0, v̂, V, Î} > 0,

{x, y} ∈ Z+.

From Eq. (3) and (4), we can see that by adjusting
the additionally included resistors, the smallest voltage
increase that a system can differentiate from v̂ is

v̂′ = v̂ +
r0 · Î
xmax

. (5)

As a result, starting from the cutoff voltage v0c =
vcutoff , we iteratively discretize the voltage intervals dur-
ing the CC-Chg phase according to Eq. (5), and achieves
the highest accuracy the adopted hardware can provide.

Example.
Let us consider the charging chart of the NCR18650

battery shown in Fig. 1 as an example, where
vcutoff ≈ 3.30 volt and the maximal voltage
vcc−max ≈ 4.19 volt for the CC-Chg phase. When a
unit resistor of 1 ohm is adopted, the battery voltage
during the CC-Chg phase is divided into 8 intervals
(i.e., [3.300, 3.414), [3.414, 3.517), [3.517, 3.620),
[3.620, 3.723), [3.723, 3.841), [3.841, 3.959),
[3.959, 4.077), [4.077, 4.190)), and thus 8 corre-
sponding cell categories are formed. The number
of voltage intervals (and thus the cell categories) is
reduced to 4 when the unit resistance increases to
2 ohm (i.e., [3.30, 3.517), [3.517, 3.723), [3.723, 3.959),
[3.959, 4.190)).

4.3 Discretization during CV-Chg Phase

Different from the CC-Chg phase where the cell volt-
age increases relatively fast, during the CV-Chg phase,
the increase of the cell voltage is slow. For example,
for the NCR18950 battery cell shown in Fig. 1, the CV-
Chg phase starts when the cell voltage reaches about
4.19 volt, and the entire charging process terminates
when the cell voltage reaches about 4.20 volt, indicat-
ing a total voltage increase of only 0.01 volt during the
CV-Chg phase lasting about 1 hour. On the other hand,
the desired charging current decreases dramatically dur-
ing this phase, indicating that a relatively large number
of voltage intervals are needed to achieve a good match-
ing with the desired currents. Therefore, we discretize
the voltage intervals during the CV-Chg phase based
on the highest measurement accuracy of the adopted
voltage sensor, e.g., 0.002 volt in our testbed shown in
Fig. 3.



5. CHARGING FOR EACH CATEGORY

After the cell categorization, the reconfiguration-
assisted charging process is evolutionarily carried out in
a category-by-categorymanner with the ascending order
of their corresponding voltages. Specifically, the cells in
the 1st category are charged first until their voltages
evolve into the 2nd interval, and thus these category-1
cells becomes category-2 cells. Then the cells in the 2nd
category are charged until their voltages increase to the
3rd interval. This process continues until the all the
cells in the system are fully charged.
With the proposed classification method, cells in the

same category have similar voltage levels and desire sim-
ilar charging currents, which facilitates us to achieve the
optimal charging process by connecting them in series.
Next we describe how to identify the desired configura-
tion to perform the charging process for the cells in a
given category.

5.1 Graph-based Problem Transformation

Let us consider the case where we are trying to iden-
tify the configuration for the Nj cells in the jth category,
each with an approximated voltage v̂jc . Denote the cells
in the system as {B1, B2, · · · , BN}, and the cell cate-
gories as {C1, C2, · · · , CM}.
To charge these Nj cells in the jth category with the

desired charging current, our approach is to identify a
desired series configuration of these cells, and then by
controlling the additional resistance along the string,
these cells can be optimally charged. In practice, It is
very likely that not all of these cells can be charged
with a single cell string, because of either the limitation
of their configuration flexibilities (i.e., not all these Nj

cells can be connected in series) or the requirement on a
feasible string (i.e., the voltage sum of these cells is too
high for them to be charged in series with voltage V ).
As a result, we may need to identify multiple cell strings,
as well as the proper amount of additional resistance for
each string, and then connect them in parallel to per-
form the charging.2 Since adding additional resistance
to the cell strings introduces additional energy loss, we
aim to minimize the amount of resistance involved in
these identified cell strings.
As mentioned in Section 2, for the jth category, its

Nj cells and their configuration flexibilities can be rep-
resented by a directed graph Gj =<Vj, Ej ,Wj>, which
is a subgraph for the N -cell system: Gj ⊆ G. With
this graph representation, any cell string in the bat-
tery system can be captured by a simple path in the
graph. Thus our objective in identifying cell strings can
be transformed to identify a set of paths such that

2Note the feasibility of charging these cell strings in parallel
can be guaranteed with the fully connected charging termi-
nals.

• each vertex in the graph is involved in one and
only one path, indicating the paths are disjoint
and cover the vertex set Vj (and thus it is pos-
sible to achieve the desired charging current for all
the cells);

• each path involves no more than xmax vertices (and
thus the cell string can be charged with voltage V ).

Denote z as the number of identified disjoint paths,
i.e., Path

j
1, Path

j
2, · · · , Pathj

z. Denote xk and yk (k =

1, 2, · · · , z) as the number of vertices in Path
j
k and the

number of unit resistors included along Path
j
k, respec-

tively. It is clear that
∑z

k=1 xi = Nj . For each cell Bi

and Path
j
k, we define indicator variable

b
j
ik =

{

1 if Bi ∈ Cj and Bi ∈ Path
j
k

0 otherwise
.

Incorporating the objective in minimizing the added
additional resistors, our problem can be mathematically
formulated as

min
z

∑

k=1

yk · r0

s.t. ∀k, V − xk · v̂jc
xk · r + yk · r0

= Îj

∀i,
z

∑

k=1

b
j
ik = 1.

∀k, 1 ≤ xk ≤ xmax.

where Îj is the desired charging current. The first con-
straint guarantees the desired charging current on each
cell string, and the second constraint guarantees each
cell is included in only one identified cell string. With
rearrangements, we have

min

z
∑

k=1

yk · r0 ⇔ min

z
∑

k=1

V − xk · v̂jc − xk · r · Îj
Îj

⇔ min{z · V − v̂jc ·Nj − r · Îj ·Nj}
⇔ min z.

As a result, the objective of minimizing the addi-
tional resistance can be transformed to minimize the
number of cell strings that involve each cell only once.
This is similar to the Minimum Path Cover (MPC)
problem [42, 43], with the additional requirement that
xk ≤ xmax.

Theorem 1. The problem of finding the minimum
number of cell strings that 1) conforming to the con-
straint on the maximal number of cells involved in each
string, and 2) involving each cell once and only once, is
NP-hard.



This theorem can be easily proved by contradiction:
if a polynomial time algorithm exists for our problem,
the MPC problem can be solved in polynomial time as
well. This contradicts with the NP-hard property of the
MPC problem [43].

5.2 Algorithm Design

5.2.1 Observation

The MPC problem not only helps us to show that
identifying the optimal charging configuration is NP-
hard, but also inspires us to design a near optimal so-
lution. The key observation is the following: for di-
rected acyclic graphs, the MPC problem can be solved
in polynomial time. For example, Dilworth et al. have
shown that by duplicating the vertex set of the given
directed acyclic graph, the MPC problem can be trans-
formed to a maximummatching problem [20], which can
be solved by the famous Hopcroft-Karp algorithm with
O(

√
VE) [27].

Observing the existence of polynomial time algo-
rithms for this special case, our approach therefore is
to prune Gj such that we can leverage the existing al-
gorithms to identify the desired system configuration.
The pruning of Gj needs to achieve two goals: first, we
need to prune Gj to be acyclic, and second, we need
to guarantee the obtained paths involve no more than
xmax vertices.

5.2.2 Pruning the Graph

In our design, we achieve the above mentioned ob-
jectives by identifying and breaking all paths involving
(xmax + 1) vertices in Gj . For the ease of description,
denote the resultant graph after pruning as G′

j . Then
we show that G′

j is acyclic and does not contain any
path that involves more than xmax vertices. Therefore,
we can apply existing algorithms to G′

j to obtain the
desired battery configuration.
Denote A = {αij} (i, j = 1, 2, · · · , Nj) as the adjacent

matrix of Gj , i.e., αij = 1 if there is an edge from vertex
i to vertex j in Ej, and αij = 0 otherwise. Such adjacent
matrix has the following important property.

Property 1. For any given graph G, the element αk
ij

in the k-th power of its adjacent matrix (i.e., Ak) is the
number of paths from vertex i to j in G involving (k+1)
vertices.

This property holds for general graphs no matter
whether it is cyclic or acyclic [42].
Thus if we multiply A with itself for (xmax − 1) times

(i.e, Axmax), then the value of αxmax

ij indicates the num-
ber of paths involving (xmax + 1) vertices from vertex i

to j. The time complexity for this matrix multiplication
is O(xmax ·N2.37

j ) [18].

Clearly, for any vertex pair (i, j) with αxmax

ij > 0, we
can identify these (xmax + 1)-vertex paths by checking
the neighbours of i and A

(xmax−1) in a recursive manner.
The time complexity to identify all these (xmax + 1)-
vertex paths from i to j is O(dxmax), where d is the out-
degree of vertex i. As a result, a time of O(dxmax ·N2

j )
is needed to identify all the (xmax + 1)-vertex paths in
Gj . Note that for battery systems, the vertex out-degree
d will not be large due to the consideration of system
implementation complexity [6, 24].
As an example, let us consider the battery subgraph

(i.e., Gj) shown in Fig. 7(a), and assume any feasible cell
string can involve at most xmax = 3 cells. The adjacent
matrix A for the graph is shown in Fig. 7(b). Since each
feasible path can involve at most 3 vertices, we calculate
A

3 as shown in Fig. 7(c). Because α3
1,6 = 1, we know

there is one 4-vertex path from vertex 1 to vertex 6
(i.e., 1 → 2 → 3 → 6 as shown in Fig. 7(a)). Similarly,
because α3

2,5 = 1 and α3
4,5 = 1, we know another two

4-vertex paths exists from vertex 2 to vertex 5 and from
vertex 4 to vertex 5 respectively.
After identifying these (xmax+1)-vertex paths, by re-

moving at most one edge from each of them, we can
break each of these paths into two shorter paths each
involving at most xmax vertices (note it is possible for
these shorter paths to involve only a single vertex). The
pruned graph after breaking these (xmax + 1)-vertex
paths is denoted as G′

j .
As we will show shortly, we want to minimize the

number of removed edges when breaking the (xmax+1)-
vertex paths. To achieve this, for each edge ei ∈ Ej , we
use the following indicator variable to describe whether
it is involved in the kth path

gik =

{

1 if ei is on Pathk

0 otherwise
,

and further define another indicator to denote whether
edge ei is removed when breaking the (xmax +1)-vertex
paths

hi =

{

1 ei ∈ Ej and ei 6∈ E ′
j

0 otherwise
.

The problem of removing the minimum number of
edges from Gj to break all the (xmax + 1)-vertex paths
can be formulated as

min

|Ej |
∑

i=1

hi s.t. ∀k,
|Ej |
∑

i=1

hi · gik > 0.

The constraint ensures each of the (xmax + 1)-vertex
paths is broken after removing the edges. This is a clas-
sic 0-1 integer programming problem and can be near-
optimally solved [14].
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Figure 7: Demonstration on the identification of cell strings.

5.2.3 Identifying the Optimal Configuration

Theorem 2. The obtained graph G′
j after breaking all

the (xmax + 1)-vertex paths in Gj is acyclic and has no
path involving more than xmax vertices.

Proof. This theorem can be proved by contradic-
tion. Let us start with the property that G′

j has no path
involving more than xmax vertices. If there is a path
in G′

j involving x′ vertices and x′ ≥ xmax + 1, then we
can find at least one of its sub-path involving (xmax+1)
vertices. This contradicts with our previous operation
which breaks all the (xmax+1)-vertex paths in Gj . Next
we consider the acyclic property of G′

j . If G′
j is not

acyclic, there would be a cycle in G′
j involving at least

two vertices. Then we can obtain a path involving an
arbitrary number of vertices by consecutively traversing
along the cycle. Again, this contradicts with the fact
that all (xmax+1)-vertex paths have been broken in the
previous operation.

For the example shown in Fig. 7, we remove edge 3 →
6 (which is shared by all the three paths) from Gj . The
resultant graph G′

j has no path involving more than 3
vertices and is acyclic.
As a result, we can apply Hopcroft-Karp algorithm

to G′
j to obtain a set of feasible disjoint paths based

on which the battery charging can be performed, e.g.,
{1 → 2 → 3}, {4}, and {6 → 5} in the example shown
in Fig. 7. Furthermore, we have the following theorem
on the near-optimality of the returned configuration in
terms of the number of cell strings.

Theorem 3. Denote z and z∗ as the number of paths
obtained by our algorithm and those in the optimal so-
lution, respectively. Further denote u as the number of
edges removed from Gj when breaking the (xmax + 1)-
vertex paths (i.e., |Vj| − |V ′

j | = u), we have

z ≤ z∗ + u.

This theorem is based on the following observation.
For any removed edge, it can at most connect two of

these returned paths into one longer path (this connected
longer path may not be feasible anymore). Again, let us
take the graph shown in Fig. 7 as an example, where
edge 3 → 6 is removed from the graph, and the mini-
mum path set obtained by Hopcroft-Karp algorithm is
1 → 2 → 3, 4, and 6 → 5. We can see if we add
edge 3 → 6 to the three paths, then a longer path
1 → 2 → 3 → 6 → 5 is formed by connecting 1 → 2 → 3
and 6 → 5. As a result, if we add all these u removed
paths back to G′

j , the minimum path cover number can
be reduced by at most by u, and thus the theorem fol-
lows.
From theorem 3, we can see that the number of re-

moved edges bounds the gap between our result and the
optimal solution. This is also the reason why we want
to break all the (xmax+1)-vertex paths by removing the
fewest number of edges, as mentioned in Section 5.2.2.

5.2.4 Amount of Additional Resistors

After identifying the set of cell strings, we need to
determine the amount of resistance (i.e., the number of
unit resistors in the associated resistor array) to be con-
nected along each of them to achieve the desired charg-
ing current Îj . For a Pathi with xi vertices, we want
to add a proper amount of unit resistors to make the
achieved charging current I as close as possible to the
desired level Îj

min{|I − Îj |}. (6)

By substituting Eq. (1) into (6), we can easily identify
the number of added unit resistors by

argmin
yi

{| V − xi · v̂jc
xi · r + yi · r0

− Îj |}.

6. EXPERIMENT EVALUATION

We present our experiment results on the proposed
reconfiguration-assisted charging in this section.

6.1 Experiment Methodology

In our experiment, we explore the charging perfor-
mance of a system consisting of 8 NCR18650 Lithium-
ion battery cells, each with a nominal capacity of
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Figure 8: Conf. flexibility of the 8-cell system.

2900 mAh. The randomly generated configuration flex-
ibility of the 8-cell system, represented by its adjacent
matrix, is shown in Fig. 8.
We introduce a control parameter φ to capture the

unbalance degree on the voltages of these 8 cells: the
initial voltages of these cells are randomly generated
from the interval

[vcutoff , vcutoff + φ(vmax − vcutoff)] (φ ∈ [0, 1]), (7)

where vcutoff and vmax are set to 3.30 volt and 4.20 volt
according to the charging chart of the NCR18650 bat-
tery shown in Fig. 1. In this way, a larger φ indicates
higher unbalanced cells.
With a unit resistance of 2 ohm and a 0.002 volt

voltage sensor granularity, the entire voltage range
[3.30, 4.20] during the charging process is divided into
7 intervals: [3.30, 3.517), [3.517, 3.723), [3.723, 3.956),
[3.956, 4.193), [4.193, 4.195), [4.195, 4.197), and
[4.197, 4.20]. The first 4 intervals are for the CC-
Chg phase and the latter 3 intervals are for the CV-Chg
phase. The 8 cells are then categorized based on their
initial voltages. According to the charging chart shown
in Fig. 1, the corresponding desired charging currents
for cells in these categories are 0.825 A, 0.825 A,
0.825 A, 0.825 A, 0.398 A, 0.177 A, and 0.084 A.
We then apply the proposed reconfiguration-assisted
charging on the battery system to obtain the detailed
charging profile for each of these cells. The NEWARE
Battery Testing System [9] is adopted to carry out the
charging process based on these charging profiles, as
shown in Fig. 9.

Figure 9: NEWARE Battery Testing System.

As a baseline, we also explore a non-reconfigurable
8-cell system with the configuration of 4S2P : two cell
strings (i.e., B1 → B2 → B3 → B4 and B5 → B6 →
B7 → B8) are connected in parallel. With this fixed
configuration, for system safety, the charging current on
each string is determined by the smallest desired charg-
ing current of the 4 cells in the string, and the charging
process has to be terminated when any of these 4 cells
reaches its full voltage (i.e, 4.20 volt) [31, 33].
After the charging process finishes, we discharge the

cells with a constant current of 0.2 A till they are dis-
charged to the cutoff voltage 3.30 volt, and the delivered
capacities of these 8 cells are recorded as the metric to
evaluate the proposed charging algorithm.

6.2 Experiment Results

We explore 5 cases with φ varying from 0.1 to 0.9,
and the initial voltages of individual cells are shown
in Table 1. The individual cells delivered capacities
with both the proposed charging algorithm and the non-
reconfigurable baseline are shown in Table 2, and the
overall performance of the 5 explored cases are shown
in Fig. 10.
We can see that with the assistance of system recon-

figuration, about 2600 mAh capacity can be delivered
for each of the cells in all the explored cases. The deliv-
ered capacities are stable in terms of both average and
standard deviations. Although variance does exist in
the delivered capacities, this variance is much smaller
when compared with the non-reconfigurable baseline.
We also tested the delivered capacity (with 0.2 A dis-

charge current) after charging the cells by the off-the-
shelf-charger, similar results (about 2600 mAh) are ob-
tained as with the proposed charging algorithm. Note
that the charge of these cells with the commercial
charger is performed individually rather than in-batch
as a battery pack.
On the other hand, the delivered capacities show

clearly decreasing trend as φ increases with the non-
reconfigurable baseline, e.g., from an average delivered
capacity of 2597.2 mAh with φ = 0.1 decreased to
2118.4 mAh with φ = 0.9, indicating the cells are only
charged to about 73% of their nominal capacity on av-
erage. This is caused by two major reasons. First, the
charging process has to be terminated when any cell in
the string reaches its full capacity for system safety con-
sideration, indicating other cells may not be able to be
fully charged. Second, the charging current on a cell
string is determined by the smallest desired current of
the 4 batteries, and thus reduces the charging efficiency
of other cells when different charging currents are de-
sired. These also explain the significant increase of the
standard deviation of the delivered capacities as φ in-
creases. These reasonings are also supported by the fact



Table 1: Initial Voltages (volt).
Cell #1 #2 #3 #4 #5 #6 #7 #8

φ = 0.1 3.353 3.306 3.377 3.370 3.352 3.356 3.331 3.361

φ = 0.3 3.473 3.439 3.456 3.372 3.394 3.437 3.533 3.336
φ = 0.5 3.560 3.548 3.520 3.360 3.460 3.432 3.556 3.580

φ = 0.7 3.812 3.596 3.214 3.639 3.618 3.920 3.862 3.805

φ = 0.9 3.710 4.044 3.960 4.072 3.862 3.428 3.995 4.058

Table 2: Delivered Capacities (mAh).
φ Battery #1 #2 #3 #4 #5 #6 #7 #8

0.1
Reconf. 2619.5 2636.8 2617.6 2670.5 2706.3 2582.0 2657.9 2621.9

Non-Reconf. 2508.5 2607.7 2613.7 2660.7 2611.6 2575.6 2593.6 2606.5

0.3
Reconf. 2607.6 2560.6 2608.6 2660.0 2694.5 2567.7 2644.4 2609.6

Non-Reconf. 2597.3 627.8 2576.8 2459.0 2432.7 2458.2 2647.7 2276.7

0.5
Reconf. 2616.4 2628.5 2611.1 2665.2 2704.2 2577.6 2650.8 2611.8

Non-Reconf. 2622.3 2510.3 2492.6 2304.3 2364.4 2222.4 2526.6 2610.6

0.7
Reconf. 2606.5 2614.8 2595.6 2646.3 2682.0 2555.1 2632.6 2593.6

Non-Reconf. 2597.9 2046.1 857.7 2253.8 1821.6 2553.6 2499.8 2300.0

0.9
Reconf. 2617.9 2633.0 2610.9 2670.2 2714.4 2579.4 2649.9 2606.7

Non-Reconf. 1566.4 2580.1 2340.3 2663.3 2140.1 541.3 2501.5 2614.3

that in each of the explored cases, the cell with the high-
est initial voltage in each string (e.g., battery #1 and
#6 with φ = 0.7) delivers similar capacity as in the
reconfiguration-assisted charging process.

7. SIMULATION EVALUATION

We have evaluated the performance of the proposed
reconfiguration-assisted charging algorithm with small-
scale experiment in the previous section. In this section,
we further evaluate the system performance through
large-scale trace-driven simulations.

7.1 Simulation Settings

We simulate a battery system consisting of 20 to 100
NCR18650 cells. The system reconfiguration flexibility,
described by the average vertex out-degree d in the ab-
stracted graph representation, varies from 1 to 5. For
a specific cell, its neighbors are randomly selected from
other cells in the system. Same as in the experiment
section, the cell initial voltages are generated according
to (7), and with a unit resistor of 2 ohm and voltage
sensor accuracy of 0.002 volt, the entire voltage range
[3.30, 4.20] is divided into 7 intervals. We also simulate
non-reconfigurable battery systems with the configura-
tion of N

4 S4P as baselines (i.e., 4 parallel connected cell

strings each consisting of N
4 cells). The desired charging

currents and corresponding voltages are obtained from
the NCR18650 data sheet as shown in Fig. 1. The re-
sults presented are based on a total number of 50 runs.

7.2 Simulation Results

Intuitively, the cell unbalance issue becomes more crit-
ical when the system scale increases. To verify this,
we vary the system scale from 20 to 100 cells with a
reconfiguration flexibility of 3 and φ = 0.5, and ap-
ply the reconfiguration-assisted charging to the sys-
tem. The cell capacities after the charging processes
terminated (with the reconfiguration-assisted charging
and the non-reconfigurable system, respectively) are
shown in Fig. 11. We can see that in terms of the
charged capacity, the reconfiguration-assisted charging
achieves stable and competitive performance for all of
the explored cases. On the other hand, in the non-
reconfigurable system, the charged cell capacities de-
crease as the system scale increases. This is because the
charging process in this case has to be terminated when
any of these cells reaches its full voltage, leaving other
cells insufficiently charged. This is also supported by the
fact that the variance in the charged capacities with the
non-reconfigurable system dramatically increases with
larger system scales.
As proved in Section 5, the number of cell strings

adopted to perform the charging process should be min-
imized to reduce the energy loss on the additional re-
sistors. To gain more insights on the charging pro-
cess, we record the number of cell strings when charg-
ing the cells in each of the 7 categories with N = 100
and φ = 0.8. Four cases of the system reconfigura-
tion flexibility from 2 to 5 are explored. The average
paths number during the charging process are shown
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Figure 10: Summary of exper-
iment results.
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strings with d.

in Fig. 12. We can see the number of cell strings in-
creases as the charging process evolving from the 1st
to the 7th category, as more cells need to be consid-
ered in this category-by-category charging process. The
string number converges to its maximal value when the
charging process reaches the 4th category, since all of
the cells have to be included into the charging consider-
ation. Specifically, in our simulation, the average num-
bers of cells involved in the charging of each category
are {27.9, 57.7, 91.3, 99.8, 100, 100, 100}.
Furthermore, a higher reconfiguration flexibility re-

duces the number of cell strings, which meets our ex-
pectations. However, compared with the reduction in
the string number when increasing d from 2 to 3 (i.e.,
from about 30.4 to 26.2 strings), further increasing d

from 4 to 5 has a much smaller effect in reducing the
number of strings (i.e., from about 24.5 to 23.7 strings),
indicating the effect of the reconfiguration flexibility in
reducing the number of cell strings approaches its upper
bound. This observation is of significant practical value
because a higher reconfiguration flexibility also imposes
higher system implementation complexity and cost.

8. RELATED WORK

Large-scale battery systems are commonly adopted
in practice [1, 3, 40]. However, besides providing power-
ful energy supply, the large-scale battery systems also
make the cell unbalance issue more critical [21] and thus
makes the design of efficient battery management sys-
tem challenging [15, 38, 41].
Exploring the system reconfiguration flexibility is a

new dimension to improve the large-scale battery sys-
tem, and has attracted a lot of research attentions and
funding opportunities [2, 11]. Additional supplemen-
tary components such as switches and relays are needed
to make the battery system reconfigurable, and many
works investigating how to offer the maximal reconfig-
uration flexibility with the fewest supplementary com-
ponents have been reported [13, 28, 31]. In large-scale
battery systems, it may not be desirable nor feasible for

all the cells to be discharged in the same manner, and
thus many works on the discharge management of the
cells in the system have been reported [16, 17, 36, 44].
The discharge management is especially important to
achieve a high system energy efficiency when consider-
ing the recovery [32, 45] and rate-capacity [24] effects of
batteries. The real-time system states are needed for the
discharge management to be applied. However, the sys-
tem monitoring also introduces additional energy cost
and system complexity. Kim et al. have explored how
to effectively achieve the real-time system monitoring
in [34]. Jin et al. have also explored how to improve the
reliability of the battery system based on the reconfig-
uration flexibility [28].
However, to the best of our knowledge, no work on ex-

ploring how to utilize the reconfiguration flexibility to
improve the charging process of the battery system has
been reported yet, and our work is the first attempt
to demonstrate how the system reconfiguration flexi-
bility can assist when charging the system. Note that
although the charging schedule of cells has been thor-
oughly investigated in [32], this schedule is only based
on the cell states and does not consider the offered sys-
tem reconfiguration flexibility directly.

9. CONCLUSIONS

In this paper, we have demonstrated the effective-
ness of utilizing the system reconfiguration flexibility
to achieve a high-efficient charging process for large-
scale Lithium-ion battery systems. By categorizing the
cells according to their voltages, the reconfiguration-
assisted charging process is evolutionarily carried out
in a category-by-category manner. A graph-based algo-
rithm has been designed to identify the desired system
configuration to charge cells in a given category. The
performance of the reconfiguration-assisted charging has
been verified through both small-scale experiment and
large-scale trace-driven simulations. Our future work
focus on prototyping with moderate scales.
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