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Abstract—The data gathering is a fundamental operation in
wireless sensor networks. Among approaches of the data gather-
ing, the compressive data gathering (CDG) is an effective solution,
which exploits the spatiotemporal correlation of raw sensory
data. However, in the multi-attribute scenario, the performance
of CDG decreases in every attribute’s capacity because more
measurements are on demand. In this paper, under the general
framework of CDG, we propose a multi-attribute compressive
data gathering protocol, taking into account the observed inter-
attribute correlation in the multi-attribute scenario. Firstly, we
find that 1) the rapid growth of the demand on measurements
may decline the network capacity, 2) according to the compressive
sensing theory, correlations among attributes can be utilized to
reduce the demand on measurements without the loss of accuracy,
and 3) such correlations can be found on real data sets. Secondly,
motivated by these observations, we propose our approach to
decline measurements. Finally, the real-trace simulation shows
that our approach outperforms the original CDG under multi-
attribute scenario. Compared to the CDG, our approach can save
16% demand on measurements.

I. INTRODUCTION

Wireless sensor networks (WSNs) [3] are widely used by
scientist to monitor and interact with the physical environment.
With hundreds or thousands deployed sensors, it is able to
obtain a full-scale monitoring of the interesting area, e.g., coal
mines [11], forests [12] and indoor offices [1]. To get a real-
time and precise overview of the target area, the data gathering
is a key operation, where a large amount of sensor readings
are packed or compressed, and then transmitted to the sink
with the requirements of low delay and error rate.

In the network layer, effective global communication cost
and economical energy consumption are two major challenges
of the data gathering process[13]. The compressive data gath-
ering (CDG) presented by C. Luo at el. [13] is the state-of-the-
art approach, which deals with these two challenges both to-
gether. The CDG distributes computation and communication
costs to all nodes, with the creative usage of the compressive
sensing (CS) theory [5]. If the sensory data is sparse, the
CDG can provide satisfied network capacity and accuracy.
Theoretically, a sink receives compressed readings on sensor
data, instead of directly measurements. Thus, the CDG treats
the data gathering process as a recovery problem [10][7][9]
and utilizes the sparsity of data to reduce communication cost.

In this paper, we are interested in adapting the CDG to deal
with the multi-attribute scenario. A stringent restriction of the
CS is that one attribute has to be sampled in a certain number
of times in order to ensure the accuracy. The total amount
of sampling measurements is proportional to the number of

attributes, in the multi-attribute scenario. Such a large amount
of sensor readings have noticeable impact on communication
cost as the number of attributes increases. To the best of our
knowledge, the existing discussions on the CDG does not take
this into account. However, since multi-attribute scenarios are
common in practice, we attempt to adapt the CDG to the multi-
attribute scenario.

For the one attribute scenario, the number of measurements
provided according to CS [5]. Fortunately, in the multi-
attribute scenario, one WSN usually contains several attributes,
e.g., temperature, humidity, light illumination, and etc. These
attributes are associated with the physical environment, thus
they are physically related, such as humidity and temperature.
The correlations among them provide the redundancy of
information, so that one may obtain enough information for
accurate reconstruction with fewer measurements. Therefore,
communication cost may be saved by exploiting this new
correlation one step further.

In this paper, by utilizing correlations among attributes, we
propose an approach base on CDG for the multi-attribute data
gathering scenario. Firstly, we analyse the CDG protocol and
point out the key issues. Secondly, we propose our approach
and analyse why it can reduce the number of measurements
theoretically. Thirdly, experiments are made on real data sets.
Our contributions are that 1) we propose an effective approach
for the multi-attribute data gathering problem and 2) real
data-driven simulations are performed, which shows that our
approach can apparently reduce the demand of measurements
without the loss of accuracy compared to the original CDG.

The rest of this paper is organized as following. Section II
gives a review of of the compressive data gathering protocol.
Section III describes the original CDG and proposes our
approach. Section IV illustrates our observations on real data
sets. Section V demonstrates the evaluation of performance.
Section VI concludes the paper with discussions about future
work.

II. COMPRESSIVE DATA GATHERING

The problem of data gathering and collection has been
widely studied in recent year. Compressive Data Gathering
(CDG) is the state-of-the-art approach. C. Luo at el. pro-
posed CDG [13] for efficient data gathering in large scale
monitoring sensor networks. They also discussed efficient
measurement generation and pervasive sparsity for CDG [14].
Since then, using compressive sensing theory on the data
gathering becomes a popular topic. Xiang at el. discussed
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about compressed data aggregation for energy efficient WSNs
[15]. Caione at el. [4] also talks about using compressive
sensing to extend lifetime of WSNs.

The CDG exploits compessive sensing to reduce global
scale communication cost without introducing intensive com-
putation or complicated transmission control overheads. With
the benefit of sparse sensor readings, the CDG can achieve
both capacity gain and load balancing.

The CDG is discussed popularly and proved to be a efficient
data gathering method. However, it is common that one can
like many types of sensor readings from one WSN, e.g., light
illumination, humidity temperature in GreenOrbs [12] or sea
water salinity and temperature in CTD [2]. In the multi-
attribute scenario, the increasing demand on measurements
causes the decline of capacity, which weakens the performance
of CDG.

Usually one can expect that there are correlations in these
attributes[7]. We are interested in using the correlations among
attributed to further improve the capacity and accuracy in
CDG.

III. CDG UNDER MULTI-ATTRIBUTE

The advantage of the original CDG approach [13] is two-
fold, i.e., 1) reducing global data traffic by compressing sensor
readings and 2) prolonging network lifetime by distributing
energy consumption. Our approach targets at data gathering
problem under multi-attribute scenarios for large scale WSNs.
Compared with the CDG, our approach further reduces global
traffic by utilizing correlations among attributes and provides
equal accuracy with less measurements.

A. Data Gathering Process

Without loss of generality, the same problem statements and
assumptions as [13] are adopted as following. Considering a
large scale WSN, sensors are deployed in a two-dimensional
area. Each sensor are equipped with a battery with limited
lifetime. There is only one sink in the network, which contains
unlimited computing power and endurance.

Assume that sensors have limited transmission range so that
multi-hop data transmission is required. In this case, sensors
are connected by chain-type or tree-type topologies to the sink
[13]. Since we focus on data gathering and reconstruction
in this paper, we just make assumptions that all sensors 1)
adopt the same routing strategy and 2) transmit through the
corresponding routing tree by self-organization.

Suppose that N sensors are in a particular routing tree and
are able to measure J different physical attributes in the same
rate. Sensor readings generated by these sensors in one time
slot is represented as xi,j where i ∈ [1, N ] and j ∈ [1, J ].
Assume that each sensory vector xj = (x1,j , · · · , xN,j)T is a
Kj-sparse signal.

The data gathering process in the original CDG approach
is demonstrated as following. Each sensor generates Mj

measurements of xi,j through an independently and identically
distributed (i.i.d.) Gaussian random vector, and sends them to
its next hop neighbour, which generates measurements itself

and sums with all received data. Finally the weighted sum of
all measurements yj is transmitted to the sink. Mathematically
yj is represented by:

yj = Φjxj , (1)

where Φj is an Mj ×N matrix.
The above equation is an ill-posed problem since Mj < N .

However, according to the compressive sensing theory, an
spare N signal can be recovered from less than N measure-
ments if several certain conditions hold. Assume that all J
attributes are sparse under the same basis Ψ. Hence xj can
be represented as xj = Ψzj , where only Kj elements in zj are
nonzero. Further, Equation.(1) is reformulated as following:

yj = ΦjΨzj = Ajzj , (2)

where Aj = ΦjΨ.
According to the compressive sensing theory, if all nonzero

entries of zj are known, one can precisely recover xj with
only Mj = Kj measurements by solving an l0 minimization
problem:

min ||zj ||0 (3)
s.t. yj = Ajzj

xj = Ψzj .

Unfortunately, the nonzero entries are unknown, oversampling
is required to guarantee the accuracy. In practise, the sink
reconstruct sensor readings with Mj = 3Kj ∼ 4Kj mea-
surements by solving an l1 minimization problem:

min ||zj ||1 (4)
s.t. yj = Ajzj

xj = Ψzj .

Truthfully, there are an amount of works aiming at solving
minimization problems, which is beyond the scope of this
paper. To ensure fairness, only the Lars algorithm [8] is used
to solve all the l1 minimization problems in this paper, which
solves:

min λ||zj ||1 +
1

2
||yj −Ajzj ||22 (5)

instead of Equation.(4), where λ > 0 is a predefined threshold.

B. Capacity Analysis

C. Luo at el. [13] have proved that the ideal capacity of
CDG under certain assumptions, as that 1) there is only one
sink, deployed in the center of the area in the network, 2)
all nodes share one radio channel and follow time-division
multiple access control (TDMA), and 3) all nodes are in the
same data rate. C. Luo proves that in a fixed date rate w, the
capacity of the CDG, λ is inversely proportional to the number
of measurement m, i.e., λ ∝ w/m.

Here we consider using CDG under multi-attribute scenario.
Suppose that J attributes are required to send at a data rate
w and each one costs m measurements. In the CDG, the
total capacity remains, yet one attribute’s capacity is reduced
because λ need to divide by J . Consequently, the CDG
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performs quite well when measuring one attribute. Under
multi-attribute scenario, the performance of CDG declines.

However, when keeping the data rate Jw, if measurements
can be reduced, the performance becomes better. Hence, under
multi-attribute scenarios, the major point is to reduce the
demand on measurements without the loss of accuracy.

C. MCDG

Since all zj are sparse signals, the joint vector of them is
also a sparse signal. For instance, in the following equation,x1

...
xJ

 =

Ψ
. . .

Ψ


z1

...
zJ

 , (6)

since Ψ is an orthogonal matrix, diag(Ψ, · · · ,Ψ) is also
a orthogonal matrix and is able to be treated as a basis
to convert (x1; · · · ;xJ). Hence, it is convenient to regard
all sensor readings as one sparse signal under the basis
diag(Ψ, · · · ,Ψ). By adopting Equation.(2), when J = 2, the
following representation is written:y∆

y1

y2

 =

Φδ Φδ

Φ1

Φ2

[Ψ
Ψ

] [
z1

z2

]
. (7)

In Equation.(7), one part of measurements are shared by
both x1 and x2, which is called joint measurements and the
other part is individual measurements similarly. With joint and
individual measurements, one can still formulated Equation.(7)
as a l1-norm minimization problem and obtain the sensor
readings. Hereby, to joint measurements, each node is only
required to sum its attributes with the same measurement
coefficients and transmit size(y∆) to the sink. In other words,
the demand on measurements are saved.

In MCDG, the numbers of measurements on xj , are treated
as:

Mj = m∆ +mj , (8)

where m(·) = size(Φ(·)). Suppose the requirement of exact
reconstruction with high possibility is Mj > cjKj , where
cj is a constant value. From the individual attribute sight,
other attributes’ measuring values on y∆ are regarded as noise.
Hence, in other to exactly recover the signal, Mj is required
to hold Mj > (cj + cδ)Kj .

Hereby, it is required that the sparse coefficients of z1

and z2 are in the similar magnitude to avoid one attribute
overshadowing another. Due to this reason, the choice on the
basis is significant. In practise, wavelet basis performs better
than discrete cosine transform (DCT) basis.

In MCDG, it is important that all sensor readings are in
similar levels of magnitude. Otherwise, one attribute may
overshadow another, which leads to the decline of accuracy.
The solution of this problem is using weighted l1-norm
normalization, which is as following

min γ1||z1||1 + γ2||z2||1. (9)

where both γ(·) are trade-off coefficient.
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(a) Compressibility between humidity and temperature.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Entropy (bit)

C
D

F
 o

f 
e
n

tr
o

p
y

 

 

Green,T

Grenn,I|T

Indoor,T

Indoor,I|T

(b) Compressibility between light illumination and tem-
perature.
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(c) Compressibility between salinty and temperature.

Fig. 1. The compressibility between attributes. H,T and I stand for humidity,
temperature and light illumination. For example, Green,H,T represents the
inter-attribute conditional entropy space between H and I (humidity and
temperature).

IV. OBSERVATIONS ON REAL DATA SETS

The correlations among attributes are of utmost importance
in WSNs, which can be utilized to reduce the demand on mea-
surements. In this section, by using the information theory, we
illustrate that one attribute contains other one’s information.
Because of this hidden information, MCDG is able to achieve
the required accuracy with less measurements.

A. Data Sets

We mine three real data sets, i.e., CTD [2], GreenOrbs [12]
and Intel Indoor [1].

1) CTD: The conductivity, temperature and depth (CTD)
[2] data is collected by a ship using a Seabird 9/11 plus CTD
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TABLE I
DATA SETS

Data Name Matrix Size Interval
Intel Indoor 49 nodes × 149 intervals 5 minutes
GreenOrbs 258 nodes × 500 intervals 30 seconds
CTD data 123 positions × 1000 intervals 1 dbar

underwater unit and water sampler. The project is carried by
National Oceanic and Atmospheric Administration’s (NOAA)
National Data Buoy Center (NDBC). The CTD data contains
salinity and temperature of sea water in an area of Pacific
Ocean.

2) GreenOrbs: The GreenOrbs [12] project is carried point-
ing at all-year round ecological surveillance in the forest,
collecting sensory data such as temperature, humidity and light
illumination, and content of carbon dioxide. In GreenOrbs,
over 1000 nodes are deployed on an experiment region in
Wuxi, China. In this paper, we choose sensor readings of
relative humidity and temperature.

3) Intel Indoor: The Intel Indoor project [1] us carried by
the Intel Berkeley Research Lab from Feb 28th to Apr 5th in
the year 2004, where 54 nodes are used to measure humidity,
temperature, light illumination and voltage. These attributes
are obtained every 31 seconds.

The scale of these data sets is listed in Table.I. We compare
inner-attribute entropy and inter-attribute conditional entropy
to expose correlations across attributes. To GreenOrbs and
Intel Indoor, every node’s temporal sequence is adopted. To
CTD, since sensor readings are obtained by one instrument
in a specific position, its original sequence is adopt, where
attributes are measured as the growth of the depth.

B. Entropy and Conditional Entropy

1) Discretization: sensor readings need to be discretized
since they are real values. To an attribute sequence xj , the
discretization carries on as following.

• Divide the range [min(),max()] into Q equal sections,
where Q is self-defined.

• By converting elements of xj into sections, construct a
state vector uj = (uj,1, · · · , uj,N )T .

2) Inner-Attribute Entropy: The inner-attribute entropy is
the entropy of state vector uj , which is mathematically repre-
sented as following:

H(uj) = −
Q−1∑
k=0

P (sk) · log2P (sk) (10)

where P (sk) is the probability of state sk, k = 1, · · · , Q. Ac-
cording to the information theory, the inner-attribute entropy is
the amount of the information which would be need to specify
uj .

C. Inter-Attribute Conditional Entropy

Intuitively, one can expect that correlations exist between
two physically related attributes. In other words, one attribute

may contain the other one’s information. We use the inter-
attribute conditional entropy to expose this kind of informa-
tion, which is defined as the entropy of one attribute when the
other attribute’s reading in the same node is known, formulated
as:

H(ui,t|uj,t) = H(ui,t, uj,t)−H(uj,t), (11)

where H(ui,t, uj,t) is the joint entropy of two attributes in one
node. In this paper, we compute every node’s inner-attribute
and inter-attribute conditional entropy.

D. Potential Compressibility

In this section, the correlation between temperature and
other two attributes, light illumination and humidity, is dis-
cussed. Temperature is chosen because it is included by
all three data sets. Fig.IV shows the cumulative distribution
functions (CDFs) of inner-attribute entropy and inter-attribute
conditional entropy.

Here it is observed that inter-attribute conditional entropy is
always far lower than inner-attribute entropy. For example, as
shown in Fig.2(a), the entropy of humidity is between 4 to 8
bits, but the conditional entropy of humidity, when temperature
is known, is less than 2 bits. This observation shows that
the humidity and temperature can be stored together with
less cost than do the same thing separately. In other words,
jointing attributes is able to provide stronger compressibility,
which leads to less demand on measurements according to the
compressive sensing theory.

Without loss of generality, similar results can be observed
from Fig.1(b) and Fig.1(c). We say that the distance of
inner-attribute entropy and inter-attribute conditional entropy
exposes the potential compressibility, i.e., the potentiality of
how many measurements can be possibly saved when using
MCDG. However, sequences of sensor readings are not taken
into consideration when computing the entropy. Hence, in
practise, we still need more measurements in order to achieve
satisfied accuracy of reconstruction.

V. PERFORMANCE EVALUATION

In this section, the performance of MCDG is evaluated by
comparing the accuracy and the demand of measurements with
the original CDG.

The data sets of GreenOrbs [12], Intel Indoor [1] and CTD
[2] are all adopted for the simulation. The detail of them has
been presented in Section.IV-A.

To CTD data, we regard it as if its readings are collected
by multiple nodes. Specifically, sensor readings of sea water’s
salinity and temperature at the position (7.0N, 180W) on Mar
29th, 2008 are selected, which is also adopted by the CDG[13]
in the simulation. Each attribute has 1000 readings sorted by
the sea depth. Both of them are sparse in DCT and wavelet
basis, as shown in Fig.2(c). Here, we set Kj = 50.

To GreenOrbs and Intel Indoor data, although they are ob-
tained from multiple nodes, we still adopt temporal sequence
readings of their node as if they are collected by one single
routing tree. By this way, all the data can be treated as being
collected from large scale WSNs. Here, to each data set, sensor
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Fig. 2. The sparse coefficients of attributes through Le Gall 5/3 (Spline 2.2) wavelet transform.

1 2 3 4
97

97.5

98

98.5

99

99.5

100

M/K

A
c
c
u

ra
c
y
 (

%
)

 

 

CDG

MCDG−1,η=0.1

MCDG−1,η=0.5

MCDG−1,η=0.8

(a) Humidity

1 2 3 4
97

97.5

98

98.5

99

99.5

100

M/K

A
c
c
u

ra
c
y
 (

%
)

 

 

CDG

MCDG−1,η=0.1

MCDG−1,η=0.5

MCDG−1,η=0.8

(b) Temperature

Fig. 3. The accuracy of MCDG on Intel Indoor.

readings of a specific node are chosen, containing relative
humidity and temperature. Here Kj is set to 30 according
to the observations of sparsity shown in Fig.2(a) and Fig.2(b).

A. Metric

In the simulation, the following metric is used to evaluate
the accruacy of data gathering, i.e.

accuracy(x, x̂) = 1− ||x||2
||x̂− x||2

, (12)

where || · ||2 represents l2-norm, and x, x̂ are original and
received readings, receptively.

The performance of MCDG and CDG is evaluated by com-
paring their accuracy of reconstruction through measurements
M = K ∼ 4K, where K =

∑
Kj and Kj is every

attribute’s sparsity . In the simulation, each node generates
a vector of measurements through i.i.d Gaussian random
process complying to N(1, 1/M), which has a good restricted
isometry property (RIP) [13][14][6]. The simulation process is
carried on 20 times and the average of results is adopted.

To MCDG, we use η representing the level of joint measure-
ments, e.g., when J = 2, suppose M measurements are used,
where η×M are used as joint measurements and 0.5∗(1−η)M
are used individually by each attributes.

B. Simulation Results

The performance of MCDG in different η is evaluated using
Intel Indoor. As shown in Fig.V, MCDG outperforms CDG
when η = 1, and when η is bigger, the performance of
MCDG gets lower. With proper η, using MCDG can save
measurements, e.g., in order to achieve 99% reconstruction
of humidity, MCDG with η = 0.1 takes M = 250 and
CDG takes M = 300 so that 16% measurements are saved.
When M/K > 3, both MCDG and CDG can achieve high
accuracy, because the enough information is obtained by using
measurements over demand. When achieving 99% accuracy,
MCDG is able to save measurements with high possibility.

In the sea and forest environment, as shown in V-A, we
find that MCDG can obtain the enhancement on two related
attributes, as temperature and humidity, but loss its advantage
without physical relationship.

Consequently, to achieve 99% accuracy, MCDG can be
used, which performs better than CDG. If higher accuracy
is required, MCDG needs strong physical relationship among
attributes. When the goal is to achieve over 99.5% accuracy,
the number of measurements is the critical factor. All ap-
proaches performs almost on a par. Meanwhile the advantage
of MCDG highly depends on the sensor readings. And η
has to be calculated firstly when using MCDG. Hence the
reasonable solution is firstly collecting the knowledge of
readings by using CDG, and then utilizing MCDG to decline
measurements.
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Fig. 4. The accuracy of MCDG in GreenOrbs(forest) and CTD(sea).

VI. CONCLUSION

In this paper, we presented an approach base on CDG,
aiming at the multi-attribute data gathering problem. We
theoretically analysed the disadvantage of the original CDG in
the multi-attribute scenario. Then we observed sensor readings
of two real data sets and exploited the correlations between
attributes. Then by using distributed compressive sensing, our
approach was proposed. Real data-driven simulation showed
that our approach outperformed the original CDG in the multi-
attribute scenario.

The future works are that 1) taking the effect of route
strategy into consideration, and 2) using data prediction to
enhance the performance.
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