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Abstract—This paper studies mobile barrier coverage (MBC)
surrounding dynamic objects. In the real world, several dynamic
objects can benefit from MBC. For example, marching troop
can detect any adversary intrusion without blind spot by MBC.
However, conventional works only focused on barrier coverage
for static objects, which fail when the objects start to move.
Issues to address these dynamic-object scenarios, we propose
the problem of mobile barrier coverage for dynamic objects.
The most challenge is how to effectively maintain MBC when
the motion of objects are unpredictable. We propose a fully
distributed algorithm for mobile sensor nodes to cooperatively
move and maintain the high-quality barrier coverage. The
extensive simulations based on large-scale trace data demonstrate
the efficiency and efficacy of the proposed algorithm.
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dynamic objects

I. INTRODUCTION

In wireless sensor networks (WSNs), barrier coverage has

attracted wide and serious concern. A bulk of sensor nodes

are organized as a sensing barrier for intrusion detection, so-

called barrier coverage. This application can be set on the

border line to discover the stowaways, or be deployed around

the safe vault to sense thieves. Many efforts have been made

for barrier coverage [5], [6], [14], [17] in the literature.

Nevertheless, all existing works, no matter the sensor nodes

are mobile [1], [13], [15], [23] or not [4], [10], [22], [26], [27],

only focus on static objects. e.g., the border line, the safe vault.

While in real world, many objects are dynamic (Their shape

and position are time-varying). In several scenarios, they do

need barrier coverage. When the objects begin to move, the-

state-of-art solutions fail. This is the motivation behind our

study of MBC for dynamic objects in WSNs.

Compared with the conventional barrier coverage, MBC

inherits all properties such as intruder detection. Furthermore,

a new feature of MBC is that MBC transforms according to

the change of dynamic objects, namely, Transformation-On-

Demand (TOD). For supporting TOD, the ability of BIdirec-

tional Sensing (BIS) is indispensable. That is, MBC can sense

not only the outside intruders, but also the boundary of the

inside objects.

MBC is useful in many applications. We can divide them

into two categories: (1) Internal protection. e.g., in order to

ensure the safety of a marching troop, mobile sensor nodes

can keep moving surround the troop (due to TOD feature) to

detect any adversary intrusion without blind spot. (2) External

protection. e.g., MBC can keep outlining the contaminated

region of the diffusing poisonous gas (due to BIS feature), then

sense and warn any entrant to leave away from this region.

There are three major challenges in maintaining MBC for

dynamic objects. First, the object is dynamic and its time-

varying shape is unpredictable. Second, it is desirable to

maximize the detection capability of MBC, which is usually

characterized by the number of barriers K [14]. Third, the

energy of a sensor node is always limited. In short, the problem

we are interested in is to provide MBC while maximizing

its monitoring performance and reducing the cost of sensor

movement. Moreover, since a WSN may extend to a very large

scale, it is practical that the solution is distributed.

We study the problem of mobile barrier coverage for dy-

namic objects (MBC-DO) as follows:

First, we formulate the K-D MBC problem, which is to

maximize K and then minimize the total distance D of all

sensor nodes during the MBC period. Assume the change of

dynamic object is known, we derive the theoretical maximum

K when the number of sensor nodes n is given. After that, we

summarize the optimal movement pattern of nodes for keeping

the maximum K. Then we derive the minimum D while the

optimal movement pattern is adopted.

Second, since the future change of object is unpredictable,

the theoretical optimum cannot be achieved in practice. We

propose a distributed and real-time Elastic Barrier Algorithm

(EBA) for the motion plan of sensors. By imitating an elastic

band stretched around an object, this algorithm coordinates

the sensors to form a dynamic belt wrapping like the convex

hull surrounding the object. Each sensor makes its movement

decision locally by exchanging their real-time information

with its neighbors. It is also a lightweight algorithm that any

node’s computation cost is O(1).

Finally, we do extensive simulation based on a real trace

collected for toxic red tide populations in the Western Gulf

of Maine. Performance results show that EBA retains MBC

approaching the optimal K. And the total distance of all

sensors is only 12% more than the theoretical minimum.

In summary, the contributions of this paper are as follows.

• To our best knowledge, this is the first work that address

the mobile barrier coverage problem for dynamic objects

in wireless sensor networks.

• We derive the theoretical optimal K−D MBC, and prove

the feasibility of a distributed approach to realize it.
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• We develop a distributed algorithm that coordinates the

sensor nodes to retain K −D MBC for dynamic object.

Through simulations, we demonstrate that the proposed

algorithm performs well in a realistic setting.

The paper organization is as follows. The related work is

presented in Section II. In Section III, we establish models,

describe the metrics and formulate the problem. In Section IV,

we show the derivation of the optimal K and D. In Section

V, we prove the feasibility of a distributed algorithm and

elaborate the design of EBA. The performance is simulated

in Section VI. In Section VII, we conclude this paper.

II. RELATED WORK

Barrier coverage [9] in WSN is valuable for intrusion

detection and border surveillance. We classify the works of

barrier coverage into three categories.

Stationary sensor nodes for static objects: Most works

fall in this category, in which the barrier are organized by

stationary nodes in order to protect static objects. Barrier cov-

erage is firstly introduced [14] and an algorithm is proposed to

determine whether a barrier is built or not. [14] also proves that

no distributed algorithm can judge the existence of the global

barrier coverage. Then, a distributed algorithm for judging the

local barrier coverage [5] is studied. In recent years, a bulk

of works study such barrier coverage in different directions

such as [2] for reliable density estimation, [17] for strong

barrier coverage, [6] for quality measurement, [22] for line-

based deployment, and [15] for probabilistic sensors.

Mobile sensor nodes for static objects: With the devel-

opment of robotics [8], [19], the mobile sensor node becomes

practical for many real applications [7], [12], [16]. Several

works fall in this category, in which mobile nodes form

the barrier surrounding static objects. Such as [1] studies

the optimal movement, [21] studies the mobile sensors with

limited mobility, and [13] studies the barrier initialization.

Mobile sensor nodes for dynamic objects: In this category,

the objects begin to move or transform, so the mobile sensor

nodes are adopted in order to keep besieging the objects.

Conventional methods for static objects cannot maintain the

MBC. Research in this category is vacant. Thus, we study the

problem of MBC for dynamic objects in this paper.

III. PROBLEM STATEMENT

A. Models

Our problem considers dynamic objects, intruders and mo-

bile sensor nodes moving on a two-dimensional plane Γ during

time T . The beginning of T is denoted t = 0. The Euclidean

distance between points a1 and a2 is noted by d(a1, a2). If A1

and A2 are two point sets, d(A1, A2) = min{d(a1, a2)|a1 ∈
A1, a2 ∈ A2}.

Definition 3.1 [Dynamic object: O] A dynamic object O
is an area enclosed by a continuous boundary, which deforms

and moves on Γ.

By definition, a dynamic object has a closed, continuous

boundary as shown in Fig. 1(a). Therefore it is single, which

cannot split into several parts.

(a) (b)

Fig. 1. (a) A dynamic object on the plane Γ with boundary as a closed curve.
(b) Sensors moving in a dynamic belt of dimension(2πr1, 2πr2, r1 − r2).

For MBC, we are only interested in the boundary changing

of O, denoted by B(t). Let vo denotes the maximum velocity

of any point on the boundary. We assume when t = 0, B(t)
is known. The change of B(t) is unknown when t > 0. There

have been a few methods that can find the boundary of an

object at t = 0 (e.g., computing geometry [3] and boundary

detection [24]) and then form the barrier coverage [13].

Definition 3.2 [Intruder: I] An intruder is an entity that

is desired to be detected when it moves close to O.

The intruder I can be a point, a changeable area or several

separate areas. Intruders are unknown to O.

Definition 3.3 [Warning distance: ε] It is the shortest

allowed distance between an intruder and the object, by which

MBC is required to detect the intruder. The value of ε is set

according to diverse applications.

We assume that d(O, I) > ε at t = 0. At any t > 0, when

d(O, I) � ε, at least one sensor node should cover the intruder.

Definition 3.4 [Sensor nodes: S = {si}] In order to detect

any unknown I , a closed barrier besieging O is necessary so

that any I can be immediately detected when it goes across the

barrier. A mobile sensor network is one of the best candidates

providing such a barrier.

Totally n sensor nodes are utilized, denoted by S = {si, i =
1, · · · , n}. The maximum velocity of any si is vs. Every node

knows its own position. A node can sense both the boundary

of O and the intruder I within its sensing range. We adopt the

widely used homogeneous disk model [5]–[7], where every

si has an equal sensing range rs. The communication range

rc is assumed to be greater than 2rs, which is the common

assumption in other coverage works [13], [14], [18].

Definition 3.5 [Dynamic belt] It is defined as a virtual

closed belt region surrounding the O in T . Sensor nodes are

moving in this virtual region. An intruder cannot reach O
without crossing this belt.

Definition 3.6 [Dynamic belt of dimension (λ1,λ2,w,t)]
A dynamic belt is defined as a time-vary region bounded by

two closed curves λ1 and λ2, whose lengthes are denoted by

l1 and l2. The width of this belt is w = d(λ1, λ2).
Fig.1(b) illustrates illustrates a snapshot of a dynamic belt

with dimension (2πr1, 2πr2, r1 − r2, t). i.e., this belt is the

region between two concentric circles at time t.
MBC demands that for ∀t ∈ T , A(λ1) ⊇ A(λ2) ⊇ A(B(t))

and d(λ2, B(t)) � ε, where A(λ) denotes the area enclosed by

a curve λ. Moreover, ε should be smaller than rs; otherwise,
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a node cannot sense the change of boundary. If λ1 and λ2
are completed superposition, the belt region becomes a closed

curve. In this case, nodes are moving along this curve.

B. Metrics

The goal of the sensor nodes is to maintain MBC in T .

There are two performance metrics guiding our design.

Metric 3.1 [Number of barriers: K] A MBC has K
barriers if and only if an intruder is detected by at least K
nodes when it crosses the dynamic belt. A MBC with K
barriers is referred to K-MBC. Increasing K can produce a

higher overall reliability for intruder detection.

Metric 3.2 [Total travel distance: D] It is defined as the

sum of travel distances of all nodes in a given time period

from t1 to t2. ui(t1, t2) is the distance travelled by sensor si
from t1 to t2. The total travel distance is given by

D(0, T ) =

n∑
i=1

ui(0, T ). (1)

Energy saving is crucial in the design of WSNs. The energy

consumption is considerable [18] by the mechanical motion of

a sensor node. For energy efficiency, it is important to reduce

the total travel distance.

C. Problem Formulation

Definition 3.7 [K-D MBC] Given n sensors, how do the

sensor nodes plan their movements with the objective to

minimize the total travel distance under the constraint that

the number of barriers is maximized at any time.

K-D MBC problem is formulated by

{
Objective: minD(0, T ),
Subject to: max(K) during T.

(2)

IV. THEORETICAL ANALYSIS

In this section, we analyze how to derive the maximum

K when a dynamic object is given, and what is the optimal

movement pattern for the mobile sensor nodes in order to

achieve max(K) and min(D).

A. Maximum Number of Barriers K

Since the dynamic object may be deforming over time and

the number of sensor nodes is fixed, the maximum number

of barriers K is changing in response to the changes of

the dynamic object. Intuitively, K becomes smaller when the

dynamic object becomes larger.

Theorem 4.1 In MBC, the optimum K is achieved when

all sensors are evenly distributed on the ε-convex hull (ε-CH)

of the dynamic object. Since the object is dynamic, K is time

varying. The real-time optimum value is 2nrs
β(B(t))+2πε , where

β() is a function to calculate the length of convex hull.

Proof: We prove Theorem 4.1 by introducing 4 lemmas.

Lemma 4.1 A dynamic belt region provides K-MBC if and

only if there are K vertex-disjoint cycles in its coverage graph.

The coverage graph CG =< V,E > includes vertex V and

edges E. V is the set of sensors’ positions and E is the set

(a) (b)

Fig. 2. (a) Coverage graph of the sensor network represented by Fig. 1(b).
There are two vertex-disjoint cycles in the closed belt region. (b) Two cycles
barrier cover a dynamic object. The interval between chain and object is ε.
The interval between two cycles is m.

(a) (b) (c)

Fig. 3. (a) Sensors distributing on two cycles with K = 2 in a segmented
part of a dynamic belt. (b) Sensors distributing on one chain with K = 2 .
(c) Sensors evenly distributing on one chain with K = 2.

of connected relationship when the distance between any two

sensor nodes is less than 2rs. The example of CG for Fig.1(b)

is shown in Fig.2(a). A cycle is defined as a closed sequence

of edges and satisfies A(cycle) ⊇ A(O). Cycles are disjoint,

i.e., they do not share any vertex. Lemma 4.1 can be proved

in the same way as Theorem 4.2 in [14].

Given by Theorem 4.2 and 5.1 in [14], the value of K
is the number of cycles in CG. Since n is given and any

edge between two sensors is ≤ 2rs, the upper bound of total

length of all cycles is ≤ 2nrs. Hence, the maximum K can be

obtained when the length of every cycle is minimized.

Lemma 4.2 The shortest cycle is the ε-CH of a dynamic

object.

As the analysis in [20], assume there is a finite point set

Z, the smallest 2D polygon (denoted by Ω) contains Z is its

convex hull. This convex hull has the smallest area and the

smallest perimeter of all polygons that can contain Z.

ε-CH is a closed circle satisfying: (1) contain the convex

hull (2) the distance between ε-CH and the convex hull is ε.
i.e., A(ε-CH) ⊇ A(CH) and d(ε-CH,CH) = ε. From [20], we

obtain that the perimeter of an ε-CH is β(B(t)) + 2πε when

the perimeter of a convex hull is β(B(t)).
At any certain time t, a dynamic object can be treated as a

static area. Thus, when ε = 0 is set, the shortest cycle is the

convex hull of O. When ε > 0, the shortest cycle is the ε-CH

of the dynamic object. This derives Lemma 4.2.

Lemma 4.3 The maximum K is achieved when the dynamic

belt is (β(B(t)) + 2πε, β(B(t)) + 2πε, 0, t), and the value is

K = 2nrs
β(B(t))+2πε .

An obvious distribution pattern of the cycles is shown

in Fig.2(b), where d(cycle1, cycle2) = m(m < r). The

perimeter of cycle2 is β(B(t))+2πε+2πm. Compared with

the pattern that cycle1 and cycle2 are completed overlapped,

this pattern (shown in Fig.2(b)) wastes πε(K − 1)m/r nodes.
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Hence, K is only determined by the number of cycles,

but independent to the distribution of the cycles. When two

cycles partially or completely overlap, K remains to be two,

as illustrated in Fig.3(a) and Fig.3(b). Any intruder crossing

the belt by any path is detected at least twice.

When all cycles take the shortest length, they overlap on the

ε-CH. The dynamic belt region therefore becomes a dynamic

chain whose w = 0, l1 = l2 = β(B(t)) + 2πε. In this case,

K is maximized, K = 2nrs
β(B(t))+2πε . Now, it is apparent to

find that a dynamic chain provides K-MBC if any point of the

chain is covered by K nodes, i.e., there are K sensors in any

2rs distance of the ε-CH.

Lemma 4.4 It is a sufficient condition for maximizing the

number of barriers K that the sensors are evenly distributed

on the ε-CH of the dynamic object.

As shown in Fig. 3(c), the sensors are evenly distributed

on the ε-CH of the dynamic object. The distance separating

any two closest neighbors is Δ = β(B(t))+2πε
n . Thus, there

are K = 2rs
Δ = 2nrs

β(B(t))+2πε sensors over a chain segment of

length 2rs, which is equal to the maximum K in Lemma 4.3.

Then Theorem 4.1 follows.

Observation 4.1 Towards maximizing the number of barri-

ers K continuously, the sensors should stay on the ε-CH and

evenly distribute themselves.

The ε-CH changes when the dynamic object deforms, and

therefore the chain should adapt to the change of ε-CH. The

sensors must move along the ε-CH; otherwise, the formed

chain would not be shortest and results in a non-maximal K.

B. Minimum Total Travelled Distance D

After having deriving the maximum K, we proceed to the

next question about how to move the sensors in order to

achieve a minimum total travel distance. However, answering

this question is a great challenge. There are countless possible

ways to move for the sensors. In addition, at any time instance,

the sensors should collectively form a belt providing a K-MBC

where K is maximized at that time instance.

To gain the insight into the question, we simplify the motion

of the dynamic object as a multi-staged process. With this

model, we essentially divide the time into small time slots. We

then provide a way to computing the minimum travel distance

when the motion track of the dynamic object from 0 to T is

given.

Theorem 4.2 The K-D MBC problem can be reduced to a

multiple-stage minimal weighted bipartite matching problem.

Proof: We look at two arbitrary, consecutive stages tj and

tj+1. Fig. 4(a) shows an example of the sensor movements

from stage tj to stage tj+1. Since K should always be

maximized, the sensors are evenly distributed on the ε-CH

at both stage tj and tj+1. For the purpose of barrier coverage,

the sensors can be considered as non-differentiable, i.e., ex-

changing the positions of any two sensors does not change the

property of barrier coverage. Recall that the sensors are evenly

distributed on the ε-CH. By shifting all the sensors along the

ε-CH by a small distance, we can obtain another possible

positioning of the sensors without losing MBC. Therefore, it

is reasonable to assume that at each stage there are ϕ different

ways of positioning of the non-differentiable sensors. Given a

specific positioning of the sensors at stage tj+1, the situation

of sensor movements is shown in Fig. 4(b). It is intuitive that

each sensor must fill in one of n candidate places at stage

tj+1. The movement problem of the sensors from stage tj to

tj+1 is essentially a weighted bipartite matching [25]. Each

edge is associated with a weight representing the movement

distance that a sensor moves from the position at stage tj to

the corresponding position at stage tj+1.
Consider the whole movements of the sensors from stage 0

to stage T . It is a multi-staged, weighted bipartite matching

process, as shown in Fig. 4(c). Each circle represents a specific

positioning of all sensors. Each arrow represents a possible

movement pattern of the sensors from a given positioning at

the previous stage to another positioning at the next stage.

From stage tj to tj+1, since there are ϕ different ways of

positioning of the sensors, there are ϕ different edges from

a positioning at stage tj to stage tj+1. Then Theorem 4.2

follows.
With Theorem 4.2, we have a brute force algorithm to

compute minimum total travel distance D in the K-D MBC

problem. For each edge in Fig. 4(c), there are n! possible

ways for the sensors to move from a positioning to the next

positioning. Thus, the total search space is O(ϕTn!T ). The

following corollary gives a much faster algorithm to compute

the minimum total travel distance.
Corollary 4.2 The minimum total travel distance D in

the K-D MBC problem can be computed with complexity of

O(ϕTn3T ).
Proof: From stage 0 to stage T , there are in total ϕT

combinations of possible positioning ways of the sensors. For

a specific combination of positioning, we propose an efficient

algorithm to compute the minimum travel distance.
Finding an weighted bipartite matching is known as the

assignment problem. It can be solved by using a modified

shortest path search in the augmenting path algorithm. If the

Bellman-Ford algorithm is used, the running time becomes

O(V 2E) = O(n4), or the edge cost can be shifted with a

potential O(V 2log(V ) + V E) = O(n3) running time with

the Dijkstra algorithm and Fibonacci heap. Such classical

algorithms can solve the problem.
Thus, the total complexity is O(ϕTn3T ).
Observation 4.2 Towards minimizing the total travel dis-

tance, the sensors plan their movements according to the

following principles.

• When the object moves as translation of a rigid, the

sensors keep the ε-CH shape and move together with the

object.

• When the object grows or shrinks by scaling, the sensors

scale the ε-CH shape with the object.

• When the object rotates, there exist other better strategies

for the sensors than moving together with the boundary.

For simplification, the motion of the dynamic object is the

combination of translation, scaling and rotation. For the trans-

lation movement, the sensors must move the same distance as
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(a) (b) (c)

Fig. 4. (a) Sensors move to candidate positions on a convex hull from
t0 to t1. (b) Two consecutive stages MBC problem converts to a weighted
bipartite matching problem. (c) A K-D MBC problem reduces to a multiple-
stage weighted bipartite matching problem.

(a) (b) (c)

Fig. 5. (a) Translation movement of the dynamic object. (b) Rotation
movement of the dynamic object. (c) Sensors on chain L move to the
positions on chain L’ in order to satisfy the balance condition.

the dynamic object in order to maintain K-MBC. The same

reason applies for the scaling situation. However, for rotation,

the sensors can reduce the travel distance by forming a chain

which does not rotate strictly with the dynamic object, with

an analogy of motion without friction. Fig. 5(b) shows an

ideal example in which the object is round and only rotates

counterclockwise. We compare two movement strategies. In

the first strategy, all sensors remain stationary, and in the

second strategy, all sensors rotate together with the object.

These two strategies provide K-MBC, but it is obvious that

the first strategy has a zero travel distance. In summary, it is

our observation that a good strategy for sensor movement is

to move with the dynamic object, but without friction.

V. ELASTIC BARRIER ALGORITHM

The analysis in the previous section provides us with

a framework to understand what is the maximum number

of barriers and what is the optimal motion pattern for the

sensors. However, such theoretical analysis does not result

in a practical solution for mobile sensor networks. First, the

optimal movement pattern is derived when the motion track

of the dynamic object is given. In practice, however, it is

impossible to know the future motion of the dynamic object

since it is very stochastic and may be influenced by many

factors in the real world. Second, the algorithm assumes global

information. To collect the global, dynamic information in the

sensor network, the cost would be prohibitive. Third, even with

the global information, the complexity of the algorithm is too

high for a sensor to implement.

Thus, we propose a practical, distributed algorithm for the

mobile sensor network to provide MBC continuously while

reducing the travel distance of the sensors. Since the future

motion of the dynamic object is unpredictable, the distributed

algorithm in nature is heuristic.
To device a distributed algorithm, we face the first key

question: is it feasible for the sensors to determine whether

there exists K-MBC?
Kumar [14] has proved that no distributed algorithm can

answer the question about the existence of global barrier

coverage in a stationary scenario. Different from their scenario,

our setting is that the sensors are mobile.

A. Feasibility of Distributed Implementation
Theorem 5.1 It is feasible for the mobile sensors to

determine the existence of K-MBC locally.
Proof: We begin the proof with two definitions:
Definition 5.1 [Global balance condition]When the global

balance condition satisfies, the sensors evenly distribute on the

ε-CH.
Definition 5.2 [Local balance condition] When the local

balance condition satisfies, a sensor has an equal distance to

its two immediate neighbors.
Lemma 5.1 When every sensor satisfies the local balance

condition, the global balance condition satisfies.
Since it is not difficult to understand this lemma, we omit

the proof details.
We propose the following distributed adjustment procedure

for the sensors, which eventually reaches the global balance

condition. According to this adjustment procedure, a sensor

that does not satisfy its local balance condition always moves

to the point which equally separates its immediate neighbors.

In Fig. 5(c), the adjustment process is illustrated. At the initial

state of chain L, d(A,B) = d(B,C) and d(C,D) = d(D,E),
but d(B,C) < d(C,D), so B and D satisfy the local bal-

ance condition, but C does not. According to the adjustment

procedure, C moves to the middle of B and D. After the

C’s movement of C, the balances of B and D disappear.

Then, B and D start to adjust, respectively. Chain L’ in

Fig. 5(c) shows the state where all sensors stopped. When

the adjustment process terminates, all sensors reach the local

balance condition.
This adjustment procedure requires no global information

and can execute in a distributed fashion. The termination of the

adjustment procedure implies that all sensors have reached the

local balance condition. According to Lemma 5.1, the global

balance condition also satisfies, which indicates that K-MBC is

achieved. Hence, a sensor can locally determine the existence

of K-MBC.
Corollary 5.1 The value of K can be locally computed by

K = 2rs/Δ when the global balance is satisfied, where Δ is

the interval distance of the immediate neighbors.
From Lemma 4.4, we have β(B(t)) + 2πε = nΔ.
From Theorem 4.1, we have β(B(t)) + 2πε = 2nrs/K.
Combining these formulas together, we get nK = 2nrs/Δ.
Hence, K = 2rs/Δ. The result follows.

B. Algorithm Overview
In Section IV, we have two insightful observations for

solving the K-D MBC problem. We find that an elastic band,
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(a) (b) (c) (d)

Fig. 6. (a) Sensors distributing on the ε-boundary extension of the dynamic
object. (b) Sensors move to the positions on the ε-CH. (c) Sensors move
to the position of middle of two immediate neighbors. (d)Sensors move
towards the direction where no immediate neighbor exists.

without friction, being stretched around the dynamic object

provides a good strategy. First, an elastic band always wraps

around the object and exactly forms the convex hull. Second, a

friction-less elastic band can effectively reduce the movement

distance by ignoring rotation motion and concave deformation

of the dynamic object. Thus, we devise EBA, that mimics the

principles of an elastic band.

EBA imitates an elastic band by introducing virtual force

between sensors. The virtual force imitates the tension among

elastic molecules in an elastic band. With such virtual force,

the sensors can form a convex hull and evenly distribute on

the convex hull. However, we ignore the friction effect that

happens between a wrapping elastic band and the object. Y.

Zou et al. [28] introduce the concept of virtual force produced

by measuring the distance between sensors.

More specifically, we regulate movements of the sensors by

introducing four rules.

Rule 5.1 The sensors should move close to the boundary

of the dynamic object and stay on the ε-extension of the

boundary.

By following Rule 5.1, the sensors can be distributed on the

ε-boundary extension as shown in Fig. 6(a).

Rule 5.2 A sensor should maintain the internal angle being

no more than 180◦. A sensor with its two immediate neighbors

can form two angles. The internal angle is defined the angle

is facing the boundary.

By following Rule 5.1 and 5.2, the sensors can be distributed

on the ε-CH, as shown in Fig. 6(b).

Rule 5.3 A sensor should move to the point that has the

same distance to its two immediate neighbors.

This rule forces each sensor to reach the local balance

condition. In Fig. 6(c), it shows the result by following

the previous three rules, where the distances between two

immediate neighbors are equal, which is Δ.

Rule 5.4 A sensor should move towards the direction of

zero neighbors.

Following this rule, a sensor with only one immediate

neighbor moves towards the direction without any neighbor,

and this produces the effect of pulling the other sensors to

vacant sections on the ε-CH. In Fig. 6(d), it illustrates this

effect and the resulting chain on which the sensors are evenly

distributed.

Elastic Barrier Algorithm (Executed on sensor si)
Input: the sensing range rs, the warning distance ε;
while True do

Detect immediate neighbors si−1 and si+1;
Exchange position information with si−1 and si+1;
Detect the dynamic object and the distance d(psi , O);
p ← psi ; //p is the next position si will to move
if si has two immediate neighbors
p1 ← the middle position of two immediate neighbors;
if d(psi , O) < rs

p2 ← q: d(O, q) = ε and d(psi+1 , q) = d(psi−1 , q);
p ← d(O, p2) > d(O, p1)?p2 : p1;

else p ← p1;
else if si has only one immediate neighbor
p ← q: d(psi±1 , q) = 2rs and d(O, q) = ε;
if p �= psi

Move to p;
end while

C. Algorithm Details

Combining the four rules gives EBA, the distributed algo-

rithm to be executed on each sensor. Note that a sensor decides

its movement after it combines all effects of the four rules.

EBA is a light weight algorithm in which each sensor makes

its decision only with local information. Due to the distributed

nature of the algorithm, each sensor may undergo multiple

adjustments of position before it stops, on the condition that

the dynamic object remains stationary at some time instance.

The detail algorithm is given in the algorithm table. With

this algorithm, each sensor repeats a series of operations.

When position of immediate neighbors is updated or the

change of object boundary is sensed, this sensor computes

its new position to move. The next position p should meet

d(p,O) = ε on the perpendicular bisector of immediate

neighbors. If this p constructs an internal angle larger than

180◦ against Rule 5.2, the next point must change to the

middle position of immediate neighbors. If this sensor has only

one immediate neighbor, it moves to the reverse direction of

its current immediate neighbor and keeps the distance no more

than 2rs. This decision of movement depends on only the local

information by position messages exchanged with immediate

neighbors, so the algorithm is distributed. This algorithm is

also light weight since its computation complexity is O(1).

The requirement of data storage is tiny as well, which only

need to save and update two immediate neighbors’ positions.

There are several constraints for the distributed algorithm.

• Initial condition. At initialization, the sensors can sense

the boundary, or have constructed such a chain that each

sensor has two immediate neighbors. In [1] [23], methods

have been proposed for moving randomly deployed sen-

sors to the boundary of an object. This makes sure that

the initial sensor network deployment meets the initial

condition.

• Upper bound of required velocity.The upper bound

of sensor velocity, vs, that is required by EBA is

vo

√
1 + ( 2πn )2
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Proof: Consider the worst case in which a sensor

moves the longest distance in a unit time. The worst

case takes place when the boundary moves outwards at

the maximum velocity of vo. In this case , a sensor has

to move outward, and meanwhile adjusts its position on

the ε-CH. In a unit time, the perimeter of the convex

hull increases by no more than 2πvo. Since n sensors

evenly distribute on the ε-CH, the average distance for a

sensor to adjust its position over the ε-CH is no more than

2πvo/n. By combining the two kinds of distances, the ag-

gregated travel distance of the sensor is
√
v2o + ( 2πvon )2.

Thus, the upper bound vs = vo

√
1 + ( 2πn )2. Note that,

when n is large, the vs is slightly greater than vo.

• Critical failure condition. The critical failure condition

reaches when the dynamic object grows too large for

the sensors to provide 1-MBC. It is apparent that when

the perimeter of the convex hull is larger than 2nrs, the

critical condition reaches and the sensor network fails to

provide 1-MBC.

D. Discussion

Throughout the paper, the dynamic object is assumed to be a

continuum. In the real-world, a dynamic object can be a group

of discrete entities. A marching troop is such an example. Our

algorithm can also deal with such dynamic objects formed by a

collection of discrete entities. The group of the discrete points

in a plane has a unique convex hull. EBA relies only on its ε-
CH and therefore is able to provide MBC for dynamic objects

with discrete members.

A plane is assumed in our algorithm. However, in the

real world, terrains are complex and may not be a plane.

For instance, topographic relief and obstacles pose obstructs

which influence sensor movements. If the sensors have the map

information, EBA can be extended to deal with such situations.

The sensor chain constructed by EBA can take in account the

joint shape of both the object and terrain limitations.

VI. PERFORMANCE EVALUATION

A. Simulation Settings

To evaluate the algorithm under a realistic setting, we make

use of a motion trace data of toxic red tide populations in the

Western Gulf of Maine [29] during the spring run-off periods

of 1993. Trace data are visualized as shown in Fig. 7(a). The

conspicuous effects of red tides are the associated wildlife

mortalities among marine and coastal species of fish, birds,

marine mammals and other organisms. Thus, a mobile sensor

network is deployed to monitor a red tide on the sea surface

and keeps out unaware entities from the danger region.

The red tide region for which the sensor network provides

barrier coverage is defined by a boundary on which the density

of Alexandrium cells (one kind of red tide) are above 90

mg/L. The maximum area of this region is 1002400m2 and

the maximum perimeter of this region is 8220m from April 11

to May 22. During this period, this red tide region moves and

deforms itself because of many factors, such as ocean current

Fig. 7. (a) Red tide data on 1993/04/26. (b)on snapshot of mobile sensors
1993/04/27. (c) on snapshot of mobile sensors 1993/04/28.

and wind. The maximum velocity of the red tide region is

1.296 km per day (0.015m/s average).

In simulations, 100 sensors are deployed for monitoring the

red tide. The sensing range is 50m, the communication range is

100m and the distance between the dynamic object and sensors

is at least 30m. We adopt the movement parameters used by

Starburg AUV [8]. The velocity of a sensor is at most 1.5m/s.

The battery allows a continuous movement for a distance

up to 7500m. We compare the proposed algorithm with the

theoretical optimum, the boundary extension algorithm and

the smallest ring algorithm.

We compare the performance of EBA with the theoretical

optimum (Opt), the boundary extension algorithm (BE) and

smallest ring algorithm (SR). The Opt is calculated according

to the analysis in Section IV. With BE, the sensors always

move to form a chain as an extended boundary of the dynamic

object. With SR, the sensors always move to construct a

smallest ring besieging the dynamic object.

B. Performance Results

In Fig. 7(b) and 7(c), the discrete points represent the

positions of mobile sensors and the black area represents the

red tide region. These figures show two snapshots of the region

and the besieging sensors. We can see that the sensors form

a chain as the extension convex hull of the region, and the

intervals between immediate neighbors are almost equal.

For the shape of the region shown in Fig. 7(c), the perimeter

of the 30-extension convex hull is 4965m, the 30 boundary

extension is 7650m and the smallest ring is 7008m. We vary

the number of sensors from 0 to 1000 and measure the number

of barriers achieved by our algorithm. In Fig. 8 we can find

Algorithm Maximum Velocity Requirement

EBA 0.015m/s
BE 0.015m/s
SR 0.028m/s

TABLE I
THE MAXIMUM VELOCITY REQUIREMENT OF DIFFERENT ALGORITHMS

WHEN vo=0.015M/S.
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Fig. 8. The number of barriers K increases linearly with the number of
sensors n varying from 0 to 1000.

Fig. 9. The variation of the number of barriers K over time.

that the number of barriers increases as the number of sensors

increases and yields a linear relation. The performance of

EBA is better than BE and SR under any different number of

sensors. Since the movement of the red tide is quite stochastic,

its shape is usually irregular. EBA outperforms BE and SR in

this situation. For instance, when n is equal to 1000, K is

20.14, 13.07 and 14.27 of EBA, BE and SR respectively. The

Kof SR is greater than that of BE, because there are many

concavo-convex on the boundary as shown in Fig. 7(c). We

can conclude that EBA can achieve the maximal K. Moreover,

the more concave convex, the smaller K BE achieves. The less

roundish the object is, the worse SR performs.

In Fig. 9 plots the variation of the number of barriers over

time is shown. The number of barriers achieved changes under

different algorithms, since the region is changing. It can be

seen that the changing trends of K are similar among the

four curves because they share the same goal of maximizing

the number of barriers. The K of EBA is always the closest

one to the theoretical optimum, which demonstrates that our

algorithm achieves a greater number of barriers. In more

detail, we observe the change trend of EBA lag that of the

theoretical optimum. This phenomenon is due to the fact that

a certain delay is required for the sensors to adjust positions.

The fluctuations of BE is more significant than the other

algorithms because the performance of BE is affected more by

the smoothness degree of the boundary of the target region.

In Fig. 10, the accumulated travel distance over time is

shown. As we know, a short traveled distance means lower

energy consumption. The traveled distance in EBA is close

to that of the optimum and is much smaller than those of

BE and SR. At the end of simulation time, EBA, BE and

SR move 12.18%, 47.19% and 104.69% distance more than

theoretical optimum. At that time, the total traveled distance of

EBA is 84122m and each sensor moves 841.22m in average.

The maximal distance that a sensor moves in the simulation is

1139.45m. This is practical since a Starburg AUV can move

up to 7500m.

Next, we study the convergence of our algorithm. A con-

vergence is reached when all sensors achieve the global

balance condition. We count the number of rounds before

the convergence is reached. In Fig. 11, the number of rounds

required by EBA to converge is shown. On one hand, since the

region boundary changes with different velocities, the sensors

need different convergence time. A great number of rounds

of EBA can provide high probability of convergence. On

another hand, sensors need to communicate with neighbors

once per round. A small number of convergence rounds in

EBA can reduce overheads in time of interest. Hence, it is

a tradeoff between convergence probability and overheads to

set the rounds of EBA running per hour. In this simulation,

the number of rounds is set 60. Then the sensor network can

converge in 89.3% of the time of interest.

In Table 1, we measure the maximum velocity requirement

by different algorithms when the red tide region moves at

a velocity of 0.015m/s. We find that it is sufficient for both

EBA and BE that the sensors move as fast as the target region.

However, SR needs a greater velocity since it has to maintain

sensors as a ring. Since Starbug AUV can move at the speed

of up to 1.5m/s, even if the red tide moves at 1.5m/s, by

proportional calculation, the sensors are still able to maintain

barrier coverage and successfully besiege the red tide region.

In conclusion, EBA outperforms the other two algorithms

in terms of the number of barriers and the total travel distance,

and is close to the optimum. The simulation demonstrates that

EBA is practical in terms of convergence delay, overhead and

velocity requirement for real-world applications.

VII. CONCLUSION

This paper studies the problem of providing barrier coverage

for dynamic objects. To the best of our knowledge, this

is the first work that raises the problem of mobile barrier

coverage. We formulated this problem and provide theoretical

analysis on the maximum number of barriers that can be

achieved by a given number of sensors, and on the optimal

movement pattern for the sensors moving to provide MBC. For
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Fig. 10. The accumulated travel distance of all sensors with time.

Fig. 11. The number of convergence rounds per hour required by EBA
during time of interest.

practical implementation, we propose EBA, a fully distributed

algorithm. By imitating an elastic band, EBA continuously

retain MBC and achieves the maximum number of barriers.

In addition, it effectively reduced the total travel distance of

sensors. The algorithm of EBA is verified by trace driven

simulations.
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