
Optimizing the Spatio-Temporal Distribution of Cyber-Physical Systems for
Environment Abstraction

Linghe Kong, Dawei Jiang, Min-You Wu
Shanghai Jiao Tong University

{linghe.kong, davidjiang, mwu}@sjtu.edu.cn

Abstract

Cyber-physical systems (CPS) bridge the virtual cyber
world with the real physical world. For representing a
physical environment in cyber, CPS devices / nodes are as-
signed to collect data in a region of interest. In practice, the
nodes seldom fully cover the region due to the restriction
of quantity and cost. Hence, the sampled data are usually
inadequate to describe the holistic environment. Recent re-
searches mainly focus on the interpolation methods to gen-
erate an approximating model from the raw data. However,
in this paper, we propose to study the spatio-temporal dis-
tribution of CPS nodes in order to obtain the crucial data
for optimal environment abstraction. There are two target
problems. First, when the environment changes little over
time, what is the optimal spatial distribution of stationary
nodes based on historical data? Second, when the environ-
ment is time-varying, what is the adaptive spatio-temporal
distribution of mobile nodes? We show the NP hardness
of the former problem and propose an approximation al-
gorithm. For the latter problem, we develop a cooperative
movement algorithm on nodes for achieving a curvature-
weighted distribution pattern. A trace driven simulation
based on real data of GreenOrbs project evaluates the per-
formance of the proposed approaches.

1. Introduction

Cyber-physical systems [11, 12] are developed to con-
nect the virtual cyber world and the real physical world.
Since the great potential of CPS, lots of researches are at-
tracted into this field. Recently, CPS are embedded systems
such as the wireless sensor networks (WSN) [2], serving the
tasks such as information gathering, data communication,
computation and control. One typical application of CPS
is to reconstruct a physical environment in cyber and trig-
ger corresponding control, such as temperature, sound and
pollutants. We only study the environment reconstruction
process in this work.

For the purpose to represent an environment, a prior de-
termined number of CPS nodes are scattered in the region
to sample the physical data. Due to the hardware cost and
resource problem, the number of CPS nodes are usually re-
stricted. When the region is in a large scale, the quantity of
nodes are inadequate for full coverage. Hence, all sampled
data are incomplete to reappear the holistic model.

By the reason of insufficient sampled data, various works
study the interpolation methods to reconstruct the com-
pleted model [10]. Although these interpolation meth-
ods can complement the data, the quality of rebuilt model
mostly depends on the sampled data. Since the physical en-
vironment highly correlates with space and time, there is a
strong demand for obtaining the data in pivotal positions.

Consequently, we study the problem to sample the cru-
cial data in order to gain the optimal abstraction of physical
environment through spatio-temporal distribution of CPS
nodes in the region of interest. We have two target prob-
lems. First, what is the optimal spatial distribution of sta-
tionary nodes when the change of environment has low cor-
relation with time? Second, what is the adaptive spatio-
temporal distribution of mobile nodes when CPS explore
and abstract a time-varying environment?

To solve the first problem, we use a virtual surface in
the 3D space to visualize the physical environment in a re-
gion. The historical data of environment distribution serve
as a referential surface. The problem is formulated as fol-
lows. The number of nodes k is given and an interpolation
function is determined. The objective is to find out k posi-
tions in the region to deploy nodes and sample data. These
k positions should satisfy: (1) optimal environment abstrac-
tion. i.e., to fit a surface by the interpolation function with
these sampled data. It requires that the rebuilt surface has
the minimum difference with the referential surface; (2) the
k nodes at these positions can construct a connected net-
work. We prove that to solve such a problem is NP hard.
Subsequently, a heuristics algorithm is proposed to find the
k approximating positions for CPS nodes distribution.

To solve the second problem, the environment can be
treated as unknown due to the time-space-varying property.

2010 International Conference on Distributed Computing Systems

1063-6927/10 $26.00 © 2010 IEEE

DOI 10.1109/ICDCS.2010.52

179

2010 International Conference on Distributed Computing Systems

1063-6927/10 $26.00 © 2010 IEEE

DOI 10.1109/ICDCS.2010.52

179

Figure 1. Light abstraction in a 100×100m2 re-
gion in GreenOrbs, rebuilt by virtual surface
in 3D space.

Mobile CPS nodes are proposed to explore and abstract the
environment. The Gaussian curvature on virtual surface is
introduced to measure the variance ratio of physical data
over time and space. We find that the curvature-weighted
distribution pattern can abstract the environment with only
neighbors’ information. Then, we develop a cooperative
movement algorithm on each CPS device to autonomously
form the dynamic curvature-weighted distribution. This al-
gorithm is fully distributed and it requires the device having
merely single-hop information.

The performance evaluation is based on the real trace
from GreenOrbs [17, 22] project. This project collects vari-
ous environment data using 1000+ sensor nodes in a nearly
20,000 square meters forest from July 2008 to present. Sim-
ulations verify the efficacy and efficiency of our approaches.
Fig. 1 shows the samples of visualized environment abstrac-
tion. The samples describe the light condition in a region of
interest at 10:00 AM on Nov 24, 2009.

In summary, the main results and contributions of this
paper include:(1)To our best knowledge, this is the first
work to study the optimal spatio-temporal distribution of
CPS for the physical environment abstraction.(2)We prove
that to find optimal k vertices with connectivity constraint
for rebuilding a 3D surface is NP hard. A foresighted refine-
ment algorithm is developed to find approximating k posi-
tions for spatial distribution.(3)For the time-varying envi-
ronment exploration, a cooperative movement algorithm is
developed on mobile nodes to dynamically find the approx-
imating k positions for spatio-temporal distribution.(4)The
simulation experiments based on real data collected from
GreenOrbs. We demonstrate that the proposed algorithms
perform well in a realistic setting.

The remainder of this paper is organized as follows. In
Section 2, the related works are presented. In Section 3,
the model and the problem are formulated. Spatial distribu-
tion of stationary nodes is analyzed in Section 4 and spatio-
temporal distribution of mobile nodes is studied in Section
5. In Section 6, simulation is performed for evaluating the
solutions. In Section 7, we conclude this work.

2. Related Work

The cyber-physical system is a relatively new concept
with huge potential. Common applications of CPS typi-
cally fall under sensor-based systems and autonomous sys-
tems. Pre-cursor CPS can be found in various application
scenarios. For example: the Distributed Robot Garden [7],
CarTel [8], healthcare monitoring and firefighting. Most of
them need to sense certain physical or environment data,
which demands such study that using finite CPS nodes to
get an accurate environment abstraction. Therefore, the op-
timal spatio-temporal distribution of CPS devices is a fun-
damental problem to support almost all CPS applications.

Lots of excellent works have studied the nodes distri-
bution problem, such as the deployment in wireless sensor
networks (WSN) and the movement in distributed robotics.
Bai et al. [4] study a series of work about the optimal de-
ployment pattern for full coverage and connectivity. The
Harvard group implements the sensor network on surveil-
lance of volcano Tungurahua [19]. And Susca et al. [18]
monitor the environmental boundaries through the cooper-
ative movement of multiple robotics. However, the goal of
our paper is entirely different from these related works. We
study distribution problem for environment abstraction.

Actually, environment reconstruction is popular in com-
puter vision and virtual reality. The traditional works fo-
cus on the interpolation process by raw data, such as least
square, polygon mesh [5] and Delaunay triangulation [13].
Nevertheless, there is few works paying attention to the data
sources. In order to gather more crucial data, we propose to
optimize the distribution of sample position.

As the rapid development of sensors and robotics, cur-
rent technologies have sufficient capability to support our
works. For locating: with the GPS device, a node obtains
its latitude, longitude and altitude. For sensing: thermome-
ter, photodiode, hydrometeor and other digital sensors are
easily equipped on CPS. For moving: autonomous robots,
such as Pioneer 3DX [16] and Starburg [14], can move a
long distance on terrain and water, respectively. For trans-
mitting: the wireless modules provide the data transmission
by wireless network protocols such as Zigbee.

On the basis of the above discussion, this is the first work
on optimizing the spatio-temporal distribution of CPS sam-
pling devices to accurately abstract the physical environ-
ment. Moreover, it is available in real application.

3. Problem Statement

The problem can be described in following scenario. A
given number of CPS nodes are scattered to gather data in
the region of interest. How to distribute these nodes over
time and space to abstract the real condition as accurately
as possible? We formulate the problem in this section.

180180

3.1. Model and Assumption

Region and data model: Assume the region of interest
is on a 2D plane. Each position in the region A is noted as
coordinate position (x, y). A certain environment data can
be expressed as a bivariate function z = f(x, y). Hence,
the global environment f(x, y) can be visualized as a vir-
tual surface in 3D space R

3. Assume this virtual surface is
convex, i.e., for each f(x, y), the value of z is unique.

CPS model: There are k CPS nodes used for gathering
data, where k is a given number determined before deploy-
ment. The nodes are either mobile or stationary. The sta-
tionary nodes can be distributed at any position (x, y) of the
region. Each node is equipped the wireless communication
module and sensors. The communication radius is Rc. A
node can measure the physical data z in its sensing range
Rs. The only different feature of the mobile CPS node is
that it can move on the region with velocity v. We assume
that the energy is sufficient for the movement of CPS nodes.

Environment reconstruction: In order to measure the
quality of the CPS distribution, a global virtual surface
should be fitted by the sampled data at k positions and
be compared to the real environment. Delaunay triangula-
tion [13] method is widely used in computer vision for ren-
dering vertices into surface. Hence, in this work, we also
adopt Delaunay triangulation z∗ = DT (x, y) to reconstruct
an approximating surface. Subsequently, the difference be-
tween real environment z = f(x, y) and z∗ = DT (x, y)
can have a quantized comparison.

3.2. Spatio-Temporal Distribution Problem

This study targets two problems: optimal spatial dis-
tribution (OSD) and optimal spatio-temporal distribution
(OSTD) problems. In OSD problem, assume the real en-
vironment is mainly space-varying and the effect of time-
varying can be ignored. e.g., the PH of soil. Hence, de-
ploying the k nodes at different positions, the environment
abstractions are possibly difference. It requires to optimize
the OSD problem in order to obtain the accurate environ-
ment. Furthermore, the OSTD problem considers the en-
vironment varying over time and space. Temperature, light
and humidity are in this field. For the optimal abstraction,
we study the OSTD of k sampled nodes. Particularly, the
OSTD is equal to OSD when the time is limited to zero:

lim
t→0

OSTD = OSD. (1)

Therefore, we formulate the OSD problem first, and then
extend it to OSTD problem.

The distribution of k nodes on the plane is restricted by
connectivity, since the CPS nodes are demanded to organize
an connected network for data transmission.

Definition 3.1. The OSP problem is formulated as:
• Input: k, z = f(x, y), Rc, A;
• Output: (xi, yi) ∈ A, (i = 1, 2, ...k);
• Objective: min(δ(z, z∗));
• Subject to: G(V,E) is connected.

We explain the problem formulation of OSP. Give a num-
ber k, referential surface z = f(x, y) and region A, to select
k vertices (xi, yi) in A. The objective of the k vertices se-
lection is that the difference δ between z∗ = DT (x, y) and
z = f(x, y) is minimal. We provide edges when the dis-
tance between any two vertices is no more than Rc. Then,
a graph G(V,E) is generated by the k vertices and their
edges. The OSP problem is subject to G(V,E) is connected.
i.e., it requires that there exists at least one path consisted by
edges between any pair of vertices in graph G(V,E).

Definition 3.2. The OSTD problem is formulated that
• Input: k,Rc, Rs, A;
• Output: (xi(t), yi(t)) ∈ A, (i = 1, 2, ...k);
• Objective: min(δ(z = f(x(t), y(t)), z∗)) at t;
• Subject to: G(V,E) is connected.

In OSTD, the surface is time-varying z = f(x(t), y(t)),
hence, the historical data cannot be used as reference. The
position (xi(t), yi(t)) of k vertices also need to change with
time. It is challenging that the vertices have no global ref-
erence but only sensing information in range Rs and data
exchange with neighbors. The objective is that the OSD’s
objective is dynamically satisfied at any t, where t ∈ T , t is
a time slot and T is the duration of interest.

3.3. Difference Measurement

The objectives of the OSD and OSTD involve in the dif-
ference δ(z, z∗). Define that a polytope V (z) is consisted
by the surface z as upper bottom and region on interest as
lower bottom. This polytope is a compact convex subset of
R

3 with non-empty interior. Then, the difference between
two surfaces δ(z, z∗) can be transferred into the volume dif-
ference between two polytopes δ(V (z), V (z∗)).

Theorem 3.1. The value of difference δ is computed by

δ(V (z), V (z∗)) =
∫∫

A

|f(x, y) −DT (x, y)|dxdy. (2)

Proof. In computational geometry [6], the volume differ-
ence between two polytopes is defined as

δ(V (z), V (z∗)) = |V (z)∪ V (z∗)| − |V (z)∩ V (z∗)|, (3)

where

V (z) =
∫

X

∫
Y

zdxdy =
∫∫

A

f(x, y)dxdy, (4)

181181

V (z∗) =
∫∫

A

DT (x, y)dxdy. (5)

Combining Eqn. 4 and 5, we get

|V (z)∪V (z∗)| =
∫∫

A

max(f(x, y),DT (x, y))dxdy (6)

|V (z)∩V (z∗)| =
∫∫

A

min(f(x, y),DT (x, y))dxdy. (7)

Substituting Eqn. 6 and 7 into Eqn. 3, we get Eqn. 2.

4. Spatial Distribution of Stationary CPS

The OSD problem is analyzed in this section. We prove
that even the surface is known, to find the OSD of k vertices
is difficult. And an approximation approach is designed.

4.1. NP Hardness Proof

Theorem 4.1. The optimal spatial distribution problem is
a NP hard problem.

Proof. To provide the evidence of NP-hardness, we pro-
vide a polynomial time reduction from surface approxima-
tion (SA) problem to OSD. First, we recall the SA problem.
Then we prove that SA can be reduced to OSD with a con-
version function η() of an instance ω,

ω ∈ SA ⇐⇒ η(ω) ∈ OSD. (8)

Finally, we show that the convert function η(ω) is com-
putable in polynomial time.

First, we recall the SA problem: given a number k, a
parameter ε > 0, a known surface f(x, y) and interpolation
function I(x, y) where i = 1, 2, ...k, the goal is to compute
all the combinations of k vertices on the surface satisfying
|I(x, y) − f(x, y)| ≤ ε. Agarwal and Suri [1] provide NP
hardness evidence for such a problem.

Second, we compare SA and OSD problem in computa-
tional complexity. The most distinguishing instance is that
the output in OSD has the constraint of connectivity. Com-
pared to SA, after computing the results of some combina-
tions of k vertices, OSD is required to add a filter to test
whether these k vertices are connected. Denote ω as any
combination of k vertices and η() as the filter function. We
obtain ω ∈ SA ⇐⇒ η(ω) ∈ OSD. The Eqn. 8 is got, thus,
SA can be reduced to OSD by a conversion function η(ω).

Third, in order to prove the polynomial time complexity
of η(ω), we introduce the graph G(V,E) concept in Defini-
tion 3.1. The problem of determining whether two vertices
in G(V,E) are connected can be solved efficiently using a
search algorithm, such as breadth-first search. More gener-
ally, it is easy to determine computationally whether a graph

Figure 2. The change from subfigure (a) to (c)
shows one refinement step in 3D space. Sub-
figures (b) and (d) are the projections of (a)
and (c) on X-Y plane.

is connected by counting the number of connected compo-
nents. An undirected graph connectivity can be solved in
O(log k) space [20].

In conclude, the reduction from SA to OSD is converted
by a polynomial time computable function η(ω). The NP
hardness of OSD is proved.

4.2. Foresighted Refinement Algorithm

Since the OSD problem is NP-hard, we propose a heuris-
tic algorithm to solve it approximately. We call it fore-
sighted refinement algorithm (FRA). FRA is a coarse-to-
fine process of repeatedly adding new nodes with connec-
tivity plan. FRA computes the spatial distribution of k CPS
devices on the X-Y plane and approximates virtual surface
of environment in 3D space. We then introduce several ma-
jor components of FRA.

Local error: It is the vertical error (distance on Z axis)
between the node and the generated triangles in R

3 as
shown in Fig. 2(a). The value of local error for a position
(xi, yi) is computed by |f(xi, yi) − DT (xi, yi)|. Each po-
sition has only one local error value. When new triangles
generated by interpolation method, the local errors are up-
dated for each position as shown in Fig. 2(b). In [9], Gar-
land et al. compare among local error, global error, curva-
ture and product measure by surface approximation experi-
ments. They find that local error based method is the sim-
plest to implement, produce more accurate results than any
others, and is faster than all but curvature measure. Thus,
we settle on the local error measure for FRA.

Delaunay triangulation: It is a planar triangulation
method. For example, in Fig. 2(c), when node D is selected
to add in Δ ABC, Delaunay rules re-triangulate ABCD as
shown in Fig. 2(d). Then, mapping the triangulation pattern
to 3D space can approximate surface as shown in Fig. 2(b).

182182

Foresighted Refinement Algorithm (FRA)
Input:
region A, referential surface f(x, y), number k, range Rc

Output:
Vp[k][2] recording the positions of k vertices (xi, yi)
Notation:
Err[
√

A][
√

A]: local error array of A
Dt(i): Delaunay triangulation with i selected vertices
G(i, R): create a G(V, E) with i vertices and edge < R
C(G): count the number of unconnected subgraphs in a G
L(G, r): derive the least number of nodes satisfying to make
the graph G connected, where each node has r radius
P(G, i): the positions (x, y) of i vertices to make G connected
Main process:
1: Initialize A into 2 triangles by link (0,0) and (

√
A,
√

A)

2: for i = 0...
√

A, j = 0...
√

A {
3: Err[i][j]← |f(xi, yj)−DT (xi, yj)| }
4: for i = 0...k {
5: if C(G(i, Rc)) > 1
6: if (k − i) == L(G(i, Rc), Rc)
7: Vp[i...k][2]←positions (x, y) by P (G(i, Rc), k−i)
8: break
9: Vp[i][2]← (x, y) that has max(Err[x][y])
10: Dt(i)
11: update(Err[

√
A][
√

A]) due to new triangles generated}

Table 1. Foresighted Refinement Algorithm

Due to the space limitation, detail rules, algorithm and ad-
vantages of Delaunay triangulation can be found in [13].

Refinement method: There are two steps in each itera-
tive refinement process. The first step is to select one node
(xi, yi, f(xi, yi)) in R

3 (corresponding position (xi, yi) on
X-Y plane) that has maximal local error value as node D in
Fig. 2(a) and (c); the second step is to generate new triangles
obeying the Delaunay rules as shown in Fig. 2(b) and (d).
After local errors updated, the refinement process repeats in
all the left positions until end condition reached.

Connectivity guarantee: Only the refinement method
cannot promise the connectivity, we propose a foresight step
to guarantee a connected G(V,E) on X-Y plane. Before se-
lecting the i-th (0 < i < k) position, our algorithm counts
the number of connected subgraphs and then compute the
required number of nodes, which can connect these sub-
graphs by Rc edge. This foresight step is inserted in front
of two steps of refinement and these three steps iterate to-
gether. When the number (k − i) of left nodes is more than
sufficient, it runs the next refinement steps. When the num-
ber (k − i) achieves the critical number for connecting the
subgraphs, all the (k − i) nodes are used to link the sub-
graphs into one connected network. In practice, this fore-
sight step is carried out by prim algorithm that searching
the minimum cost spanning tree in G(V,E).

With above four components, FRA executes as follows.

The initial state is required to divide the square region A
into two triangles by one diagonal, and FRA computes all
(
√

A ×
√

A) positions’ local errors. First, the foresighted
step runs to guarantee the connectivity if the position se-
lection keeps on. Second, the position having maximum
local error is selected. Third, the Delaunay step executes to
generate more refined triangles in plane and to approximate
surface in 3D surface. The loop of these three steps ends
until k positions is selected. Consequently, the given k CPS
nodes are spatially distributed at the determined k positions.
The pseudocode of FRA is in the Table. 1.

5. Dynamic Spatio-Temporal Distribution

In real world, most environment conditions are not only
spatial-varying but also time-varying, such as temperature
and light. Consider the CPS nodes having movement capa-
bility, then they can adjust their spatial locations to collect
the ’key’ data for environment abstraction over time. With-
out the referential historical data, the centralized algorithm
is not available for this system, in respect that it requires lots
of transmission and results in much time delay on collecting
sensing data and dispatching movement command. In this
section, we study a distributed and dynamic spatio-temporal
distribution method on mobile nodes, which demands the
nodes knowing only their local information.

5.1. Curvature-Weighted Pattern

Curvature is a common measurement for curve in 2D and
surface in 3D. In computer vision, mass of the comparison
experiment results [10] [18] show that the curvature based
method is the fastest in surface approximation and its per-
formance is reasonable. The property of fast computation is
also much significant in our OSTD problem, which requires
a fully distributed system. In addition, curvature data can be
obtained locally. Thus, we settle on the curvature measure-
ment for environment exploration by nodes distribution.

The curvature-weighted distribution (CWD) in 3D space
is much more complex than the one in 2D. One of the rea-
son is that the nodes is distributed on a X-Y plane instead
of a horizontal axis. The leverage system does not focus
on only the left and right nearest neighbors any more, but
balances all the curvature weights of single-hop neighbors.
Another reason is that the difficulty on the interval control
between any pair of neighbor nodes. The distance should
take account of the balance leverage system, the connectiv-
ity of network and global region scale.

To help understand, we provide an example in Fig. 3 to
show the CWD in R

3. The region A is a 100 × 100 square
on X-Y plane, and the Z axis is to record the sampled data
corresponding any position in A. Denote the distance be-
tween ni and nj as d(ni, nj). The curvature of node ni is

183183

Figure 3. Comparison: topology graphs of
using 16 nodes to approximate a surface
(Peaks(100) function in Matlab) in R

3 by uni-
form distribution and curvature-weighted dis-
tribution pattern

denoted by G(n′
i). The virtual surface is the visualized en-

vironment distribution in 3D space. The surface in Fig. 3(a)
is plotted by standard function Peaks(100) in Matlab. We
set the communication range of nodes to be Rc = 30. Any
pair of nodes are connected by an edge, when their distance
is less than Rc. If two nodes are connected directly, we call
them single-hop neighbors.

Then, 16 CPS nodes are used to approximate the
Peaks(100) surface. Fig. 3(b) shows the birdview towards
the X-Y plane with the topology graph that the 16 nodes
follow the uniform distribution. On the contrary, when the
16 nodes follow the CWD on the plane, the result is shown
as Fig. 3(c). The 16 nodes ni(i = 1, 2...16) in Fig. 3(c)
obey the three following requirements. First,

∑
∀j,|d(ni−nj)|≤Rc

−→
d (ni, nj)G(n′

j) = 0. (9)

i.e., each node serves as a pivot to balance the curvature
weights of all its single-hop neighbors. Second, in order to
enlarge the topology graph fully covering the region, there
must exist several nodes whose communication range can
cover the borders of the square region. Hence, the distance
between nodes can be controlled by the limitation of above
two requirements. Third, for obtaining the unique solution,
the combination of the 16 nodes’ positions satisfies that the
sum of their curvatures is the maximum among all combi-

nations computed by first and second requirements.

max(
16∑

i=1

G(n′
i)). (10)

We can find that in Fig. 3(c), the nodes followed CWD
outline the surface obviously more clear than those in
Fig. 3(b). Hence, we can know that using the CWD sampled
data, the result after interpolation is also more approaching
the surface than that interpolated under sample data follow-
ing uniform distribution in R

3.

5.2. Movement Planing

When the global information is known, the CWD of CPS
nodes can be achieved as above analysis. However, there is
no referential data in practice due to the time-varying envi-
ronment, a node has to determine its movement by its local
information. In this scenario, there are three challenges for
achieving CWD: How does a node compute its curvature lo-
cally by the sampled data? How does a node determine the
movement to a position, which can balance the curvature
weights of its nearest neighbors? How to keep the connec-
tivity of the network during the movement process?

Gaussian curvature is used to express the curvature of a
node on 3D surface [15]. For computing G(n′

i) locally, we
define that the Gaussian curvature is the variance ratio of
environment condition in the region, i.e., the variance ratio
of surface in R

3.
A CPS node collects data in Rs, thus it can get data of

m =
πR2
s� positions. We use the m nearest-neighbors

method to compute the G on CPS device.
The Gaussian curvature is defined G = g1 · g2, where

g1, g2 are the principal curvatures. For computing the value
of g1 and g2, the m nearest-neighbors method provides a
formula ax2+bxy+cy2 = z and substitutes the m sampled
data for deriving a, b and c firstly. We get a matrix equation

⎡
⎢⎢⎢⎣

x2
1 x1y1 y2

1

x2
2 x2y2 y2

2
...

...
...

x2
m xmym y2

m

⎤
⎥⎥⎥⎦

⎡
⎣a

b
c

⎤
⎦ =

⎡
⎢⎢⎢⎣

z1

z2

...
zm

⎤
⎥⎥⎥⎦ . (11)

Even Rs is 1 unit distance, m > 3. Thus, the Eqn. 11 is
an overdetermined set. The least squares method is usually
used to find an approximate solution to overdetermined sys-
tems. (About detail solution procedures for overdetermined
system, we can see [3].) Then, we get the approximating
value of a, b and c. According to the m nearest-neighbors
method, the relationship of g1, g2 and a, b, c is

g1 = a + c −
√

(a − c)2 + b2, (12)

g2 = a + c +
√

(a − c)2 + b2. (13)

184184

Through above procedures, the Gaussian curvature can be
computed by a CPS node with sensing range Rs in practice.

Virtual force is developed for solving the problem that
a node determines its movement with the distance change
between neighbors and itself [21]. We know that the move-
ment is the effects of forces in real world. In order to con-
trol the CPS nodes to move, we design three kinds of virtual
forces as follows.

First, the attraction force
−→
F1 is generated by the high-

est curvature position in sensing range of a node. In order
to approach the result of Eqn. 10, each node is required to
move to the position with the high curvature. A node ni

can sense data and compute the Gaussian curvature in its
sensing range Rs. Denote pc as the position with highest
curvature in Rs of ni. Then this attraction

−→
F1 is measured

−→
F1 =

−→
d (ni, pc) · G(p′c). (14)

From Eqn. 14, we find that the higher the curvature, the big-
ger the

−→
F1 is. Moreover, when the distance between ni and

pc becomes shorter by the effect of force on ni,
−→
F1 becomes

smaller itself. Hence,
−→
F1 can pull ni close to the high cur-

vature position until
−→
F1 → 0.

Second, the attraction force
−→
F2 is produced by the single-

hop neighbors in the communication range. We define
that each neighbor nj provides ni an attraction, which is
−→
d (ni, nj) · G(n′

j). Assume ni has q neighbors in Rc, the

resultant force of
−→
F2 exerting on node ni is

−→
F2 =

q∑
j=1

−→
d (ni, nj) · G(n′

j). (15)

When the position of ni is not at the balance pivot of the cur-
vature weights of all single-hop neighbors,

−→
F2 is produced

on ni. According to Eqn. 9,
−→
F2 pulls ni toward the pivot

position until
−→
F2 → 0.

The total attraction
−→
Fa forces on a node is

−→
Fa =

q∑
j=1

−→
d (ni, nj) · G(n′

j) +
−→
d (ni, pc) · G(p′c). (16)

Third, the repulsion force is produced for distance con-
trol. If there is only the attraction, the nodes would come
into together. In order to avoid this undesirable case, we
design the repulsion as

−→
Fr =

q∑
j=1

(Rc −
−→
d (ni, nj)). (17)

The shorter the distance between ni and nj is, the bigger
the repulsion is. When the repulsion makes ni and nj push
each other away, it becomes smaller until the pair of nodes

Figure 4. Local connectivity mechanism
when n1 moves to the arrowhead position

are out of Rc. Then,
−→
Fr is the sum of repulsion from all

single-hop neighbors.
The resultant force of all virtual forces is

−→
Fs =

−→
Fa + β

−→
Fr. (18)

where β is a empirical constance to describe the weights of−→
Fa and

−→
Fr. The force

−→
Fs determines the movement direc-

tion of ni.
−→
Fs is time-varying and space-varying. When the

virtual forces are balanced,
−→
Fs = 0, ni stops moving. If all

nodes in the network are balanced, then CWD is achieved.
Local connectivity mechanism: Assume that in the ini-

tial state, all the nodes are connected. When any node
moves, if its former single-hop neighbors and itself can still
link to the whole network, then the connectivity of all nodes
is promised. In order to realize this dynamic connectivity,
we design the local connectivity mechanism (LCM).

A typical example of LCM process is shown in Fig. 4.
In Fig. 4(a), n1 plans to move to the arrowhead position.
The dash cycle is communication disk of n1 with radius
Rc. In this disk, the single-hop neighbors of n1 includes
n3, n4, n5. The node n2 is outside the disk of n1. It exists
edge between any pair of nodes whose distance is no more
than Rc. In Fig. 4(b), the node n1 has moved to the desti-
nation position. The nodes n3 stay in situ, furthermore, it
keeps its connection with n1 due to d(n1, n3) ≤ Rc. The
node n4 stay in situ as well. Although the connective edge
between n1 and n4 breaks, n4 can connect to n1 by n3. If
the node n5 stay in situ, it cannot connect to n1. Hence, n5

moves with n1 together and keeps d(n1, n5) = Rc. The
node n2 becomes a new single-hop neighbor of n1, due to
d(n1, n2) < Rc after the moving of n1.

When the initial state is global connected, e.g., the grid
distribution in Fig. 3(b), and the LCM is executed on all
nodes, then the network will keep the dynamic connectivity.

5.3. Coordinated Movement Algorithm

As the methods described in section 5.2, we propose
a coordinated movement algorithm (CMA) to realize the

185185

Coordinated Movement Algorithm (CMA) on node ni

Input:
range Rc, range Rs, border of region A, β
Notation:
Sense(Rs): sense location xm, ym and data zm in range Rs

M[m][3]: array recording xm, ym, zm of m positions
LS(M[m][3]): least square method to compute G(n′

i)

CdG(ni, M[m][3]): function to compute
−→
d (ni, nm), G(n′

m)

MdG[m][2]:array recording
−→
d (ni, nm), G(n′

m)
Tx(ni): transmit (xi, yi) and G(n′

i) to single-hop neighbors
Rx(nj): receive (xj , yj) and G(n′

j) from single-hop neighbors
N[q][3]: array recording xj , yj , G(n′

j) of q neighbors

NdG[q][2]: array recording
−→
d (ni, nj), G(n′

j)
tell(nd,N[q][3]): transmit nd and N[q][3] to one hop neighbors
Rxtell(): receive other’s tell(,) and store into nd2 and N2[q][3]
Main process:
1: while True {
2: M[m][3]←Sense(Rs)
3: G(n′

i)←LS(M[m][3])
4: Tx(ni)
5: N[q][3]←Rx(nj)
6: MdG[m][2]← CdG(ni, M[m][3])
7: pc ← position with max(G(n′

m)) in MdG[m][2]

8:
−→
F1 ←

−→
d (ni, pc) ·G(p′

c)
9: NdG[q][2]← CdG(ni, N[q][3])

10:
−→
F2 ←

∑q
j=1

−→
d (ni, nj) ·G(n′

j)

11:
−→
Fr ←

∑q
j=1(Rc −

−→
d (ni, nj))

12:
−→
Fs ← (β

−→
Fr +

−→
F1 +

−→
F2)

13: if(
−→
Fs == 0) {

14: stop(ni)

15: else if (|−→Fs| > 0) {
16: nd ← (x, y) with

−→
Fs direction and Rs distance to ni

17: tell(nd,N[q][3])
18: move(ni) to nd}}
19: nd2,N2[q][3]←Rxtell()
20: if (!(ni connects nd2 directly or by nj2 ∈N2[q][3])) {
21: move(ni) to make |−→d (ni, nd2)| = Rc}}

Table 2. Coordinated Movement Algorithm

movement planning on CPS nodes. This algorithm executes
fully distributed. Only the information sensed by node and
received from single-hop neighbors are required in CMA. A
node with CMA determines its movement locally and all the
CPS nodes move cooperatively due to curvature weighted
distance between neighbors. The detail CMA algorithm is
provided in Table 2.

In Table 2, line 2-12 is the part for computing the re-
sultant force by local information. There are two cases for
ni to move by CMA. First, line 13-18, the node determines
its stop or movement by resultant force

−→
Fa. Second, line

19-21, this movement is determined by the LCM.

Theorem 5.1. The time complexity of CMA on each node

is O(m + q).

Proof. In CMA, the complexity of computing the Gaus-
sian curvature by m nearest neighbors method is O(m).
Then, the complexity of computing the virtual forces from q
single-hop neighbors is O(q) and the LCM is O(q) as well.
The other computation is O(1) on time complexity. There-
fore, the total time complexity of CMA is O(m + q).

6. Performance Evaluation

6.1. Simulation Setting

To evaluate our proposed algorithms under a realistic set-
ting, we make use of the real data of GreenOrbs project. In
this project, 1000+ TelosB sensor nodes are deployed in a
nearly 20,000 square meters forest in Lin’an, China since
July 2008. The nodes monitor the environment conditions
including temperature, illumination and humidity and re-
port once per hour. The data is published online [22] and
updated daily.

The simulations are based on the data of GreenOrbs. The
referential environment is generated by the light (KLux)
data in a square region (100×100m2) at 10:00 AM on Nov
24, 2009. For visualization, the light condition in this re-
gion is plotted by Matlab. We provide the birdview toward
the X-Y plane and the virtual surface view in 3D space in
Fig. 1. The CPS nodes are scattered in the region of inter-
est and sense the light data. When the nodes are deployed
or moved to the positions determined by the proposed algo-
rithms, their sensing data are used to approximate the virtual
surface by Delaunay triangulation methods. The communi-
cation range of the node is set Rc = 10m, and the sensing
range is set Rs = 5m.

The performance of FRA is evaluated to solve the OSD
problem. We measure the δ (difference between referen-
tial and rebuilt surface, computed as Eqn. 2) varying with
k increasing from 1 to 200. In WSN study, the random de-
ployment of nodes is a widely used method, thereby, we
compare the performance of δ between random and FRA
distribution. For the OSTD problem, the procedure and per-
formance are shown when 100 nodes moving with CMA.
Set the maximal velocity of mobile node is v = 1m/min,
and β = 2, we measure δ varying with t.

6.2. Performance Analysis

Spatial distribution: In Fig. 5, we see the performance
of environment abstraction by FRA when the number of
nodes k = 30. The spatial distribution of 30 nodes can be
found in the birdview graph. In Fig. 5(a), only a few nodes
serve as the abstraction task, however, the other of them are
used to organize a connected network due to the connectiv-
ity constraint. Compared to Fig. 1(b), the general shape of

186186

Figure 5. Rebuilt surface by FRA, k = 30

Figure 6. Rebuilt surface by FRA, k = 100

Figure 7. δ comparison between FRA and ran-
dom distribution of k stationary nodes

the environment can be rebuilt in Fig. 5(b). On the contrary,
many detail fluctuations are lost.

When k = 100, the performance of FRA is shown in
Fig. 6. Fig. 6(a) exhibits the topology of the CPS network.
Since the number of nodes are adequate for connectivity,
most nodes can be distributed in the positions with high lo-
cal errors. Hence, the result of virtual surface in Fig. 6(b)
is much better and smooth than that in k = 30. Almost all
tiny fluctuations are illustrated compared to Fig. 1(b).

On account of the above typical examples, we plot Fig. 7,
which indicates the change of δ with k varying from 1 to
200. The effects of CMA is obviously better than random
distribution of nodes when k < 125. When k ≥ 125, both
’CMA’ and ’random’ curves converge into a nearly constant
δ value, the reason is that the total coverage of these nodes
are almost fully cover the region. Hence, the abstraction

Figure 8. Rebuilt surface by CMA, t = 10 : 00

Figure 9. Rebuilt surface by CMA, t = 10 : 25

Figure 10. δ measurement varying with time
when 100 mobile nodes using CMA

approximates the real environment.
The OSD simulation demonstrates that the FRA ap-

proach is efficacy in environment abstraction when the num-
ber of CPS nodes are finite. And it is better than usual
method in spatial distribution scenario.

Spatial temporal distribution: Fig. 8 and 9 describe
the movement procedure of 100 nodes with CMA and their
performance of environment abstraction. For the connec-
tivity constraint at the initial state, we assume that the 100
nodes are grid distribution and know no global information
as shown in Fig. 8(a). After 5 minutes, the positions of the
nodes change. Fig. 9(a) illustrates the distribution of the
nodes at 10:25. The nodes barely move since they almost
stay at the positions with curvature-weighted balance. The
rebuilt virtual surfaces are shown in Fig. 8(b) and 9(b), the
effects trend to approximate the detail shape of the referen-

187187

tial surface gradually.
Consider the detail spatial temporal distribution proce-

dure and the convergency delay of CMA, we draw Fig. 10.
With t varying from 10:00 to 10:45, the nodes move to
achieve the CWD and converge from 10:30. And δ de-
creases gradually. Compare to the FRA’s performance, the
CMA’s is a little worse. This result is logical since the dis-
tributed algorithm CMA has only local information. How-
ever, when the nodes are at their convergent positions, the
CMA’s performance of δ is only 16% more than FRA’s.

The OSTD simulation verifies the feasibility and effi-
ciency of CMA for approximating environment by move-
ment of nodes when the global information is unknown.

7. Conclusion

In this paper, the problem of optimizing the spatio-
temporal distribution of CPS devices is studied. This is a
fundamental problem in approximating and rebuilding the
physical environment with finite sensing resources. We for-
mulate it as an optimal planning problem of k positions with
connectivity constraint. Then, we derive and develop the
solution for the spatial distribution of stationary nodes and
the spatio-temporal distribution of mobile nodes. Real data
based simulation is used to verify the efficacy and efficiency
of proposed approaches.

Since the optimal spatio-temporal distribution of CPS for
environment abstraction is a relatively new concept, several
respects still remain to be improved. First, we assume the
environment is a convex surface. However, the real world
is more complex such as concave surface cases. Second,
this work focuses on point sampling. In order to save more
CPS nodes and abstract accurately, trace sampling of mobile
nodes is worth to further study.

Acknowledgment

This research was partially supported by NSF of China
under grant No. 60773091, 973 Program of China under
grant No. 2006CB303000, Key Program of National MIIT
under Grants no. 2009ZX03006-001 and 2009ZX03006-
004. Our shepherd, Yunhao Liu, Zhi Li and Yanmin Zhu
gave us highly valuable comments to improve the paper.

References

[1] P. Agarwal and S. Suri. Surface Approximation and Geo-
metric Partitions. ACM-SIAM Symposium on Discrete Algo-
rithms, 1994.

[2] I. Akyildiz, W. Su, Y. Sankarasubramaniam and E. Cayirci.
Wireless Sensor Networks: A Survey. Computer Networks
Journal, 2002.

[3] H. Anton and C. Rorres. Elementary Linear Algebra (9th
ed.). John Wiley and Sons, Inc., 2005.

[4] X. Bai, D. Xuan, Z. Yun, T.H. Lai and W. Jia. Com-
plete Optimal Deployment Patterns for Full-Coverage and
k-Connectivity (k ≤ 6) Wireless Sensor Networks. ACM
MobiHoc, 2008.

[5] R. Bar-Yehuda and C. Gotsman. Time/space Tradeoffs for
Polygon Mesh Rendering. ACM Transactions on Graphics
(TOG), 1996.

[6] M. de Berg, M. van Kreveld, M. Overmars and O.
Schwarzkopf. Computational Geometry: Algorithms and
Applications. Springer, 1997.

[7] N. Correll, A. Bolger, M. Bollini, B. Charrow, A. Clayton,
F. Dominguez, K. Donahue, S. Dyar, L. Johnson, H. Liu, A.
Patrikalakis, J. Smith, M. Tanner and L. White. Building a
Distributed Robot Garden. IEEE/RSJ IROS, 2009.

[8] J. Eriksson, H. Balakrishnan and S. Madden. Cabernet: Ve-
hicular Content Delivery Using WiFi. ACM MOBICOM,
2008.

[9] M. Garland and P. Heckbert. Fast Polygonal Approximation
of Terrains and Height Fields. Technical Report, Carnegie
Mellon U, 1995.

[10] P. Heckbert and M. Garland. Survey of Polygonal Surface
Simplification Algorithms. ACM SIGGRAPH, 1997.

[11] E. A. Lee. Cyber-Physical Systems - Are Computing Foun-
dations Adequate? In Position Paper for NSF Workshop On
Cyber-Physical Systems: Research Motivation, Techniques
and Roadmap, 2006.

[12] E. A. Lee. Cyber-Physical Systems: Design Challenges.
Technical Report UCB/EECS-2008-8, 2008.

[13] D. Lee and B. Schachter. Two Algorithms for Constructing
a Delaunay Triangulation. International Journal of Parallel
Programming, 1980.

[14] J. Luo, D. Wang and Q. Zhang. Double Mobility: Cover-
age of the Sea Surface with Mobile Sensor Networks. IEEE
INFOCOM, Brazil, 2009.

[15] D.S. Meek and D.J. Walton. On Surface Normal and Gaus-
sian Curvature Approximations Given Data Sampled from a
Smooth Surface. Computer Aided Geometric Design, 2000.

[16] Y. Mei, Y. Lu, Y. Hu and C. Lee. Deployment of Mobile
Robots with Energy and Timing Constraints. IEEE Trans-
actions on Robotics, 2006.

[17] L. Mo, Y. He, Y. Liu, J. Zhao, S. Tang, X. Li and G.
Dai. Canopy Closure Estimates with GreenOrbs: Sustain-
able Sensing in the Forest. ACM Sensys, 2009.

[18] S. Susca, F. Bullo and S. Martinez. Monitoring Environ-
mental Boundaries with a Robotic Sensor Network. IEEE
Transactions on Control Systems Technology, 2008.

[19] G. Werner-Allen, K. Lorincz, J. Johnson, J. Lees and M.
Welsh. Fidelity and Yield in a Volcano Monitoring Sensor
Network. USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI), 2006.

[20] DB. West. Introduction to Graph Theory (2nd Edition). Pub-
lished by Prentice Hall, 2001.

[21] Y. Zou and K. Chakrabarty. Sensor Deployment and Tar-
get Localization Based on Virtual Forces. IEEE INFOCOM,
2003.

[22] GreenOrbs project.
Offical website: http://greenorbs.org/
Data publish page: http://orbsmap.greenorbs.org/

188188

