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Abstract — Large-scale computing systems such as data 

centers are facing increasing pressure to cap their carbon 

footprint. Integrating emerging clean energy solutions into 

computer system design therefore gains great significance in 

the green computing era. While some pioneering work on 

tracking variable power budget show promising energy 

efficiency, they are not suitable for data centers due to lack 

of performance guarantee when renewable generation is 

low and fluctuant. In addition, our characterization of wind 

power behavior reveals that data centers designed to track 

the intermittent renewable power incur up to 4X 

performance loss due to inefficient and redundant load 

matching activities. As a result, mitigating operational 

overhead while still maintaining desired energy utilization 

becomes the most significant challenge in managing server 

clusters on intermittent renewable energy generation. In this 

paper we take a first step in digging into the operational 

overhead of renewable energy powered data center. We 

propose iSwitch, a lightweight server power management 

that follows renewable power variation characteristics, 

leverages existing system infrastructures, and applies 

supply/load cooperative scheme to mitigate the performance 

overhead. Comparing with state-of-the-art renewable 

energy driven system design, iSwitch could mitigate average 

network traffic by 75%, peak network traffic by 95%, and 

reduce 80% job waiting time while still maintaining 96% 

renewable energy utilization. We expect that our work can 

help computer architects make informed decisions on 

sustainable and high-performance system design. 

1. Introduction 

Today, cloud computing is redefining the IT 

infrastructure. Data centers have become essential to the 

operation of businesses, academic, and governmental 

institutions. Nevertheless, the power-provisioning problem 

is challenging data center designers, as the environmental 

impact of IT becomes a growing concern worldwide. It has 

been shown that worldwide data centers run the risk of 

doubling their energy consumption every 5 years [1]. In a 

recent report on the carbon impact of cloud computing, the 

environmental activist group Greenpeace called on data 

center operators to make renewable energy a priority as 

more data centers are being built to meet the cloud needs [2]. 

In addition, the government also imposes a “carbon tax” on 

energy-hungry IT companies while giving federal tax credit 

(e.g., 30% to the total cost) for using renewable energy. 

Consequently, there has been an increasing push towards the 

vision of renewable energy powered sustainable computer 

system design.  

In this study, we investigate an emerging data center 

design scheme that integrates on-site renewable energy 

sources into the data center infrastructure. Such a design 

scheme has recently drawn considerable attention as the IT 

industry is starting to assume responsibility for supporting 

long-term computing system sustainability. Internet giants, 

such as Google, Microsoft and Yahoo! all power part of their 

data centers using renewable energy resources. Using grid 

utilities as backup, many Web Hosting service providers 

power their data centers with on-site renewable energy 

sources as well [3, 4, 5, 6]. With those green computing 

initiatives, each data center is able to eliminate nearly 20,000 

lbs or more carbon dioxide emission per year [3, 4].  

While many research efforts are focused on reducing 

idle server power [7], lowering provisioned power capacity 

[8], and optimizing power allocation [9, 10, 11], designing 

renewable energy powered data centers is still challenging 

and requires careful exploration. Due to the intermittent 

nature of renewable energy, existing designs typically use 

on-site renewable generation to compensate part of their 

total data center power requirement. When renewable 

energy contributes a large portion of the load power demand 

(e.g., > 15%), variations in renewable power supply have a 

significant impact on load operation [12]. Existing power 

management schemes miss the opportunity to harvest 

renewable generation since they typically assume a fixed 

and predictable power supply and cannot handle the power 

variation gracefully. Recent proposals leverage load tuning 

mechanisms (e.g. DVFS, CPU power states) to track the 

renewable power variation [13, 14] but incur unnecessary 

load tuning activities. Over-tuning of the load power 

degrades system response time and provides very limited 

efficiency return.  

Figure 1 shows the tradeoff we found between power 

tuning overhead and energy utilization. The evaluated 

system tracks the renewable power budget whenever 

renewable generation decreases (to avoid brownout); it 

tracks the power supply surge with a pre-defined coverage 

factor (CF). As shown in Figure 1-a, compared to 

no-tracking (i.e., CF=0), always tracking the power variation 

(i.e., CF = 1) increases the load tuning overhead by 2X. 

Nevertheless, the range of energy utilization return is less 

than 15%, as shown in Figure 1-b. 



   

 

  
(a) Normalized control overhead (b) Average energy utilization 

Figure 1: Power management overhead vs. renewable energy utilization. Always tracking the power surge shows less than 
15% energy utilization improvement but experiences 2X control overhead, which affects execution latency, downtime, and 
efficiency. Both figures show average value across four different renewable energy sites which are detailed in Section 6 
 

In this paper, we explore the design tradeoffs between 

energy utilization and load tuning overhead in renewable 

energy driven computing systems. We propose iSwitch, a 

power management scheme that maintains a desirable 

balance between renewable energy utilization and data 

center performance. The novelty of our design is two-fold. 

First, iSwitch is a supply-aware power management scheme.  

It applies the appropriate power management strategy for 

wind variation scenarios to achieve the best design tradeoff.  

Second, iSwitch has a built-in supply/load cooperative 

optimization mechanism that is able to minimize the 

performance degradation due to load power tuning overhead 

while still maintaining high renewable energy utilization and 

low cost. Although we describe our design in the context of 

wind power supply, it applies to a variety of intermittent 

renewable energy sources. 

This paper makes the following contributions: 

 Design: We propose iSwitch control architecture, an 

application-independent hierarchical load tuning scheme 

that leverages load migration to best utilize the renewable 

energy generation. 

 Characterization: Our characterization of renewable 

power variability and data center load fluctuation reveals 

that power tracking can be done in a less frequent, 

light-weight manner. In this case, we can significantly 

reduce the load tuning overhead with negligible efficiency 

degradation.  

 Optimization: We propose supply/load cooperative 

optimization that not only avoids redundant load tuning 

activities invoked by severe renewable power supply 

variation, but also minimizes unnecessary power control 

activities invoked by stochastic data center load 

fluctuation. Compared to the state-of-the-art renewable 

energy-driven designs, iSwitch could reduce job waiting 

time by 80%, mitigate average network traffic by 75%, 

and rush hour traffic by 95%. Moreover, iSwitch still 

maintains 96% of the energy efficiency.  

The rest of this paper is organized as follows: Section 2 

provides background and motivation. Section 3 

characterizes wind power variation. Section 4 presents an 

overview of iSwitch and its control architecture. Section 5 

introduces the two key constituents of iSwitch optimization. 

Section 6 describes our evaluation framework. Section 7 

presents experimental results. Section 8 discusses related 

work and Section 9 concludes the paper. 

2. Background and Motivation 

 Renewable energy supply (RES) is drawing growing 

attention in today’s IT industry. In this section, we describe 

the motivations of renewable energy driven design and 

discuss why conventional solutions limit the development of 

sustainable IT. 

2.1. Renewable Energy Driven Design 

 In spite of the intermittent nature of renewable energy 

sources, designing renewable energy powered data centers 

has many benefits beyond low carbon footprint. For 

instance, renewable power supplies are highly modular in 

that their capacity can be increased incrementally to match 

the gradual load growth [15, 16]. This greatly reduces the 

over-provisioning loss of a data center since it takes a long 

time for the server load to catch up with the upgraded 

provisioning capacity. In addition, the latency between 

initiation and construction (a.k.a. construction lead-time) of 

renewable generation is significantly shorter than that of 

conventional power plants, reducing the financial and 

regulatory risks [15]. Moreover, the price and availability of 

renewable resources remain stable, simplifying long-term 

planning for IT companies [15, 17]. 

2.2. Problem with Conventional Solutions 

Conventionally, extra-scale battery farms can be used to 

regulate renewable power supply fluctuation. Such approach 

requires additional large capital investment and is not 

energy-efficient: the round-trip energy loss of batteries 

ranges between 5%~25% [18]. Furthermore, frequent 

charging and discharging the battery accelerates its aging 

and quickly wears it out [19]. This will further increase the 

environmental burden (i.e. recycling problem) and the 

downtime for maintenance. 

Alternatively, feedback mechanisms such as 

net-metering [20] directly connects on-site renewable 

energy source to the local utility grid to gain high power 

provisioning availability. Nevertheless, net-metering is still 

in its infancy stage and aggressively relying on it can be 

hazardous to the utility operation. This is because grid 

operators are forced to switch their power stations frequently 

between operation and spinning standby modes to meet the 

unexpected feedback power surge. In addition, to ensure 

stability, the maximum renewable power penetration of the 
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transmission line also has a limit [15]. In the foreseeable 

future, these problems can be a major hurdle for going green. 

Waiting for the grid to be “smart” will unnecessarily delay 

the long-term goal of sustainable IT. 

The motivation of this work is that the IT facility itself 

can be an enabler of sustainability and efficiency. Instead of 

adding additional power provisioning units and server 

clusters, our technique leverages existing data center 

infrastructure and load migration mechanisms to manage the 

time-varying renewable power. As an alternative to entirely 

relying on power grid or energy storage, we exploit 

intelligent data center self-tuning to manage the IT power 

provisioning. By reducing the dependence on large-scale 

batteries and utility power grids, our design improves data 

center sustainability with low cost while providing the 

operators with more active control of their server clusters.  

3. Implications of Wind Power Variability and 

Intermittency 

 While the importance of managing renewable energy 

intermittency is recognized by recent studies [13, 14], 

characterizing power variation behavior is still an 

unexplored area in the context of data center design. In this 

study we primarily focus on wind power variation since 

wind energy is cheaper and is also the most widely used 

renewable power technique for large scale facilities [15]. In 

this section, we first discuss wind power characteristics. We 

then demonstrate three critical power management problems 

in wind energy driven data centers and the associated 

optimization opportunities. 

3.1. Wind Power Characteristics 

 A wind turbine generates electrical power by extracting 

kinetic energy from the air flow. While operating, the 

turbine converts wind energy to mechanical power through a 

rotor with multiple blades. Figure 2 shows the output 

characteristics of a GE wind turbine, whose power curve is 

divided into three regions by the designated operating wind 

speeds. The cut-in speed is the minimum speed at which the 

rotor and blade starts to rotate. The cut-off speed is the wind 

speed at which the turbine ceases its generation and shuts 

down for protecting the blade assembly. 

 In Figure 2, we refer to the three regions as intermittent 

power outage period (Region-I), variable power generation 

period (Region-II) and stable power generation period 

(Region-III), respectively. In Region-I, wind power is 

intermittently unavailable because the wind speed is either 

too low or too high. In Region-II, the mechanical power 

delivered to the turbine generator is given by 30.5p Av C

[15], where  is the air density, A is the swept area of the 

blades, v is the wind speed and C is called power coefficient 

factor. In Region-III, the wind turbine operates at its 

designated rated power.  

 Wind power has the highest variability in Region-II. To 

understand this, we show the probability distribution of wind 

speed in Figure 3. The variations in wind speed are typically 

described by the Weibull distribution [15]: 
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In Equation-1, k is the shape parameter, c is the scale 

parameter and v is the wind speed. At most wind farm sites, 

the wind speed has the Weibull distribution with k = 2, 

which is specifically known as the Rayleigh distribution 

[15]. As shown in Figure 3, the Rayleigh distribution 

function in Region-II is not monotonic. In this region, wind 

speed has equally high possibilities at a wide range of 

values. As a result, the wind turbine is more likely to incur 

time-varying wind speed in Region-II. In addition, the wind 

turbine output is a steep curve due to the cubic relation 

between wind power and wind speed. In this case, a small 

change of the wind speed can lead to large wind generation 

fluctuation. Therefore, the renewable power variability is 

typically significant in Region-II. 

3.2. Power Management Regions 

Figure 4 shows real traces of wind power supply and 

data center power demand. It illustrates the aforementioned 

three power generation scenarios, namely, intermittent wind 

power outage period (Region-I), low renewable generation 

with frequent fluctuation (Region-II), and full renewable 

generation with relatively stable output (Region-III). Similar 

region partition method is also applicable for intermittent 

renewable energy sources such as solar power and tidal 

power. In the following paragraphs we will discuss data 

center design considerations for each region.  

Region-I: tune wisely. During the low generation 

period (i.e. Region-I), it is wise to shift data center load from 

renewable energy supply side to utility power. To tune the 

load power footprint, existing practices either put servers 

into low power states or apply power cycling techniques [14] 

on the hardware. Although these approaches show 

impressive power control capability, they sacrifice the 

computing throughput. In addition, it typically takes a long 

time (about tens of minutes as we observed) for the 

renewable energy generation to resume. As a result, for 

mission-critical systems, putting servers into sleep state and 

waiting for the renewable energy to resume is not wise, 

especially for those parallel computing machines with 

inter-node workload dependency.  

Region-II: track wisely. Whenever the load power 

fluctuates or renewable energy generation varies, load 

matching is performed as a common practice to handle the 

power discrepancy [13, 14]. In Region-II, the wind 

generation oscillates severely. The load power tuning is 

largely a result of the power supply variation, as shown in 

Figure 4. However, aggressively matching the load to the 

supply results in little energy benefits but disturbs the 

normal server operation and degrades the performance of 

parallel workload. Therefore, seeking appropriate tracking 

timing becomes especially important. 



   

 

 

 
Figure 3: Wind speed variations in most wind farms are typically 
best described by Rayleigh distribution 
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Figure 2: Wind power output characteristics. The 
cubic relationship between power and wind speed 
increases the output variability 

Figure 4: Power variation scenarios in wind energy driven data 
centers (x-axis: minutes). Region-II and Region-III are two critical 
regions that require special care 

 

Region-III: schedule wisely. When the renewable 

energy is relatively stable, frequent load fluctuation 

contributes to a number of load tuning operations. In Figure 

4 (Phase III), although the data center power has a relatively 

small dynamic range, frequent variation invokes a large 

number of back-and-forth load migration operations. Those 

tuning activities have little contribution to the overall 

renewable energy utilization but increase network traffic 

significantly. A well designed job scheduling that mitigates 

load power fluctuation will help lower the overhead. 

We believe a renewable energy powered data center will 

frequently experience the aforementioned three power 

management regions throughout its lifetime. To improve 

overall quality of service, the best design practice should put 

the above scenarios together and provide a cooperative 

power management scheme. 
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Figure 5: iSwitch load power balancing in wind energy 
powered server clusters. It does not require increasing the 
number of servers to handle workload surge 

4. An Overview of iSwitch Architecture 

In this section we propose iSwitch, a holistic data center 

coordination and optimization scheme that ensures high 

renewable energy utilization and low operational overhead. 

As shown in Figure 5, iSwitch is designed to provide 

autonomic load power balancing between conventional 

utility grid and renewable energy generation.  

In Figure 5, the on-site renewable power supply 

provides the data center with clean energy through a separate 

power line. We choose not to synchronize renewable power 

to the grid because the fluctuating nature of renewable 

energy often challenges the grid stability [21]. On the other 

hand, although one can leverage dual-corded servers to 

utilize two power supplies simultaneously, it is not 

energy-efficient when the computing load is low [22].  In 

this study, iSwitch explores computing load migration as an 

alternative of energy source integration.  

4.1. Switching Mechanism 

The basic idea behind iSwitch is switching, or the 

operation of performing a switch. In this study, the switch is 

defined as a load migration event that leads to redistribution 

of load power between different power supplies.  

As an alternative to load power throttling, iSwitch 

intelligently shifts the computing load from one energy 

source to another to achieve best load power matching. We 

use virtual machine (VM) live migration to implement 

iSwitch since it is the most convenient way to perform load 

power shifting in a virtualized computing environment. 

Existing virtual machine power metering [23] also eases the 

monitoring and coordination of each individual VM.  

Note that in Figure 5, iSwitch does not require 

increasing the number of servers to meet the workload surge. 

In emergency scenarios, we use backup energy storage to 

temporarily support the load. According to Fan et al. [24], 

server clusters can spend more than 80% of the time within 

80% of their peak power, and 98% of the time within 90% of 

their peak power. Therefore, the chance of workload 

triggered emergency is small. In this study, we assume that 

the number of renewable energy powered servers is less than 

40% of the overall deployed machines since a data center 

typically consumes about 60% of its actual peak power [24]. 

In this case, even if the wind power is extremely low, the 

utility grid can still take over most of the load. 
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Figure 6: iSwitch global (facility-level) control Figure 7: iSwitch local (rack-level) control 

 

4.2. Control Mechanism 

 To handle the time-varying, intermittent renewable 

power, iSwitch dynamically allocates and de-allocates (i.e., 

“switches”) the renewable energy powered server load. The 

supply/load variability makes the switch tuning challenging 

since the control should 1) globally respect the time-varying 

renewable budget and 2) locally avoid any power failure 

induced by load fluctuation. To this end, iSwitch uses a 

hierarchical switching control scheme, which can be easily 

incorporated into existing hierarchical power management 

methods such as [25].  

Facility level: Figure 6 shows a global view of iSwitch 

control mechanism. The switching operation is controlled by 

a central switch controller (CSC), which communicates with 

a central power controller (a typical facility-level data center 

power controller), a switch scheduler and multiple cluster 

level switch controllers. CSC performs switch tuning based 

on the discrepancy between the load power consumption and 

the RES budget. Whenever needed, switching operations are 

scheduled by the switch scheduler, which stores profiling 

information for each server load and optimizes switching 

using load history records.  

Cluster level: The switching allocation is assigned to 

local computing nodes via cluster-level switching controllers, 

which are counterparts to PDU-level power controllers. The 

cluster-level switching controller collects switching 

outcomes (i.e., the number of switching operations 

accomplished/failed) of each local computing node and feeds 

the information to the CSC for switching scheduler updates. 

The cluster-level controller improves the manageability of 

dynamic switching and reduces the overhead of CSC 

communication traffic. 

Rack level: As shown in Figure 7, a rack-level switch 

controller executes power supply switching and sends the 

execution outcomes to the CSC via a cluster-level switch 

controller. It also interacts with the rack-level power 

controller throughout the switching process to avoid any 

brownout. For example, whenever the power consumption of 

a server rack reaches its local renewable power budget, the 

power controller will signal the rack-level switch controller 

to throttle the switching activities. In addition, the rack-level 

power controller is able to perform power capping by 

manipulating the voltage and frequency modulator of the 

server. This will prevent over-loading if power switching 

cannot handle the load surge in time. 

5. Optimizing Load Tuning Activities 

This section proposes the supply/load cooperative 

optimization scheme of iSwitch. Our technique features a 

lazy tracking scheme on the supply side and a power demand 

smoothing scheme on the load side. This cooperative 

optimization is readily supported by existing data center 

architectures and is orthogonal to other system-level control 

and workload optimizations.  

The switching scheduler is the key architecture for 

iSwitch, as shown in Figure 8. It monitors the power 

provisioning status (i.e. powered by renewable energy or 

utility grid) of each server load (i.e., VMs). All the running 

loads within each cluster are indexed consecutively in a 

switch allocation buffer (SAB). A switching history table is 

used to store the switching frequency for each load. An 

optimizer computes the optimal switching assignment and a 

tracking module initiates the switching process. 

To make load tuning decisions, iSwitch scheduler needs 

profiling information such as server utilization data from the 

load history table. The central power controller invokes 

scheduling activities in response to variations in renewable 

power supply and load power demand. Whenever necessary, 

the scheduler sends a sequence of load switching commands 

to the central switch controller for execution. 
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Figure 8: Architecture of iSwitch scheduler 

5.1. Lazy Power Supply Tracking 

The first idea of iSwitch is to avoid tracking the severely 

fluctuant renewable power in Region-II (detailed in Section 

3). Inside the scheduler, a tracking module manages iSwitch 

power tracking, as shown in Figure 8. We call it lazy tracking 

because the module only harvests the relatively stable 

renewable energy generation. Note that iSwitch carefully 

distributes the switching activities across all the loads evenly 

to avoid local traffic jam. 
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Figure 9: Histogram of switching frequency using round-robin 
virtual machine selection during load migration 

Figure 10: Optimization timeline of iSwitch. Lazy tracking is 
fine-grained and demand smoothing is coarse-grained 

 

Lazy tracking: At each fine-grained interval, when 

switching is triggered by the CSC, an estimated switching 

assignment will be sent to the scheduler for calculating the 

switch operation balance (e.g., estimated assignment minus 

the baseline). If the switch balance indicates a reduced 

number of servers to RES connection, the scheduler signals 

the CSC to schedule the estimated assignment to avoid 

brownout. On the other hand, if the switching balance 

suggests an increased number of servers to RES connection 

(e.g., due to temporally decreased load or increased supply), 

the scheduler will signal CSC only if the balance is larger 

than a preset threshold (e.g., 10% of the baseline). In this 

case, we ignore the high-frequency switching surge which 

brings little benefit on renewable energy utilization but leads 

to excessive unnecessary load migration. 

LRU distribution: Within each cluster, iSwitch 

allocates switch operations with least recently used (LRU) 

method, which avoids aggressively tuning a small set of 

computing nodes. Note that a naive switching allocation can 

result in unbalanced switching allocation. In Figure 9 we 

show the switching distribution as a result of round-robin 

scheduling. The average switching frequency is 200 times 

per day per VM. A small group of VMs receives up to 400 

times per day. As a result, some racks may incur more 

performance penalty due to high communication traffic.  

To implement LRU, iSwitch uses the switch frequency 

record stored in the switching history table. The operation of 

iSwitch scheduler relies on the load history record of the 

previous control period. This record can be implemented 

using a round-robin database (circular buffer) with constant 

storage occupation over time. Such round-robin database is 

easy to reconfigure and manage in most Linux servers with 

RRDtool [26], which is an industry standard, high 

performance data logging system. 

5.2. Load Power Demand Smoothing 

Optimizing the supply-side fluctuation alone cannot 

achieve significant overhead mitigation (detailed in Section 

7.1). To this end, iSwitch leverages the heterogeneity of 

server clusters to minimize load fluctuation-induced 

overhead in power management of region III (Section 3). 

Figure 10 illustrates the switch management timeline of 

iSwitch. The controller re-shuffles the renewable energy 

powered servers at a coarse-grained time interval R (e.g., 15 

minutes as the default value in our experiments). During 

each re-shuffling interval, the average load utilization is 

recorded in a fine-grained time interval (e.g., 1 minute) and 

is used to predict the load for the next period. Upon 

rescheduling, the optimizer in the iSwitch scheduler updates 

the baseline switch operations of each server cluster in SAB 

with the goal of mitigating the likelihood of severe load 

power fluctuation in the next control period. Each switch 

tuning invoked by CSC will be assigned based on the 

updated SAB. 

At the beginning of each control period, iSwitch 

recalculates the optimal switch assignment. To simplify the 

problem, we assume the data center servers are logically 

divided into c clusters and the load is balanced within each 

cluster (i.e., almost homogeneous server utilization). 

Let 1 2[ ]i i i icU u u u  denotes the average 

utilization of each cluster at time stamp i. The utilization 

history record for the previous control period that consists of 

m time stamps is: 
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 Assuming a total number of N  virtual machines is to be 

connected to the renewable power supply in the next control 

period. The migration decision for the next control period is

1 2[ ]k cs s s sS , where ks is the number of 

VMs selected to be tuned for cluster k. To reduce 

unnecessary load tuning in the future, we want the aggregate 

power consumption of the selected VMs to have small 

oscillations in the next control period. In other words, the 

standard deviation of the aggregate utilization should be 

minimized. The aggregate utilization is given by: 
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 In Equation-4, ia is the aggregate utilization of 

renewable energy powered load and  is the mean 

utilization during the past control period R. The re-shuffling 

problem is therefore formulated as: 

Objective:  2 2

1 1

1 1
min{ ( ) }

m m

i i

i i

a a
m m 

        (5) 

Constraints: ks N              (6) 

We solve the above non-linear minimization problem 

with simulated annealing (SA). Given the utilization history 

records, our SA solver is capable of finding the desired 

global extreme very fast. Note that the renewable power 

supply fluctuation typically occurs on a coarse-grained time 

interval (several minutes). As a result, the execution time 

(several seconds in our experiments) of SA solver does not 

affect the optimization effectiveness. At the beginning of the 

re-shuffling period, the switching operations are assigned in 

proportion to the number of servers in the cluster. During the 

computation, the SA solver iteratively generates a stochastic 

perturbation for the switching assignment and checks 

whether or not the optimum solution is reached.  

6. Evaluation Methodologies 

 We evaluate our design with trace-driven simulation. 

We have developed a framework that simulates dynamic 

load tuning and hierarchical power control in renewable 

energy powered data centers. For each scheduled job 

requests, we calculate its contribution to the overall data 

center power consumption based on the number of nodes 

requested and the job’s specific resource utilization 

statistics. Our framework takes realistic wind energy 

generation traces as supply-side input. 

6.1. Data Center Configurations 

We assume a raised floor data center consisting of 4,800 

servers and the servers are organized as twelve rows with 

each row powered by a 100KW PDU. There are ten 40U 

server racks in each row and the server we modeled 

resembles an HP ProLiant DL 360 G6. The peak and idle 

power of the modeled server are 186W and 62W 

respectively. We convert the server utilization traces to its 

power consumption using the published SPECPower results 

[27], which have been widely used for data center power 

evaluation [7, 8]. Since the SPECPower results only reflect 

the server power at intervals of 10% utilization, we use 

linear interpolation to approximate the power across 

different load levels.  

We evaluate data centers with both homogeneous and 

heterogeneous load variations. The homogeneous workload 

configuration assumes that all the servers are running the 

same workload and have similar utilization levels. As shown 

in Table 1, we generate the homogeneous utilization traces 

from the raw data provided by the Internet Traffic Archive 

[28]. We convert the request rate (requests per minute) into 

server utilization by investigating the maximum request rate 

(corresponding to 100% loading) and minimum request rate 

(corresponding to 0% loading). The server utilization traces 

we generated represent a one-week server load variation 

including idle period, peak hours and daily surge.  

Our heterogeneous data center configuration is based on 

an academic high-performance computing (HPC) center, 

which hosts more than 600 servers. The HPC center has five 

major clusters (C-I~C-V) with different service targets and 

loads, as detailed in Table 2. Those clusters have 20 to 400 

computing nodes and their average utilization ranges from 

25% to more than 90%.  All the clusters are managed with 

RRDtool [26], which enables autonomic data logging and 

trace generation. Since we have limited access to industrial 

data center traces, we collect real-world workload logs from 

a well-established online repository [29]. The workload logs 

provide information such as job arrival times, start time, 

completion time, size in number of computing nodes, etc. 

We choose the “cleaned” version of each trace log [30]. 

These traces have been already scrubbed to remove 

workload flurries and other anomalous data that could skew 

the performance evaluation [30].  

Table 3 summarizes our evaluated workload trace 

combinations. We build various workload mixes to mimic 

today’s data centers that are composed of many small 

co-located clusters. Each workload set in Table 3 consists of 

five traces [29] which run on the aforementioned five 

clusters (C-I to C-V) respectively. To form representative 

workload sets, we characterize workload traces based on 

their average job size and runtime. In Table 3, Mix-High 

includes traces that have larger job size (resulting in >30% 

average data center utilization) and Mix-Low contains traces 

that have small job size (resulting in <10% utilization). On 

the other hand, Mix-Stable consists of five traces that feature 

relatively longer job runtime and Mix-Bursty consists of 

traces that have very short job runtime.  

 

Trace Description 
Avg. 
Loading 

Load  
Level 

 
Cluster 
ID 

% of Overall 
Deployed Servers 

Avg. 
Loading 

         
Calgary University Web Server 2.8% Very low  

HPC 

C-I 5% 97% 

U of S University Web Server 7.5% Low  C-II 63% 60% 

NASA Kennedy Space Center Server 27.8% Moderate  C-III 17% 57% 

Clark Clark WWW Server 33.4% High  C-IV 3% 54% 

UCB UC Berkeley IP Server 43.2% Busy  C-V 12% 25% 

Table 1: Traces of homogeneous server utilization [28]  Table 2: Configuration of heterogeneous clusters 



   

 

Workload Set Description Workload Trace Combination 

 
Mix-High High utilization “HPC2N” + ”LANL CM5” + ”LPC EGEE” + “SDSC BLUE” + “LLNL Thunder” 

Mix-Low Low utilization “DAS- fs0” + “DAS2-fs1” + “DAS2-fs2” + “DAS2-fs3” + “DAS2-fs4” 

Mix-Stable Stable power demand “HPC2N” + “KTH SP2” + “LANL CM5” + “DAS2-fs0” + “SDSC BLUE” 

Mix-Bursty Bursty power demand “DAS2-fs2” + “DAS2-fs3” + “DAS2-fs4” + ”LPC EGEE” + “OSC Cluster” 

Mix-Rand Random combination “LLNL Thunder” + “OSC Cluster” + ”LPC EGEE” + ”LANL CM5” + “KTH SP2” 

Dept-HPC Traces collected from departmental high-performance computing center 

Table 3: The evaluated heterogeneous datacenter workload sets. Each workload set consists of five parallel workload 
traces [29] which are fed to clusters C-I~C-V shown in Table 2 

 

 Trace Abbr. Wind Energy Potential Locations (Station ID) Capacity Factor (CF) Power Density 

      

I 

W1 Low  California (9250) 15% 195 W/m
2
 

W2 Medium  Arizona (6107) 25% 338 W/m
2
 

W3 Typical  Colorado (10563) 35% 581 W/m
2
 

W4 High  Texas (1360) 45% 708 W/m
2
 

 

II 
LVS Low variation trace Wyoming (15895) 50% 1021 W/m

2
 

HVS High variation trace Utah (11967) 21% 607 W/m
2
 

Table 4: The evaluated wind power supply traces [31]. Group-I highlights different wind power generation 
potentials. Group-II focuses on variation intensity of the supply and is used for characterization purposes 

 

Abbr. Design Philosophy Tracking Stored Energy Load Deferment 
 

Utility Fully relies on utility grid No No No 

Battery Relies on battery to provide reliable renewable power No Yes No 

Green Focuses on sustainability, 100% renewable energy powered Yes No Yes 

Tracking Maximizes energy utilization with aggressive supply tracking Yes Yes No 

iSwitch Aims at achieving high sustainability, low overhead and latency Yes Yes No 

Table 5: The evaluated power management schemes  

 

6.2. Renewable Energy Supply Traces 

We use wind power data traces from The Wind 

Integration Datasets [31] of the National Renewable Energy 

Laboratory. These wind generation datasets are time-series 

data of wind power output derived from commercially 

prevalent wind turbines characteristics and the 

manufacturer’s rated wind power curve. We carefully 

selected two groups of traces across different geographic 

locations and their characteristics are listed in Table 4.  

In Table 4, capacity factor (CF) is the ratio of the actual 

wind turbine output to the theoretical peak generations. 

Since we are interested in the supply variation and 

intermittency, we have selected a group of traces with 

various CF values (i.e., Group-I). While a typical capacity 

factor of wind turbine is 30% [15], higher capacity factor 

usually represents better wind energy potential, small power 

variation and less generation stoppage.  

The total installed wind turbine capacity in this study 

equals to the nameplate power of the studied data center. The 

actual power budget is therefore only affected by the 

capacity factor. Note that we also evaluate power supply 

traces of two extreme scenarios (i.e., Group-II): one has very 

smooth and stable generation and the other has high output 

fluctuation rate. All the other renewable supply traces can be 

seen as a combination of the two basic traces plus the 

intermittently unavailable periods. 

7. Experimental Results 

 This section quantifies the performance and efficiency 

of iSwitch on a wide range of workload configurations.  We 

first characterize the impact of supply/load power variability 

on data center load matching using homogeneous workload 

traces. We then compare the performance overhead and 

energy utilization of iSwitch to some state-of-the-art 

approaches. In Table 5, Utility and Battery are two 

conventional schemes which do not involve supply-driven 

load matching. Green is the most sustainable design. 

Tracking represents emerging design approaches [13, 14] 

which leverage load adaptation to actively track every joule 

of renewable energy generation. 

7.1. Impact of Power Variability 

To understand how power variation affects load 

matching behavior, we monitored the load migration 

frequency of each VM across different server utilization 

levels and renewable power supply scenarios. Figure 11 

shows the average switching frequency for all VMs for one 

week’s duration. Figure 12 characterizes the standard 

deviation of the migration activities of a single VM. In 

Figures 11 and 12, Idle, Typical and Busy are data center 

traces that have average utilization levels of 0%, 30% and 

60%, respectively. We generate these three synthetic data 

center traces to mimic low load variation data centers.  



   

 

  
Figure 11: Average load switching frequency Figure 12: Standard deviation of the switching operation 
 

  
Figure 13: The average network traffic (all the results are 
normalized to Tracking) 

Figure 14: The peak network traffic (all the results are 
normalized to Tracking) 

 

High variation load (HVL): When the supply 

variation is high (i.e. HVS), heavy switch tuning across a 

large group of data center servers is common. Therefore, the 

average switch frequency is high and the standard deviation 

is not very large. For low supply variation (i.e. LVS), 

however, the standard deviation increases by 66% since the 

switching triggered by load oscillations typically stresses a 

relatively small group of server loads.  

Low variation load (LVL): Since the load variation is 

less severe, the total switching activities are reduced in both 

cases (i.e. HVS or LVS) and the average switching frequency 

is small. For example, Typical has similar loading compared 

to NASA. However, the former reduces average switching 

frequency by 31% when the supply variation is high (i.e. 

HVS) and by 90% when the supply variation is low (i.e. 

LVS). In Figures 11 and 12, a combination of LVL and LVS 

manifests the lowest control effort since the mean value and 

standard deviation of per VM switching are both small. 

To summarize, choosing a subset of server load that has 

lower total power variation can significantly reduce the load 

switching demand, especially when the supply variation is 

low. When the supply variation is high, simply dampening 

the load power variation has limited impact and in this case 

switch capping can be used to avoid unnecessary tuning. 

7.2. Operational Overhead 

 Frequent load matching activities result in operational 

overhead, which is our primary concern in the design of 

renewable energy powered computing systems. In a 

virtualized environment, iSwitch could effectively reduce 

the VM migration rate and help to save data center network 

bandwidth significantly. The data migration traffic is 

calculated at rack-level. Each VM live migration transfers 

approximately the size of the VM’s memory between hosts 

[32]. We assume a VM memory size of 1.7GB in our 

calculation, which is the default memory size of Amazon 

EC2 standard instance.  

 Figure 13 shows the average communication traffic 

across various workload configurations and wind power 

supply levels. All the results are normalized to Tracking. We 

do not show the results of Green because it has the same 

power tracking frequency as Tracking. As can be seen, on 

average, iSwitch could reduce 75% of the rack-level traffic 

and therefore significantly releases the network bandwidth 

burden. The results are even more impressive for peak traffic 

hours when the renewable energy fluctuates severely. In 

Figure 14 we calculate the communication traffic during the 

top 1% high-traffic hours. Because iSwitch puts a limit on 

the power tracking activities during fluctuant supply period, 

it shows only 5% network traffic compared with Tracking. 

7.3. Latency per Hour  

 Another advantage of iSwitch is that it reduces the 

migration frequency of each VM instance and thereby 

improves the job turnaround time. Due to the intermittency 

of renewable generation, stand-alone systems such as Green 

experience long waiting time (about tens of minutes as 

observed in our experiments). These systems typically 

leverage deferrable load [33] to meet the power budget or 

simply perform load shedding [34] to avoid brownout. Even 

for utility-connected systems such as iSwitch and Tracking, 

latency exists due to the data migration time. For example, 

the time needed for a 1GB VM migration takes about 20 

seconds to complete [35].  

 In this study, we use latency per hour (LPH) to evaluate 

the performance overhead. For example, a LPH of 10 means 

each individual VM instance experiences 10 seconds waiting 

time per hour on average.  Figure 15 shows the average LPH 

across the entire data center servers. The average LPH of 

iSwitch is about 30 seconds per hour while the average LPH 

of Tracking reaches 126 seconds per hour. The average LPH 

of Green, however, is about 1500 seconds per hour – 50 

times that of iSwitch. Therefore, waiting for renewable 

energy to resume (e.g. Green) should be the last resort. 
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Figure 15: The average latency of job requests 

 
Figure 16: The normalized overall wind energy utilization 

 

7.4. Renewable Energy Utilization 

We evaluate the renewable energy utilization (REU) of 

data centers with different wind power provisioning 

capacities and workload behaviors. The REU is defined as 

the amount of wind energy that is actually utilized by the 

load divided by the total amount of wind energy generation. 

A higher REU indicates better supply/demand coordination, 

which reduces on-site energy storage capacity, improves 

return-on-investment (ROI) and data center sustainability, 

and eases the initial infrastructure planning. 

While iSwitch uses a lazy power tracking scheme, it 

does not sacrifice energy utilization significantly. As shown 

in Figure 16, iSwitch can achieve an average renewable 

energy utilization of 94% – higher than Green (92%) but 

lower than Tracking (98%). The reason why Tracking 

outperforms iSwitch on energy utilization is that Tracking 

tracks every joule of wind energy generation aggressively. 

Note that a 4% decrease in energy utilization does not mean 

that iSwitch is less preferable in our study; iSwitch 

significantly reduces network traffic and improves the 

performance by 4X. In contrast to Tracking, iSwitch trades 

off energy utilization for better job turnaround time. 

7.5. Optimization Effectiveness 

 Improperly setting the iSwitch re-shuffling intervals 

leads to degraded optimization effectiveness. To understand 

the tradeoff, we characterize the design space by varying the 

load re-shuffling intervals. In the following discussion, S-x 

means iSwitch with a re-shuffling interval of x minutes. 

 We analyze the average network traffic under various 

re-shuffling intervals. In Figure 17-a, all the results are 

normalized to S-15. It shows that increasing the re-shuffling 

interval could mitigate the overhead and reduce network 

traffic. For example, S-120 manifests 35% traffic reduction 

compared with S-15. However, an extended re-shuffling 

interval could also degrade iSwitch energy utilization due to 

the decreased adaptivity. We evaluate the impact of long 

re-shuffling periods on direct renewable energy utilization 

(DREU), as shown in Figure 17-b. Here, direct renewable 

energy utilization means the renewable energy directly 

utilized by the system without passing through batteries. 

Compared to S-15, S-120 yields about 24% DREU 

degradation (which means increased battery capacity is 

required to store the remaining generation).  

 

 
Figure 17: iSwitch with different control intervals. The results 
show all six workload trace sets. The wind energy trace used 
is W3 which has typical wind energy potential 

 To understand DREU degradation, we show a fraction 

of data center power consumption trace controlled by S-120, 

which uses a two-hour load history record as prediction 

input. In Figure 18, iSwitch does not react to gradual 

renewable power supply increase. We recommend a control 

period of 15~30 minutes. In this case, iSwitch could reduce 

75% average load tuning while still maintaining more than 

80% direct wind energy utilization (94% overall wind 

energy utilization if combined with battery). 
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Figure 18: The impact of long re-shuffling interval of iSwitch Figure 19: Annual operating cost of various design scenarios 

 

 In sum, the length of iSwitch re-shuffling interval affects 

iSwitch load matching in two ways. First, short re-shuffling 

intervals limit the load fluctuation mitigation because a short 

load history record gives less accurate prediction. Second, a 

shorter time interval means more frequent re-shuffling and 

therefore magnified overall control overhead. This control 

overhead arises because the SA solver in iSwitch may request 

additional switch tuning to mitigate the total variation. For 

example, instead of directly switching 100 virtual machines 

from utility to RES, the scheduler may first disconnect 20 

high-variation wind-powered VM instances and then connect 

120 low-variation VM instances to the wind turbine.  

7.6. Total Cost of Ownership 

Because iSwitch is capable of utilizing the renewable 

power directly, we save a large amount of battery capacities. 

Otherwise, we have to use a large-scale battery to store the 

unused excess generation, which is not economic and 

environment-friendly.  

In Figure 19 we show the projected annual operating 

cost of designing a wind energy-powered small-scale data 

center (i.e. 890KW server deployment). The average retail 

price of electricity in industrial sector is about $0.07/KW. 

The estimated energy storage cost is $300/KW for lead-acid 

batteries [36]. A lower direct renewable energy utilization 

rate leads to increased battery capacity demand. In Figure 19, 

the operating cost of S-120 in the first year is 35% of a utility 

powered data center (Utility).  After three years, the average 

annual operating cost is only 20% of Utility. The 

implementation cost is amortized by the renewable energy in 

the following deployment duration. 

8. Related Work 

While power-efficient computer architecture is a well 

studied area in both industry and academia, designing 

renewable energy powered computing systems gained its 

popularity only recently [13, 14, 37, 38, 39]. In this section 

we highlight a number of representative works that strive to 

improve IT efficiency and sustainability in different aspects. 

Data center power management: Substantial research 

has been done on optimizing power efficiency of data 

centers. At the server level, the most widely used tuning 

knobs are dynamic voltage and frequency scaling (DVFS), 

power capping and power state switching [7, 40]. At data 

center level, various mechanisms can be found in recent 

proposals. For example, some major techniques include 

virtual machine resource monitoring and capping [23], job 

scheduling with queueing theory [11], dynamic data channel 

width adaptation [41], and intelligent server consolidation for 

co-optimization of cooling and idle power [9, 10]. Although 

all those works can be leveraged to track the time-varying 

renewable power supply, none of them is aware of the supply 

variation attributes. As a result, they incur significant power 

management overhead but gain very limited energy 

efficiency return.  

Emerging green computing techniques: Power 

intermittency is the most significant challenge in a renewable 

energy powered computing system. To avoid brownout, 

recent studies propose load deferment [33] and load shedding 

[34] to match the demand to the supply. Both approaches are 

not suitable for data centers which have strict performance 

requirement specified in the service level agreement (SLA). 

Although instantaneous performance cannot be guaranteed, 

one can still use load power adaptation to improve the overall 

renewable energy utilization and optimize the workload 

performance with additional power budget [13, 14]. 

Additionally, one can further leverage various renewable 

energy integration points [39], energy storage elements [42], 

and distributed UPS system [43] to improve renewable 

energy utilization. In contrast to existing work, this paper 

explores the benefits of putting utility power, energy storage, 

and load migration coordination together. The key novelty of 

our design is that we propose a supply/load cooperative 

optimization that significantly reduces existing renewable 

power management overhead while still maintaining 

desirable renewable energy utilization.  

9. Conclusions 

Environmental and energy price concerns have become 

key drivers in the market for sustainable computing. The 

advance of renewable energy technologies and continuously 

decreasing renewable power cost have made renewable 

energy driven data centers a proven alternative to 

conventional utility-dependent data centers and the market is 

rapidly growing. 

Matching the variable load power consumption to the 

intermittent power supply appropriately is the crux of 

designing a renewable energy powered data center. 

Conventional workload-driven power management has less 

adaptivity to the power supply variation while existing 
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power-driven system control schemes are not aware that they 

are experiencing unnecessary and redundant tuning activities. 

As a result, we either miss the opportunity of utilizing 

precious renewable energy or incur significant load tuning 

overhead and performance degradation.  

In this study, we propose iSwitch, a renewable 

energy-driven power tuning scheme that addresses a two-fold 

challenge: the first is to manage intermittent renewable 

power without sacrificing performance due to power 

throttling; the second is to ensure high energy utilization with 

minimized load matching activities. To the best of our 

knowledge, this is the first paper that digs into renewable 

power variation characteristics and introduces a supply/load 

cooperative optimization scheme that minimizes power 

management overhead. Compared to existing designs, our 

technique could reduce job waiting time by 80%, mitigate 

average network traffic by 75%, and rush hour traffic by 

95%. Moreover, we can still maintain 96% of the energy 

efficiency and incur only minor cost increase. This paper 

shows that we can efficiently handle intermittent renewable 

power in a lightweight and easy-to-implement manner. We 

expect that our design will help data center designers take a 

big step forward in the green computing era.  
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