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Abstract—Graph traversal is an essential procedure for a
growing amount of applications today. This type of algorithms
typically iterate input graph datasets until convergence and the
logic of each iteration is quite simple. GPUs are used extensively
as graph traversal accelerators due to the capability of mas-
sive parallelism and high-bandwidth memory access. However,
existing methods are inefficient in two ways. First, streaming
multiprocessors (SMs) are still underutilized due to the unbal-
anced load allocation and uncoalesced memory access. Second,
they use space-inefficient data structures or need auxiliary data
to assist traversal. It is undesirable, considering the limited
GPU memory capacity. Moreover, existing designs commonly
focus on optimizing kernel execution time. Data-transfer time
is also notable in the whole procedure. Thus, space-efficient data
structure and data-transfer policy should be concerned.

In this paper, we propose EtaGraph, a novel GPU graph
traversal framework optimized for GPU memory system and
execution parallelism. EtaGraph has several features: 1). It uses
a frontier-like kernel execution model, featuring a lightweight
graph transformation procedure, named Unified Degree Cut,
allowing GPU threads to process skewed graph efficiently without
modification of raw data or introducing extra space overhead;
2). It uses on-demand data-transfer to overlap computation so
that it optimizes the total time of data-transfer and execution;
3). It adopts an explicit utilization of Shared Memory to enhance
memory coalescing and to improve effective memory band-
width. Evaluation of EtaGraph shows significant and consistent
speedups over the state-of-the-art GPU-based graph processing
frameworks on both real-world and synthetic graphs.

Index Terms—GPU, graph traversal, prefetch

I. INTRODUCTION

GPU has arisen as an attractive graph processing platform

as modern GPUs support thousands of concurrent threads and

high memory bandwidth. However, directly mapping graph

traversal applications on GPUs suffers from low streaming

multiprocessor (SM) utilization and unsatisfactory memory

bandwidth utilization due to the skewed degree distribution

of vertices and the fine-grained, random memory access of

graph data. Prior works [1] [2] [3] show that carefully designed

GPU-based frameworks can achieve comparable or even or-

ders of magnitude better performance than shared-memory or

distributed systems, such as Graphlab [4] and Ligra [5].

Despite the contributions to graph processing, prior works

have certain limitations. Memory capacity of GPU limits the

scalability of graph traversal. Single GPU graph processing

systems [2] [6] [3] need to load all graph data in device GPU

memory, thus the GPU memory capacity severely constrains

their processing ability. GPU memory, hardly more than 16GB

(for even high-end computing cards [7]), is scarce compared

with main memory up to TBs capacity. Some studies make

good attempts, trying to scale out GPU processing capability

by utilizing the resources of multiple GPUs such as [8]

[9]. However, communication bandwidth through the PCI-e

interface is relatively low and the overhead significantly limits

the scalability of multi-GPUs systems (often no more than 8

GPUs [8] [9]).

Moreover, existing methods cannot fully utilize the GPUs’

memory sub-system. First, uncoalesced memory access is still

a major bottleneck due to the fine-grained memory access of

graph traversal. It leads to low effective memory bandwidth.

Some works [2] [3] [10] try to improve memory coalescing.

However, they rely on customized data structure and can

hardly apply to other graph frameworks. Such customized data

structures often need time-consuming pre-processing. Second,

redundant graph data structures or auxiliary data assisting the

execution are required, thus are inefficient in space. The space

overhead makes GPU memory capacity even scarcer.

Furthermore, researchers often focus on optimizing kernel

execution time. Nevertheless, data-transfer is also an important

part of the whole procedure and often dominate the total

time. Thus, space-efficient data structure and wise data-transfer

policy should be concerned. There are works [11] [12] trying

to overlap data-transfer and kernel execution by using several

CUDA Streams. They both use fixed-sized data chunks (par-

titions) to stream. This could cause waste of work if there is

only a small part of data actually used in one chunk. Flexible

overlapping could be potentially efficient.

Beyond that, prefetching is a well-explored technique on

CPUs to hide memory access latency. By fetching instructions

or data to cache before used, one can reduce memory access

latency. Several works [13] [14] adopt prefetching on GPUs.

Due to the irregularity of graph data, it is not straightforward to

do prefetching for graph processing. There has been prior work

[15] showing that prefetching graph data into unused register

improves performance for graph algorithms, but it needs to

modify GPU hardware or compiler. Easy-to-use prefetching

on GPUs for graph applications are still absent.

In this paper, we investigate the inefficiency or underutiliza-

tion of GPU processing graph traversal in data management

and kernel execution. We make several attempts: We try to use

a lightweight degree-optimized transformation policy to relieve

221

2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS)

1530-2075/19/$31.00 ©2019 IEEE
DOI 10.1109/IPDPS.2019.00032



time-consuming pre-processing and save memory usage. We

attempt to use a frontier-like kernel-invoking model to improve

SMs’ execution efficiency and load balancing. We intend to

reduce the total time of data-transfer and kernel execution by

using Unified Memory (UM). We exploit the potential of GPU

shared memory, which is often overlooked in prior works, to

improve memory sub-system efficiency.

This work makes follow contributions:

• we propose a lightweight graph transformation pol-

icy named Unified Degree Cut (UDC). UDC allows

GPU process skewed graph data efficiently without pre-

processing of graph data. Combined with a frontier-like

execution method, it improve utilization of SMs.

• We propose a new GPU graph traversal programming

pattern. This programming pattern allows overlapping

between transfer and processing of data requested of each

iteration in a fine-grained granularity.

• We introduce a software prefetching mechanism to im-

prove effective memory bandwidth, named shared mem-
ory prefetch (SMP), to explicitly exploit the GPU shared

memory. It improves IPC (instructions per cycle), cache

hit rate, cache throughput and reduces request memory

transactions dramatically.

• Finally, we introduce EtaGraph, a GPU graph processing

framework efficient in memory usage and kernel execu-

tion for graph traversal. We compare it with several state-

of-the-art systems.

The rest of this paper organizes as follows. Section II briefly

introduces background and motivation of this paper. In section

III, we introduce the graph transformation procedure. In sec-

tion IV, we present the kernel execution method. In section

V, we introduce how to exploit shared memory for graph

applications. In section VI, we present the implementation,

evaluation and analysis of results. Section VII discusses related

work. Finally, section VIII summarizes this paper.

II. BACKGROUND AND MOTIVATION

In this section, we briefly introduce the execution and

memory hierarchy of GPUs. Then we introduce the data

structures to store graph data. Finally, we introduce the notion

of graph traversal problems.

A. GPU Execution and Memory Hierarchy

The basic processing units of GPUs are GPU cores orga-

nized as SMs. SMs have a fixed number of computing units

(depending on specific architecture). Computing units on the

same SM are processing in SIMT (single instruction, multiple

threads) manner controlled by the Control Unit. GPU programs

(kernels) are launched as a grid of thread blocks (TBs). 32

threads are grouped as a thread warp (for NVIDIA GPUs),

while thread warps are organized in a TB. TBs are assigned

to SMs. These concurrent TBs residing on one multiprocessor

share resources of SM.

GPUs are equipped with GBs of DRAMs, noted as device

memory or global memory, to transfer data between main

memory and store data. Each GPU core has its own register

SM
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L2 Cache

Global Memory

……
SM
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L1$ S. Mem.

SM

Register File
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Fig. 1: GPU memory architecture

file while all GPU Core in one SM share L1 Cache. SMs

also have shared memory. Shared memory is as fast as L1

cache but is programmable. More precisely, shared memory

(or scratch-pad memory) can be managed by users, while L1

Cache is hardware-controlled. L1 Cache and shared memory

are in the same area on prior generations of GPUs (Fermi,

Kepler) and the ratio can be manually configured. Shared

memory on newer generations (Maxwell, Pascal) has preset

size. SMs also have texture memory and constant memory,

but they can be hardly utilized in graph processing. There is

also local memory for SM, but it is used only when there are

no sufficient registers and it has the same transfer latency as

global memory.

B. Graph Data Structure

Graph datasets often have millions or even billions of

vertices and are very sparse. The adjacency matrix is not

suitable to store large graph datasets. Several sparse graph

representations are introduced to improve space efficiency.

Compressed Sparse Row (CSR) is a commonly used graph

representation. It uses two arrays, Column Index Array and

Row Offset Array, to store the adjacency list and the index of

each node. Compressed Sparse Column (CSC) is similar.

Edge-centric frameworks, like X-Stream [16], often use

edge-list (tuples of Source Node and Destination Node) to

store graph data. Cusha [2] proposes a data structure named

G-shard. It is basically the same as edge-list but ordered and

divided into small parts.

C. Notion of Graph Traversal

Graph traversal is to calculate labels of all nodes reachable

from a given root node. Visited nodes can reach other nodes

by their out-going edges. Breadth-First Search (BFS), Single

Source Shortest Path (SSSP) and Single Source Widest Path

(SSWP) are well-used graph traversal problems to find certain

attribute label during iterations.

Definition 1: A vertex is active at one iteration if it is

updated by its neighbor in the previous iteration.

Vertices can be visited several times. For BFS, nodes can

be active only once because later visit can not update their

labels with a smaller value. For SSSP and SSWP, it is not the

case if edges are not uniformly weighted.
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(a) Vertex activation of Livegjournal (b) Vertex activation of com-orkut

Fig. 2: Number and cumulative distribution of active vertices

at each iteration for BFS algorithm on Livejournal [17] and

com-Orkut [18]. The vertices become active gradually during

iterations.

Definition 2: Activatable subgraph (AS) is the induced

subgraph that has all its vertices reachable from the source

node together with all edges whose endpoints are such vertices.

Generally, AS is the superset of the strongly connected

component which source node is located in.

Graph traversal algorithms are different from PageRank-like

algorithms. Original PageRank updates all vertices’ value at

every iteration until value converges. For traversal algorithms,

one vertex is assigned as the source at the first iteration.

Then, the vertices recently visited in the previous iteration

become active and their label value will propagate to neighbor

vertices in the current iteration. For BFS, all vertices within the

activatable subgraph of a directed graph will be visited only

once. Vertices outside the AS will not be active at all. For

other traversal algorithms, vertices within AS could be active

multiple times if the edges have different values. Otherwise,

vertices within AS will be active at most once.

As Fig. 2 shows, the number of active vertices starts

from 1 and grows exponentially at first few iterations, and

then decreases exponentially. Cumulative distribution of active

vertices remains relatively low in the first few iterations.

Afterward, it increases dramatically until most of the vertices

active, and then stay stable. Note that vertices of Livejournal

is not strongly connected and not all vertices will be visited.

III. UNIFIED DEGREE CUT

In this section, we first introduce the general idea of the

graph partition method called unified degree cut (UDC). Then

we verify the correctness for UDC in graph traversal.

A. Degree Cut Transformation

Realistic graphs are often highly skewed. The degree of ver-

tices in social networks follows power-law-like distributions.

Labels are propagated through the out-going edges in push-

based vertex-centric algorithms. Directly using vertex-centric

programming model could cause a long-tail distribution of

thread processing time, thus most of the number of threads

have to wait until threads of large out-degree nodes finish. The

basic idea to solve this is to set a limit for vertices’ outdegree

so that the upper bound of one thread’s work is determined.

Theory Space Overhead Normalized Usage for LJ

G-Shard [2] 2|E| 1.87
Edge List [3] 2|E| 1.87

VST [6] |E|+ 2|N |+ 2|V | 1.32
CSR |E|+ |V | 1

TABLE I: Theoretical space overhead and normalized usage

for LiveJournal [17]

We introduce a number K called Degree Limit. This number

serves as an upper bound of outdegrees. Any vertices with

degree larger K will be treated as multiple nodes. We use

Unified Degree Cut to denote such transformation.

Definition 3: Unified Degree Cut transformation is a map-

ping for vertex v along with its edge set Ev:

T : (v, Ev) → ({v′}, {Ev′}).

where {v′} is a set of ’virtual vertices’ of vertex v having

same ID, named shadow vertices; degrees of shadow vertices

are less or equal than K; {Ev′} is the set of edge sets of

shadow vertices; Ev = ∪u∈{v′}Eu and ∩u∈{v′}Eu = ∅.

Frankly speaking, shadow vertices of the same original

vertex share original Vertex ID and a disjoint portion of out-

going edges so that outdegree of each shadow vertices are less

than or equal to K. A vertex, whose outdegree is no more than

K, itself can be seen as a shadow vertex.

When traveling graphs, vertex-centric kernels are invoked

to process shadow vertices with outdegree on more than K.

Thus, it restricts the execution time of single threads and it

improves lower bound of threads efficiency of warps.

There are two ways to perform such transformation: in-core
or out-of-core. In-core means transformation is processed on

GPU when vertices are about to be processed. Differently, out-

of-core is to transform all vertices ahead at the main memory.

Thus, out-of-core will consume extra memory.

We directly copy CSR data from main memory to GPU

device memory and perform UDC on the fly. We list the

amount of memory transferred from CPU to GPU of several

data structures for comparison. Without loss of generality, we

only consider topology data of graph, i.e. the connectivity of

vertices. Table I shows the memory overhead and normalized

usage compared with several data structures used in the state-

of-the-art GPU-based graph processing systems. |E|, |V | are

the numbers of edges and vertices, respectively. |N | is the

number of shadow vertices with K equals to 10.

Inspired by the Virtual Split Transformation (VST) of

Tigr [6], UDC is superior to VST in two ways. First, VST

introduces extra 2nk space overhead (nk is the number of

virtual parts generated with degree bound k) shown in Ta-

ble I. Second, Tigr performs VST during the pre-processing

procedure and need to generate a copy of raw data to insert

outdegree informations. Even though pre-processing time is

normally not considered in prior research papers, UDC does

save time at the data-loading procedure and generate shadow

vertices on the fly with negligible overhead.
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B. Correctness for Graph Traversal

Without loss of generality, we consider graphs with no

duplicate edges. Then we have

Theorem 1: If a vertex has an edge to its neighbor, then one

of its shadow vertices has the edge to that neighbor.

This is obvious according to the definition of shadow

vertices. Thus, if a vertex is reachable from source vertex

originally, then this vertex is reachable from shadow vertices

of source vertex. We use virtual path to denote the path

connecting shadow vertices.

Theorem 2: A vertex has a path p from source through

shadow vertices has a path p’ through one of shadow vertices

of each vertex in p.

When calculating the attribute of the virtual path using same

edge or vertex attributes, we can get the same results as the

actual path. Thus, traversal using the virtual path is identical

as using the actual path.

IV. SELECTIVE KERNEL EXECUTION

In this section, we first introduce active set to show graph

traversal procedure. Then we present our modified version of

frontier. Finally, we propose a novel graph traversal program-

ming pattern.

A. Active Set

We use active set to denote the set of active vertices of one

certain iteration. Clearly, vertices in the active set will visit

their neighbor vertices and update neighbors’ label in this

iteration. During iterations, kernels are invoked for vertices

in the active set of the last iteration. Afterward, the updated

vertices are added to the new active set. After each iteration,

vertices in the active set are transformed using UDC and

generated shadow vertices are added to a virtual active set.
The virtual active set record the ID, Start Index and End

Index of each shadow vertices with an array of 3-tuple. Start

index and End Index show the start and end index of shadow

vertex’s out-going edges, respectively. For example, Fig. 3(b)

is the CSR expression of the example graph in Fig. 3(a). As

Fig. 3(c) shows, if vertex 1, 2 and 4 are visited at one iteration,

they are pushed in active set and should be active in the next

iteration. Vertex 1 is partitioned as two shadow vertices. Vertex

2 will not be partitioned into any shadow vertices because its

outdegree is 0 and won’t propagate its label to any vertices. If

we have K equals 4, Vertex 4 is treated as one shadow vertex

since its outdegree is smaller than K.

When UDC is finished at each iteration, the active set is

reset to reuse the memory allocation. And each shadow vertex

in virtual active set will be assigned to one GPU thread to

process in a new iteration. Virtual active set is reset when

shadow vertices are processed.

With this procedure, the efficiency of GPU threads improves

in two ways. First, only active vertices are assigned with GPU

threads and it naturally filter active vertices with outdegree

equals to 0. Thus, this makes sure all the invoked GPU threads

are doing useful work. Second, it achieve load balancing

(a) Sample graph (b) CSR of sample graph

Act. Set

Virtual 
Act. Set

UDC 41 1
71 5
85 7

41 2

(c) Active set to virtual active set

Fig. 3: CSR expression and transformation with K=4

because the workload of each threads are determined for

varying graph datasets.

With active set, kernels only need to be invoked on neces-

sary vertices to be processed. For BFS and unweighted SSSP,

all vertices can be active at most one time. Thus, only |N |, i.e.

the number of shadow vertices, kernels need to be processed.

As for memory request, then there is no need to check whether

vertices are active. In this case, the amount of memory request

is |E|+ |V |. If a graph needs a large number of iterations to

traversal, it will save significant memory request in theory.

Active set in our terminology is often called as frontier in

[19] [3]. We use active set and virtual active set to address

the UDC transformation procedure, which allow to generate

load-balanced work items directly using CSR.

B. Fine-grained Overlapping

The SIMT execution pattern of GPU relies on data re-

maining local at GPU device to keep all threads active. In

this case, kernels get major performance due to massive

parallelism. Otherwise, threads warp will halt until requested

memory arrives. The programming pattern of existing (in-

GPU-memory) GPU graph processing systems as follows:

• Data load and pre-processing.

• Move data to GPU device.

• Parallel execution of GPU kernels.

• Results transfer back to main memory.

This programming pattern is straightforward to implement

and is superior to distributed CPU systems with GPUs as

accelerator [11]. However, graph data are originally stored at

the main memory. Transferring large graph data from main

memory to device memory will consume lots of time. This

pattern may be unable to obtain the best performance when

considering the total time of data-transfer and execution.

As described before, only part of the vertices are active at

each iteration for graph traversal algorithms. If we transfer

data of newly generated active vertices needed in the next

iteration, overlapping of data-transfer and kernel execution can

be potentially achieved.
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We propose a novel GPU graph traversal programming

pattern to allow fine-grained overlapping. This programming

pattern is as follows:

• Data load and pre-processing.

• Move data of vertices in the active set to GPU device for

each iteration and execute until coverage.

• Results transfer back to main memory.

We argue that graph traversal on GPU with this program-

ming pattern is potential efficient in two ways. 1). Kernel

execution and memory transfer procedure could be deeply

overlapped. 2). Part of the graph data do not have to be

transferred if only part of vertices will be active.

Note that maintaining high performance with the above

programming pattern can be challenging. First, it is not

straightforward to select data of active vertices and aggregate

them in an efficient and low-latency manner. Second, the

latency of the interconnect (PCIe, etc.) interface could be a

bottleneck for performance.

This programming pattern can be implemented in several

ways, manually or with CUDA’s memory support. Zero-Copy

Memory and Unified Memory [20] of CUDA can support

our programming pattern. Zero-Copy Memory is memory

allocation pinned in CPU system memory, that can be trans-

ferred on demand. Pinned in CPU system memory means that

memory is page-locked to improve performance. On the other

hand, Unified Memory is a single coherent memory image

with a common address space. Data can be transparently

migrated towards the processor that requests it. GPUs use

page faulting mechanism to support this feature. If a kernel

running on the GPU accesses a page that is not resident in

its memory, it triggers page faults, allowing the page to be

automatically migrated to the GPU memory on-demand. The

essential difference is that Zero-Copy Memory is always in

main memory thus GPU access it slower. We won’t manipulate

graph data during GPU processing. Thus, Unified Memory is

a better choice to store graph topology data.

Unified Memory can be tuned by memory usage hints such

as cudaMemPrefetchAsync. The cudaMemPrefetchAsync is a

CUDA API that could guide CUDA runtime transfer data to

the desired location immediately. Otherwise, UM will migrate

on demand. It is essentially the same as using common GPU

memory allocation when cudaMemPrefetchAsync is set.

As for the performance issue, GPUs use multi-threading as

a latency-hiding technique. Each SM processes several thread

warps simultaneously and warps are scheduled when stall.

We will characterize UM performance for graph traversal at

Subsection VI-C.

V. SHARED MEMORY PREFETCH

In this section, we first illustrate the inefficiency of GPU

memory sub-system when processing graph algorithms. Then

we introduce how SMP works.

A. Underutilization in Memory Sub-system

It is well-known that graph processing has very poor space

locality. The architecture of GPU makes this even worse.

Vertex-centric graph frameworks often follow this pattern:

load and process neighbor vertices one by one. Neighbor

vertices’ IDs are often stored consecutively in CSR. The IDs of

adjacent neighbor can be cached when accessing prior vertices.

However, every SM has a dedicated but small L1 cache (24,

48, or 96 KB depending on GPU architecture). Similarly, a

single GPU has about a few KB of byte L2 cache (2800∼KB

for GTX 1080Ti GPU) shared among all SMs. Unlike CPU,

there is only a few hundred bytes of L2 cache for every thread

warps when GPU achieve relatively high occupation. The L1

and L2 cache can be quickly evicted before used. Thus, graph

processing cannot fully utilize its GPU cache in theory. In our

experiments, L2 read hit rate is around 19% for Tigr [6].

Graph traversal application performs fine-grained memory

access when reading neighbor vertex data (usually stored in

4-byte format). However, memory requests from a warp are

transformed into cache line requests with a size of 32B to

GPU memory. Thus, a 4-byte cache miss will occur 32-

byte memory access from device memory and results in huge

memory bandwidth waste.

B. Improving Memory Efficiency

In this paper we ask this question: now that loading and
processing vertices one by one is not cache-friendly, what if
we load all neighbor vertices at first?

Shared memory, which is often overlooked in graph frame-

works, provides high-throughput and low-latency memory

access and can be used to share data among threads within

the same thread block (TB). It is a good candidate for one

to store vertices data temporarily. The size of shared memory

is quite limited and computing memory index could introduce

overhead due to the degree diversity of vertices. Fortunately,

we can transform vertices into shadow vertices with a certain

degree limit K as we mentioned earlier. Thus, the maximum

number of memory access is known in advance. Each thread

processes a virtual vertex with maximum outdegree of K. In

this case, we could just assign all threads to a partition of

shared memory and rely on the kernel to fetch data from device

memory to shared memory from the beginning. In addition, at

the compiler side we can let all kernels aggressively load K
neighbor vertices and unroll loops of memory requests.

The above strategy has two benefits. First, the cache hit rate

could improve and global memory transactions are reduced.

One neighbor vertex is fetched right after the prior one being

fetched, potentially using cached data before eviction and

requiring no more global memory transactions. Second, better

Instruction Level Parallelism (ILP) is achieved due to unrolled

memory access because the amount of memory requested is

known beforehand.

We name this procedure shared memory prefetch (SMP). In

practice, we use two virtual active set to store shadow vertices.

One virtual active set stores shadow vertices having the degree

equal to K, while another one stores shadow vertices whose

degree is less than K. We prefetch K vertices for first virtual

active set and prefetch K-1 for second virtual active set. By

doing this, more data requests are issued for those shadow
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Procedure 1
Data: Graph data in CSR format

Result: Vertex labels label
Process Main():

Load data into UM allocation CSR;

Init label and transfer to GPU;

Allocate actSet at GPU;

Allocate virtActSet at GPU;

Init actSet;
cudaMemPrefetchAsync(CSR) ;

while actSet.isNotEmpty() do
actSet2virtActSet();
invokeKernel(BFS, virtActSet.size());

end
Function actSet2virtActSet():

for vkinactSet do
virtActSet.append(vk.toV irtV tx());

end
Kernel BFS():

getV irtV tx(thread.id, v);
Fetch v.neighbor to sharedMem;

for v′ in v.neighbor do
if label[v′] > label[v] + 1 then

label[v′] = label[v] + 1;

actSet.append(v′);
end

end

vertices whose degree is less than K-1. However, performance

actually improves. Detailed evaluations of SMP in Subsection

VI-C show its efficiency in cache hit rate, throughput, and

overall memory transactions.

VI. EVALUATION

In this section, we discuss our implementation of EtaGraph

and the experiment methodology. Then we present perfor-

mance results and in-depth analysis.

A. Implementation

We implement EtaGraph in standard C++ and CUDA. We

utilize the Unified Memory (UM) introduced in CUDA 6.0

supported by post-Kepler generation GPUs. UM allows one to

use a single pointer to data and data will automatically migrate

towards the processor requesting it. We implement two ver-

sions of EtaGraph with and without cudaMemPrefetchAsync,

denoted as EtaGraph and EtaGraph w/o UMP. We use a simple

device array to track active nodes and active shadow vertices.

The device array uses atomic operations to add elements. We

use Galois [21] CSR binary format to store graph data for

loading from disk. Procedure 1 shows the underlying execution

flow of EtaGraph processing BFS.

B. Methodology

We conduct all experiments on a Linux server with two

2.50 GHz Intel 6-core, hyperthreaded Exon E5-2620 CPUs.

Dataset #vertices #edges Avg.Degree Size(GB) %LCC
Realistic Graph

Slashdot [17] 77K 0.9M 11.7 0.011 98
LiveJournal [17] 5M 69M 14.2 1.1 99
com-Orkut [17] 3M 117M 38.1 1.7 99

uk-2005 [18] 39M 936M 23.7 16 65.2
sk-2005 [18] 50M 1, 949M 38.5 32 70.8
uk-2006 [18] 80M 2, 481M 30.7 42 71

Synthetic Graph
RMAT25 32M 512M 32 8.3 81

TABLE II: Graph datasets used in evaluation. LCC stands for

largest connected conpoment’s percentage size of whole graph.

The main memory is 128GB. An NVIDIA GTX 1080Ti GPU

with 11GB GDDR5X memory is connected to this system.

Our operating system is Ubuntu 16.04 with Linux kernel

4.15.0. We use the NVCC compiler version 9.0.176 (g++

version 5.4.0) to compile all the programs with flag O3.

Table II shows the datasets we use for all experiments.

These datasets consist of both real-world graphs and a syn-

thetic graph. The realistic graphs are 6 well-used social

networks with edge numbers ranging from 0.9 million to 2.5

billion (the maximum outdegree ranging from 5.2K to 33K).

To show performance generality of EtaGraph, we generate

synthetic graph using PaRMAT [22] with parameter a=0.45,

b=0.22, c=0.22. The size of datasets varies from 11MB to

42GB in human-readable edge lists format.

We compare EtaGraph with 3 state-of-the-art GPU process-

ing systems: Cusha [2], Gunrock [3] and Tigr [6]. Cusha is

an edge-centric framework optimized for memory coalescing.

Gunrock is a frontier-based framework using high-level prim-

itives. Tigr is a vertex-centric framework utilizing a similar

degree-optimized transformation. Thus, we compare EtaGraph

with these three systems without loss of generality.

We measure the total time of memory transfer (from main

memory to GPU device memory) and kernel execution if no

further notifications. We repeat experiment 5 times and the

average value of the obtained results is reported.

We implement 3 well-used graph traversal algorithms:

breadth-first search, single-source shortest path, single-source
widest path to compare. For all algorithms, we start with the

first source node of each dataset for fair comparison and make

sure the queried traversal is untrivial. For all systems, graph

datasets are transformed into their required data format in

advance. For Cusha, we experiment its all three processing

methods (G-Shards, Concatenated Windows, Virtual Warp-

Centric) and report the best results for comparison.

C. Results and Analysis

In Table III, we present detailed performance results ob-

tained from EtaGraph and other baseline frameworks. Table IV

shows the percentage of active vertices and iteration numbers

of EtaGraph.

Performance Comparison As Table III shows, EtaGraph

achieves the best performance for most algorithms on a variety

of datasets except for BFS on Slashdot. Beyond that, EtaGraph
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Runtime (ms)
Alg. Frameworks Slashdot Livejournal com-Orkut RMAT25 uk-2005 sk-2005 uk-2006

BFS

Cusha 2.4/3.7 33/123 35/186 O.O.M O.O.M O.O.M O.O.M
Gunrock 3.4/3.9 56/109 78/162 607.9/1113 470/1127 O.O.M O.O.M

Tigr 0.4/1.7 18.5/87.8 20.9/126.6 294.4/814.9 810.8/1710 510/2578 O.O.M
EtaGraph 2.5 60 95 575 618 987 1661

EtaGraph w/o UMP 2.8 93 128 771 1412 1865 1.3

Cusha 2.9/3.0 42/154 43/232 O.O.M O.O.M O.O.M O.O.M
Gunrock 7.4/8.3 306/409 418/584 2421/2997 1879/3101 O.O.M O.O.M

Tigr − 22/100 25/213 335/1284 827/2284 O.O.M O.O.M
EtaGraph 2.6 63 98 603 623 998 1296

SSSP

EtaGraph w/o UMP 3.1 98 127 786 1409 1877 1.3

Tigr − 22/144 24.9/216 333/1274 824/1762 O.O.M O.O.M
EtaGraph 2.6 63 98 600 626 1002 1662SSWP

EtaGraph w/o UMP 3.1 99 153 793 1431 1882 1.3

TABLE III: Performance Comparison. tkernel/ttotal are provided for other systems, ’−’ indicate that system crushed or do

not get right results. O.O.M denotes system run out of GPU memory.

Slashdot Livejournal Orkut RMAT25 UK2005 sk-2005 uk-2006
Act. % 100 91 99 81 99 99 1.15E-04

Itr. # 8 15 8 9 200 57 4

TABLE IV: Activation and iteration details of EtaGraph

simply outperforms Cusha, Tigr, Gunrock in all three graph

traversal algorithms. In particular, EtaGraph can yield up to

6.5× speedup on SSSP over Gunrock, upto 2.4× speedup on

SSSP over Cusha and upto 3.6× speedup on SSSP over Tigr.

Note that the total time of EtaGraph is even smaller than the

kernel execution time of Tigr for SSSP on uk-2005 dataset

and Gunrock on several datasets. It is evident that EtaGraph

has performance advantage over Gunrock and Tigr, even if

higher-bandwidth CPU-GPU interconnect (NVLink [23], etc.)

is equipped.

On small Slashdot, EtaGraph is slightly slower than Tigr.

This happens because vertex number of Slashdot is so small

that the overhead of invoking on-the-fly transformation of

active set to virtual active set outweighs the efficiency gain

of kernel execution. For Livejournal, Orkut, RMAT25 and

sk-2005, EtaGraph achieve 1.4-2.5× speedup than the best

of others. EtaGraph achieves up to 3.6× speedup over the

best of others on SSSP for uk-2005. This is due to the

numerous iterations that magnify the advantage of kernel

execution efficiency with frontier-like active set. Performance

of EtaGraph w/o UMP is no better than EtaGraph in almost all

datasets expect for uk-2006. This is because traversal starting

from queried vertex can only reach a small part of the whole

graph for uk-2006 and only a small part of data need to be

transferred to GPU while most of the vertices are visited in

other datasets.

Memory Usage Analysis As shown in Table I, CSR is the

most space-efficient among several familiar data structures. By

directly using CSR, EtaGraph requires the least main memory

and GPU device memory for storing graph topology data.

EtaGraph also does not require auxiliary data to help traversal

processing expect for storing active set. When the size of graph

Avg. Size (KB) Min Size (KB) Max Size (KB)
LJ w/o UMP 43.8 4 996

Orkut w/o UMP 44.3 4 924
rmat25 w/o UMP 44.3 4 964
uk2005 w/o UMP 48.9 4 996

LJ 1974 504 2048
Orkut 1993 1024 2048

rmat25 2048 2048 2048
uk2005 1998 544 2048

TABLE V: Size of migrated pages

datasets grows, Cusha, Gunrock and Tigr successively throw

an out-of-memory error. EtaGraph, however, can store all data

in GPU device memory. Note that the total size of raw data

and label data of uk-2006 is larger than GPU memory capacity.

Thanks to migration and oversubscription of UM supported

by Pascal generation architecture GPU, EtaGraph can process

graph traversal on graphs larger than GPU memory capacity.

We also investigate the characteristics of Unified Memory.

Fig. 4 shows that EtaGraph overlaps data-transfer and com-

putation for the first 60%-80% of the time when cudaMem-
PrefetchAsync is disabled. Processing UK-2005 is different in

that data-transfer occurs several times. This is because the

first part of data-transfer does not transfer all data as no active

vertices in some part of data yet.

The Unified Memory driver processes page faults and merge

smaller page requests into larger page requests on the GPU.

Table V shows the size of migrated pages. When Unified

Memory Prefetch is disabled, the sizes are down to 4KB

(the system memory page size) and have an average value

around 44KB. If we enable cudaMemPrefetchAsync, the page

sizes mostly are 2MB. Thus, EtaGraph w/o UMP needs more

frequent migrations to transfer all data used in the traversal.

This could be for this reason that EtaGraph is much faster

when UMP is disabled, traversing a large part of graphs

(though it is still comparable to state-of-the-art frameworks).

Performance Stability Fig. 5 shows the number of visited

nodes over time. Notice that EtaGraph traversal vertices on

nearly linear growth expect for Slashdot because its tiny size
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Fig. 4: Execution status during EtaGraph w/o UMP running

SSSP. Data-transfer and computing are overlapped for about

60%-80% of time

(a) Slashdot (b) Livejournal

(c) orkut (d) RMAT25

(e) UK2005 (f) sk-2005

Fig. 5: Number of visited vertices over time. The number

grows nearly linearly over time regardless the number of active

vertices of each iteration.

only needs a few iterations. This shows that EtaGraph can

efficiently process various graph datasets, regardless of the

stage of traversal (i.e. number of active vertices). Thus, the

performance of EtaGraph is consistent.

Performance Breakdown To illustrate the source of perfor-
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Fig. 6: Normalized runtimes of several EtaGraph setups

mance gain, we experiment with several versions of EtaGraph

and record their total runtimes. The ’w/o SMP’ is the one with

Shared Memory Prefetch disabled. The ’w/o UM’ is the one

using normal cudaMalloc rather than Unified Memory. Fig. 6

reports their runtime on different datasets.

The runtime of ’w/o SMP’ is 1.11-2.14× more than Eta-

Graph’s except on the first 5 datasets. It is almost identical for

uk-2006 due to little traversal time compared to data-transfer

time. As we can see, SMP contributes to 1.11-2.14× overall

speedup in EtaGraph. Similarly, adopting UM contributes

1.02-1.26× overall speedup and allow to process uk-2006,

which is larger than GPU memory capacity. Speedup over

other frameworks also comes from our space-efficient data

layout and execution efficiency inside EtaGraph.

To better show the effect of SMP, we measure several

metrics (IPC, Unified Cache hit rate, L2 cache hit rate, several

memory throughputs, and global memory transactions) of BFS

on LiveJournal with and without SMP. Unified Cache is the

combination of L1 and Texture cache for Maxwell and Pascal

architecture GPU. All results are generated using nvprof [24].

As Fig. 7 shows, adopting SMP alone achieves 1.42× IPC,

1.02× Unified Cache hit rate, 1.19× L2 cache hit rate and

achieve 2.2× throughput on L2, Unified Cache and global

memory. Adopting SMP also let the traversal kernel issue only

0.48× global memory transactions.

VII. RELATED WORK

A. CPU-based Graph Processing

Graph processing has been extensively studied on the CPU-

based system. Google first introduced the vertex-centric graph

processing model and Pregal system [25]. From then on,

a lot of graph processing systems appear, such as Giraph

[26], GraphLab [4], and PowerGraph [27]. These platforms

run on distributed system to take advantage of many CPU

cores to process parallelly and large distributed memory to

store graph data. Lots of works focus on efficient partition

method over distributed machines to reduce communication

overhead and improve load-balancing. GraphX [28] is a graph

processing framework built on top of Apache Spark [29]. With

optimization of distributed join and data-flow execution model,

GraphX achieves fault tolerance.
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There are also numerous frameworks based on shared mem-

ory machines (e.g., NUMA). Ligra [5] implements vertex and

edge mapping routines to process a certain subset of graphs.

Galois [30] uses domain-specific languages (DSLs) for high-

level programming. Gemini uses a chunk-based partitioning

scheme to facilitate locality of graph on both shared-memory

and distributed systems. A few works like Graphchi [31], X-

Stream [16] focus on using low-cost PCs to process large

graphs storing in hard disks or flash memory. Pan et al.

investigated to schedule multiple graph processing queries on

shared-memory machines for better system throughput [32].

Graph traversal system has been studied in prior work

[33]. It uses low-overhead data compression to reduce data-

transfer volumes among machines along with latency-hiding

optimization. There are also designs explicitly optimized for

specific graph algorithms, such as BFS [34] and SSSP [35].

B. GPU Graph Processing Frameworks

Harish et al. treated GPU as an SIMD processor array

to process graph traversal [36]. Merrill et al. used prefix

sum to construct fine-grained tasks and leveraged vertex/edge

frontier to store vertices (or edges) to be processed [19].

Totem [8] system is a GPU-CPU hybrid platform for graph

processing. It uses CPU to handle high-degree nodes for fast

sequential processing and allocate numerous low-degree nodes

on GPU for massive parallelism processing. MapGraph [37]

combines three different scheduling strategies together and

dynamically choose the most suitable one for each vertex

based on its degree. Cusha [2] uses two data structures, named

G-Shards and Concatenated Windows (CW), to avoid non-

coalesced memory access and improve memory bandwidth.

Using the similar idea of frontier, Gunrock [3] performs

operations on the frontier with data-centric abstraction. It uses

two workload mapping strategies, e.g. per-thread fine-grained,

per-warp and per-CTA coarse-grained. Tigr [6] proposes a

virtual transformation to transform skewed graphs into virtual
vertices for efficient processing.

There are designs explicitly optimized for multi-GPU graph

processing. For example, GTS [11] stores attribute data at

device and streams topology data among GPUs, allowing

GTS process large graphs. Lux [38], a distributed system

accelerated by GPUs, uses a dynamic graph repartitioning

mechanism to achieve load-balancing among GPUs. Groute

[9] allows multi-GPU asynchronous execution with ring-

topology communication among GPUs.

Several GPU graph processing frameworks [11] [12] try to

overlap data-transfer and kernel execution. They use several

CUDA streams to transfer and process data chunks. Size of

data chunks are preset. They need to transfer intact data chunks

regardless of how much data are actually needed.

Some studies explore prefetch mechanism on GPU for graph

application. Lakshminarayana et al. proposed to use modified

GPU hardware and compiler to prefetch graph data into unused

register [15]. Koo et al. proposed to use a hardwired prefetcher

and scheduler to assist prefetching [39] for several applications

including BFS.

VIII. CONCLUSION

In this paper, we analyze the inefficiency of kernel execution

and memory usage of graph traversal on GPU. We present a

graph transformation policy to transform vertices in skewed

graphs without the need for pre-processing or modification

of raw data. This procedure is space-efficient and lightweight

even on the fly. We combine the graph transformation with

frontier-like workload mapping mechanism. We also propose

shared memory prefetch, a lightweight yet efficient mechanism

to explicitly utilizing shared memory of GPU and improve

effective GPU memory bandwidth. SMP can be easily ap-

plied to other vertex-centric frameworks. We synergistically

combine these optimizations in a graph traversal framework

named EtaGraph. Exhaustive evaluations show that EtaGraph

can achieve significant speedup over several state-of-the-art

frameworks on representative graph datasets.
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