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While cloud computing has brought paradigm shifts to computing services, researchers and developers 

have also found some problems inherent to its nature such as bandwidth bottleneck, communication 

overhead, and location blindness. The concept of fog/edge computing is therefore coined to extend the 

services from the core in cloud data centers to the edge of the network. In recent years, many systems are 

proposed to better serve ubiquitous smart devices closer to the user. This paper provides a complete and 

up-to-date review of edge-oriented computing systems by encapsulating relevant proposals on their 

architecture features, management approaches, and design objectives.  
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1. INTRODUCTION 

We are in a world where smart devices and appliances are starting to overwhelm 

people’s daily lives. With the increasing intelligence in all sorts of machine instances 

such as watches, phones, cameras, drones, cars, set-top boxes and radio access 

gateways, it is becoming increasingly rewarding to utilize these ubiquitous and 

massive resources of smart devices. In light of that, fog computing, an emerging idea 

is bred to deliver wider scope of services by extending cloud computing to devices that 

produce and act on local data [Cisco, 2015]. At the edge of the network, edge 

computing refers to computation on a variety of systems that are closer to end users 

[ETSI, 2015]. It is expected that the concepts of fog and edge computing will open up 

new possibilities for the future of internet and smart living environment.  
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The emergence of edge-oriented computing paradigms such as fog/edge computing 

is of no coincidence. Existing cloud computing technology has altered our ways of 

utilizing computing services in the last decade. It thrives upon the massive fusion of 

computation and storage capabilities. However, as much as cloud architecture excels 

in driving forward our ease of using computing service, we also confront many 

obstacles that come along. The bandwidth limit, global centralization of data 

processing and storage have brought many issues such as undesirable latencies, less 

mobility support, inability of context awareness and data transmission overhead. 

This is especially true for smart sensing, content delivery, augmented reality, online 

gaming, and many other applications that require real-time analysis and control. 

With people’s explosive demands and growing reliance on quick information access 

and efficient data processing, edge-oriented computing paradigms have become an 

evolving necessity for the realm of IoT (Internet of Things).  

Despite its popularity, putting edge-oriented computing into practice is still 

challenging [Shi et al. 2016]. Both fog and edge computing systems are only on the 

verge of maturity. In recent years, researchers continue to provide new and different 

perspectives on how these systems should be built. It is without doubt that more 

efforts are needed to realize the vision of fog/edge computing. A thorough survey on 

the basic system architectures and management strategies is therefore of 

heightening demand for both academics and practitioners.  

1.1 Related Surveys 

Several integrative reviews have concisely summarized the key features of fog 

computing. Vaquero and Rodero-Merino [2014] tried to define fog computing by 

discussing a set of technologies that drive it. Yi et al. [2015a] briefly examined fog 

computing platform and pointed out representative applications that are well suited 

for computing near the network edge. Chiang and Zhang [2016] compared cloud and 

fog in detail and showed several case studies of fog computing. Kitanov et al. [2016] 

introduced the emerging fifth-generation (5G) network and its potential impact on 

fog. While the above reviews present a good overall picture of the fog, they only cover 

a limited number of papers and do not compare the methodology and technologies in 

detail. Recent years have witnessed a growing number of papers in this rapidly 

changing field. It is crucial to synthesize new findings from them. 

There have been a few papers that tried to provide a fairly comprehensive survey 

of the fog computing paradigm. Yi et al. [2015b] identified various problem domains 

of fog computing, including networking complexity, quality of service (QoS), 

programming model, resource provisioning and etc. Mahmud and Buyya [2016] 

proposed a taxonomy of fog computing and gave a broad review on component types, 

general metrics and design objectives. Nevertheless, these works do not provide a 

classification of architecture and topology. Detailed explorations on resource 

management and system optimization approaches are absent as well.  

A few recent studies have been concentrated on certain specific design issues of 

edge-oriented computing solutions. Wang et al. [2017] gave a detailed survey on 

mobile edge computing, with an emphasis on wireless communication and edge 

networking. Driven by economic and environmental concerns, Buzzi et al. [2017] 

provided a detailed survey on energy-aware designs for 5G networks. Recently, 

Osanaiye et al. [2017] discussed the security and privacy issue of fog computing in a 

virtualized environment. These prior works do not provide a detailed comparison of 

different architecture designs in the edge-oriented computing era. Their discussions 

are also limited to just one or two resource management strategies.  
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Another group of surveys have been focused on the security and privacy issue of 

fog. Stojmenovic and Wen [2014] examined fog computing with an emphasis on 

authentication and intrusion detection. Wang et al. [2015] explored potential issues 

in fog security and fog forensics. Recently, Roman et al. [2016] gave a through threat 

analysis on mobile cloud, mobile edge as well as fog. In light of this, we have excluded 

security-related topics from our discussion to reduce the scope of this survey.  

This survey does not intend to provide an exhaustive list of studies covering all 

the fog/edge related challenges. We focus our attention on architecture design and 

system management with a rich and carefully selected set of papers to provide a very 

detailed landscape in this field. There have been prior surveys that summarize the 

architecture design and resource management of distributed systems [Orgerie et al. 

2014] and mobile systems [Bellavista, 2012]. However, to the best of our knowledge, 

fog/edge computing has not yet been surveyed in detail from such a perspective.  

1.2 Our Contribution 

The main contributions of this work can be summarized as follows.  

— We characterize fog and edge computing by comparing a complete list of 

closely-related concepts. We highlight the major differences among existing fog 

systems through a set of key dimensions that best summarize prior works.  

— We present a detailed taxonomy of the architecture in the fog and edge 

computing paradigms. Specifically, we discuss the layered architecture of the 

cloud-fog-edge ecosystem from the physical as well as the logical view.  

— We detail the state-of-the-art resource management approaches that envelop 

three different computing layers including back-end cloud infrastructure, near-

edge fog system, and front-end edge devices.  

— We classify research works based on key design objectives including latency, 

energy, availability and scalability. We describe major system optimization 

solutions and the heuristics used by them.  

The remainder of this survey is organized as follows. Section 2 provides a 

thorough review of existing computing paradigms. Section 3 classifies the 

architecture of fog computing systems and compares representative fog components. 

Section 4 introduces our taxonomy of resource management approaches. Section 5 

discusses major design objectives of fog computing systems. Section 6 outlines open 

problems in this field and finally Section 7 concludes this article. 

2. ARGUMENTS ON DEFINITIONS 

Perspectives aside, it is logical for the community to have various definitions on 

the emerging idea until the techniques grow mature, before which all contributions 

carry reasonable value to be discussed. This section provides a clear glance of ten 

closely related computing paradigms/concepts.  

2.1 Edge-Oriented Computing: An Overview 

In recent years, edge-oriented computing has emerged along with the dashing 

deployment and application of Internet of Things (IoT). Figure 1 depicts a reference 

model of computing systems organized as a five-layered structure. As a compliment 

piece to cloud computing, (mobile) edge computing [PNNL, 2013; ESTI, 2014] builds 

itself from the enormous scattered edge systems. Since these systems are of 

proximity to event instances and data sources, edge computing has its advantages of 
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shorter response time, better geographical awareness, more isolation from the 

outside world, optimized content distribution and etc.   

As much as edge-oriented computing solutions aid cloud computing architectures 

in terms of executing geography or latency sensitive applications, it is not an add-on 

patch to cloud computing. Oftentimes, edge-oriented computing marks itself for on-

spot data processing exploiting local devices, but neither is it just a simple blind data 

migration or computation offloading from the cloud. For example, fog computing 

[CISCO, 2015] was conceived to address four types of applications and services that 

do not fit the traditional cloud computing architecture very well: 1) latency-sensitive 

applications, 2) geo-distributed applications, 3) fast mobile applications, and 4) 

distributed control systems [Bonomi et al. 2015]. 

The concept of fog computing has great similarity to edge computing. Both of the 

paradigms construct themselves on the edges of the network near data sources. 

Currently there is no universally accepted open standard on what defines the 

“network edge”. In fact, another concept, which is termed mist computing, pushes 

data processing even further to the extreme edge of the network [Cisco, 2015]. 

In general, fog computing can be treated as a special form of edge computing. A 

major difference is that fog computing pushes elastic IT services further to the end 

user devices [Manzalini and Crespi, 2016]. In addition, devices within the fog are 

often coordinated globally in a software-defined manner [Vaquero and Rodero-Merino, 

2014]. In most scenarios identifiable, fog computing is often used when the task is 

service-oriented while edge computing pops up more if it is on an analytical ground. 

Prior works [Chang et al. 2014; Bonomi et al. 2014; Orsini et al. 2015] where both 

terms were touched upon suggest an interchangeable nature of them. This paper 

would therefore survey the related papers on both phrases, and summarize them as 

equals to cover the bigger picture.  
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mega data center (large centralized cloud)

modestly-sized data center (distributed cloud)

modular data center / container / local cluster ...

routers / gateways / set-top boxes / access-points...

sensors / meters / mobile phones / cameras ...

closer to user

Edge

Core

less than a Watt ~ tens of Watts

tens of Watts ~ hundreds of Watts

tens of KWs ~ hundreds of KWs

several MWs ~ tens of MWs

Capacity

 

Fig. 1. From the core cloud to the edge devices: computing systems of different scales. 

 

2.2 Synonyms and Related Concepts 

The idea of computing near the edge is not new. It has been used for file sharing 

in early days. A well-known example is peer-to-peer (P2P) system [Androutsellis-

Theotokis et al. 2004] which is a distributed application architecture that partitions 

tasks or workloads among peers. EdgeComputing [Davis et al. 2004] is a term first 

coined by Akamai, describing the architecture of content delivery network (CDN). 

EdgeComputing delivers content from cache servers located at the network edge, 
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closer to customers. Doing so ensures faster download time and better response time 

for interactive tasks, particularly when the cache servers are well-chosen.  

In the meantime, mobile grid computing [Guan et al. 2005] mainly focused on the 

provision of grid services for mobile applications. Grid services can save device 

energy and storage space, hence reducing the size, weight, and cost of mobile devices. 

As mobile device users continue to grow, mobile cloud computing [Dinh et al. 2013] 

starts to attract increasing attention. It shifts end-user applications to a new era by 

jointly providing elastic storage and computation resources that augment the 

services. Both mobile grid computing and mobile cloud computing can be traced to 

the concept of “cyber foraging” [Satyanarayanan, 2001]. The purpose of cyber foraging 

is to augment wireless mobile system on demand by exploiting various resource-rich 

hardware infrastructures through ubiquitous networking.  

There have been recent proposals trying to leverage human elements in addition 

to physical and digital artifacts. For example, mobile crowd computing [Fernando et 

al. 2016] is a special form of mobile cloud computing that also treat mobile device 

users as a kind of resource. Similarly, edge-centric computing [Lopez et al. 2015] 

intends to bring data and computation to the network edge, with a focus on human-

driven applications. 

Another related concept is in-situ data processing. [Stanley-Marbell, 2011; Li et al. 

2015]. It is proposed for pre-processing of data in the field. It provides local data 

analytics in environmentally sensitive areas, or remote places that lack established 

utility infrastructure. Differently, the idea of in-situ analysis used in the scientific 

computing community and data management community normally refers to bringing 

computing to the data (in the memory or disk). This concept, also known as near-data 

processing, allows for reducing I/O overhead for compute-intensive workloads [Zhang 

et al. 2012; Lakshminarasimhan et al. 2013; Babarinsa and Idreos, 2016].   

2.3 A Comparison of Edge-Oriented Computing Paradigms/Models 

We compare different concepts by presenting fourteen design features. As shown 

in Table I, the fourteen features are divided in to three categories: 1) underlying 

infrastructures that look at the required types of hardware, 2) operation mechanisms 

that are related with the management and control of the platform, and 3) service 

types that highlight the results and performance of the applications. 

2.3.1. Infrastructure. EdgeComputing [Davis et al. 2004] processes are designed to 

run on Akamai’s virtualized edge server environment. Load balancing is required to 

prevent overloading of any particular computer or application. Limited computing 

resource is a major issue faced by mobile edge computing [Orsini et al. 2015], mobile 

crowds computing [Dinh et al. 2013], and mist computing [Martin et al. 2015]. A 

common denominator of these concepts is that they rely on endpoint devices that 

have limited computing capability. For fog computing and in-situ processing [Li et al. 

2015], resource-rich server clusters might be used to process data locally. Like mobile 

cloud computing, edge-centric computing [Lopez et al. 2015] uses a hybrid system 

architecture that combines cloud resources with mobile terminals.  
Energy and power constraints are not big concerns for some early proposals (e.g., 

peer-to-peer computing [Androutsellis-Theotokis et al. 2004] and mobile grid 

computing [Guan et al. 2005]) utilizing stable resources. Since mobile phones and 

sensors typically have battery life issues, power management is crucial for computing 

paradigms such as mobile crowds computing [Dinh et al. 2013] and mobile edge 

computing [Orsini et al. 2015]. Differently, in-situ processing systems [Li et al. 2015] 

incur a power availability issue as intermittent energy sources are used.  
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Table I. Comparison of Different Concepts for Data Processing Near the Edge 
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Almost all the above concepts focus on local data processing, with the exception of 

mobile cloud computing. It emphasizes computation offloading, e.g., moving certain 

part of code/states to the cloud. In Table I, the location of data files vary greatly for 

different computing paradigms, but still at the edge. For example, the data can be 

spread over local PCs, cache servers, grid computers, and nearby mobile devices.  

The availability of underlying resources can be affected by different factors. For 

example, mobile cloud computing requires stable connection to specific cloud services, 

while in-situ processing requires sufficient renewable power budget. Managing 

frequent node disconnections and randomly joined new devices must be considered by 

mobile crowd computing [Fernando et al. 2016]. In a peer-to-peer computing 

environment, node dynamics (failure or departure) may cause service disruptions to 

the downstream peers.  

2.3.2. Operation Feature. It is not unusual for edge-oriented designs to interact with 

a central platform such as the cloud. This can be seen in EdgeComputing [Davis et al. 

2004], mobile cloud computing [Dinh et al. 2013], as well as edge-centric computing 

[Lopez et al. 2015]. Oftentimes, the cloud is positioned to play a significant role in the 

ingestion and processing of ubiquitous data. Other than relying on the cloud data 

center for system coordination, all the surveyed computing paradigms choose to 

enable certain degree of autonomy by placing the major control logic on edge 

machines. As a result, edge computing systems can assign computation, perform 

synchronization, control storage, or adapt to local environment responsively.  
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Context-awareness is a key advantage of many edge-oriented computing systems. 

Human factors (social interaction, personal activity, etc.) and physical environment 

(location, resource availability, etc.) are two major aspects of the context. Context-

aware computers could both sense and react based on their current environment. For 

example, the cache server of EdgeComputing can be used to enable personalization or 

customization of web services. Both mobile edge computing and mobile fog computing 

are able to infer their own location and make informed decisions based on the user 

mobility. To take advantage of renewable energy, in-situ processing systems consider 

the variability of local power budget. One thing that distinguishes edge-centric 

computing and mobile crowds computing from other concepts is the emphasis on 

human elements. Both proposals leverage human intelligence to solve issues (e.g. 

qualitative classification, human validation) that involve human-beavering sensing.  

2.3.3. Service Type. Two representative types of application that may benefit from 

near-data processing: interactive jobs and throughput jobs. Faced with constant 

influx of medium-sized data created by multiple machines, many edge-oriented 

computing solutions support real-time analysis and control. There have been prior 

proposals that concentrate on optimizing throughput tasks. For example, both peer-

to-peer computing and in-situ processing aim to maximize the throughput of data-

driven streaming/processing.  

From the perspective of service augmentation, existing proposals can be roughly 

grouped into 1) complementing cloud service, and 2) augmenting mobile service. For 

example, peer-to-peer computing and EdgeComputing are not designed to enhance the 

user experience of mobile users. Alleviating data center burden is not a major 

intention of mobile grid computing, mobile cloud computing, and mist computing.  

2.4 A Comparison of Existing System Units for Edge-Oriented Computing 

Over the years, various modular computing systems have been proposed along 

with different edge-oriented computing models. These systems are the basic building 

block for edge computing. Table II summarizes the main features of some 

representative system model and outlines their differences.  

2.4.1 Hardware Components. Prior works have exploited three types of hardware 

resources for computing on the edge: end devices, smart gateways, and local servers. 

At the extreme-edge of the network, mobile devices and sensor networks are able to 

work together to form a device cloud [Shi et al. 2015]. It is also feasible to tap into 

smart gateways (access point, set-top boxes) that have certain computing/storage 

capability [Su and Flinn et al. 2005; Savolainen et al. 2013, Alam et al. 2016]. As 

computer hardware continues to become more affordable, dedicated computers and 

servers would be placed locally to augment edge devices that have severe resource 

constraints [Satya et al. 2013; Li et al. 2015].  

2.4.2 Virtualized Environment. Like the cloud data center, fog computing nodes typically 

require virtualized environment to enable their functionalities. The virtualization 

approach varies from system to system. Hardware virtualization has been used to 

support multi-tenancy, elastic scaling, and tight resource management [Satya et al. 

2009, Li et al. 2015]. Oftentimes, wireless sensor network (WSN) virtualization is the 

crux of building a collaborative and efficient sensing application [Abdelwahab et al. 

2015]. In some cases, sandbox mechanisms can be used to provide a highly controlled 

environment. For example, Savolainen et al. [2013] uses JavaScript sandbox to 

manage downloaded programs and separate running services.  
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Table II. Summary of System Units Proposed for Data Processing Near the Edge 
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Edge Node 

[Chang et al. 2014] 
S L L - C S DP G P 

Fog Node 

[Dsouza et al. 2014] 
- - S H S T P G P 

Device Cloud 

[Shi et al. 2015] 
D - S H SO S P G P 

Fog Computer 

[Dubey et al. 2015] 
G - S O C S P S P 

In-Situ Server System 

[Li et al, 2015] 
S V S O S SB P S P 

Mobile Micro-Cloud 

[Wang et al. 2015a] 
G - S H SC S P G NS 

Mobile Fog 

[Alam et al. 2016] 
G V L H CO S P G S 

Mobile Edge-Clouds 

[Fernando et al. 2016] 
M - L H SC S P G P 

 

Many recent works chose light-weight OS-level virtualization. Chang et al. [2014] 

adopted Linux container (LXC) to run services on edge systems which have limited 

storage and processing capabilities. ParaDrop [Willis et al. 2014] is a framework that 

enables developers to design virtually isolated compute containers on various 

gateways. Unlike virtual machines, multiple containers share the same Linux kernel 

and therefore exhibit very small overhead. Emerging solutions like Docker allow 

dynamic packaging of an application and all its dependencies in a software container. 

Ismail et al. [2015] introduced Docker container based edge computing and 

qualitatively evaluated its performance.  Pahl et al. [2014; 2015] have demonstrated 

the potential of Docker in improving the efficiency and interoperability of platform-

as-a-service (PaaS) on distributed edge clouds. Saurez et al. [2016] stored binaries for 

their fog application components on a Docker registry server and run task process in 

a Docker container. Yangui et al. [2016] leveraged containers to facilitate the test, 

deployment, and execution of their Cloud/Fog hybrid services. Machen et al. [2016] 

considered live migration using container in the edge computing environment. 

2.4.3 System Scale. Depending on the services provided and the system topology, fog 

systems scale from sensors that cover a person or neighborhood area to a regional 

platform that is responsible for a large community. Most of the fog nodes are 

localized, such as the Cloudlet for mobile services [Satya et al. 2009], In-Situ Server 

Systems for bulk data analytics in the field [Li et al. 2015] and Fog Computer for 

smart body sensing [Dubey et al. 2015]. In some cases, a Combine Cloud/Fog system 

such as Mobile Edge-Clouds [Fernando et al. 2016] may cover a broader area.  

2.4.4 Resource Type. Fog computing nodes may come in different form factors, and they 

can be deployed in various environments. Consequently, many dynamically-

established edge computing systems such as the Device Cloud [Shi et al. 2015] are 
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normally a pool of heterogeneous resources. Another example is the architecture of 

Mobile Fog [Alam et al. 2016], which is considered a mix of access point (AP) and the 

access point controller (APC) units. Note that fixed devices or stationary resources 

may manifest themselves as homogeneous (or less heterogeneous) systems. For 

example, Edge Cache [Ramaswamy et al. 2007] servers are standard system 

implemented using pre-fabricated machines; Fog Computer [Dubey et al. 2015] and 

In-Situ Server System [Li et al. 2015] are small or medium scale systems designed 

for preprocessing near the data acquisition site. There is not a strong motivation for 

integrating heterogeneous hardware resource in them.  

2.4.5 Operation Mode. Some cloud surrogate can provide continuous service even if the 

cloud is temporarily unavailable. Since a Cloudlet only contains soft state (cached 

data/code) that is available elsewhere, it is highly resilient. In addition, the synthesis 

process of Cloudlet is independent of the cloud datacenter, and therefore it can serve 

mobile devices in case of WAN failures. In other cases, such as Spaceify nodes, 

Internet connection is necessary. Sometimes, nodes just need to cooperate with each 

other to share data and improve performance [Ramaswamy, et al. 2007].   

2.4.6 Workload Type. In the IoT era, time-series data is an important type of workload. 

Sensors dynamically collect data and send them to the cloud via various fog systems 

[Dubey et al. 2015]. To ensure low-overhead, it is crucial to preprocess time-series 

data. In addition, bulk files or batch jobs can be seen in the fog era. For example, 

InSURE [Li et al. 2015] is able to pre-process bulk data (Hadoop jobs) onsite.  

2.4.7 Major Function. The task performed by a fog system generally falls into three 

roughly divided categories. The first is to provide application caching and content 

delivery. Representative examples include Edge Cache [Ramaswamy, et al. 2007] and 

Nano Data Center [Laoutaris et al. 2008]. The second is to provide a computational 

presence in the proximity of the end-user. In this case, the fog systems can be 

leveraged to augment nearby devices (e.g., Cloudlet) or preprocess data to reduce 

data movement overhead (e.g., In-Situ Servers). Finally, in some cases, the fog 

computing platform is mainly designed to efficiently integrate and coordinate 

ubiquitous devices [Savolainen et al. 2013; Dsouza et al. 2014].  

2.4.8 Usage Scenario. Researchers have explored building both a general model for fog 

computing or a specialized fog system. Systems such as Edge Node and Cloudlet 

provide a more generic interface for users. In contrast, several system designs are 

proposed to solve a specific usage scenario. For example, Nano Data Center 

[Laoutaris et al. 2008], is primarily designed for facilitating content delivery on the 

edge. They lack the capability of managing various IoT devices. Combining local 

computing systems with standalone renewable energy systems, in-situ servers 

mainly focusing on processing raw data generated in the remote area.  

2.4.9 Evaluation Approach. Both real systems and simulators are indispensable 

evaluation platforms for fog studies. Most of the prior works demonstrate their 

design via scaled-down prototype or real measurement on a testbed. Trace-based 

simulation has been used to simulate various techniques for edge systems that are 

economically impractical to build in a lab [Ramaswamy, et al. 2007]. In some cases, 

numerical analysis and event-driven simulation are used to validate the effectiveness 

of optimization algorithms [Wang et al. 2015a, Wang et al. 2015b].  
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3. ARCHITECTURAL EXPLORATION  

Research on edge-oriented computing is still at its beginning. Currently there is no 

universally accepted open standard available. Most of the prior articles refer to edge 

computing as a platform with layered architecture. Based on the “4+1 Architectural 

View Model” [Kruchten, 1995], we classify existing proposals into two groups: 

physical architecture and logical architecture. 

3.1 Physical View of the Hierarchical Design 

The physical architecture depicts edge computing infrastructure mainly from a 

system engineer’s point view. It is concerned with the topology of edge components. 

3.1.1 Three-Tier Design. It is typical to treat fog as an additional layer between the 

core cloud and the edge devices today. Such a Cloud-Fog-Edge three-tiered 

architecture has been recognized in many prior works [Stojmenovic and Wen, 2014; 

Papageorgiou et al. 2015; Dastjerdi and Buyya, 2016]. In the remainder of this article, 

we will use this topology when discussing resource management approaches. 

The fog layer offers great opportunity for alleviating edge devices from severe 

resource constraints. For example, Cloudlet [Satyanarayanan et al. 2009] is a classic 

fog system sitting between remote cloud and mobile devices. Cloudlets are widely 

dispersed, discoverable cloud surrogates that are one hop away from mobile devices. 

It usually resembles a cluster of virtualized high-performance computers with high-

bandwidth network. In contrast to Cloudlet, Spaceify [Savolainen et al. 2013] focuses 

on edge services enabled by lightweight web technologies. The concept of Spaceify 

aims at digitalizing a richer portfolio of computing resources that may be available in 

the physical space. In its client-edge-server model, the edge node is generally a smart 

gateway or access point that integrates devices in the physical space. Importantly, 

the edge node is also able to offer its own computing and storage resources to support 

users in proximity. Similarly, NECtar [Papageorgiou et al. 2015] also treats smart 

gateway as the key bridge between the core cloud and the fog. NECtar agents run on 

a gateway close to the data source. Data are collected at the gateway and propagated 

through the network core to the backend system (e.g., cloud database). The gateway 

provides computing capabilities that can be leveraged to preprocess raw data. 

By adding a fog layer, one can greatly improve the scalability of cloud. Xu et al. 

[2011] explored the scalability issue of cloud-fog system in smart cities. Cloud data 

centers can be easily overwhelmed by massive numbers of sensors that request 

services. A three-tier architecture called CEB (cloud, edge, and beneath) is proposed 

to manage the scale of the cloud-sensor system. Cloud of Things [Abdelwahab et al. 

2015a] is another highly scalable architecture for sensing as a service (SaaS). It 

consists of three main elements: IoT devices, first-tier clouds, and cloud agents. First-

tier clouds are conventional cloud data centers and cloud agents are trusted and 

resource-rich components near the network edge. Depending on the types of devices 

they serve, cloud agents can be either powerful servers or flexible smartphones. 

The fog components are often characterized by their non-functional properties 

such as real-time behavior and availability. Many fog services have been designed 

with the non-functional properties in mind [Steiner et al. 2016]. For example, real-

time behavior is especially important in the Industrial Internet of Things (IIOT) 

domain, in which information exchange must be fulfilled within milliseconds or even 

microseconds. To ensure the quality of service in the telehealth domain, Dubey et al. 

[2015] proposed a three-layer fog-based sensing system that is composed of a body 

sensor network (BSN) for data acquisition, a fog gateway computer for onsite 
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analytics, and a cloud platform for back-end support. Its fog gateway computer can be 

implemented using low-power microprocessors such as Intel Edison. 

As an intermediate system layer between cloud resources and edge devices, fog 

components also bring cloud more context awareness [Aazam and Huh, 2015]. With 

localized fog system, it becomes much easier to capture some crucial context 

information like resource availability, mobility pattern, intermittent connectivity, etc. 

[Abdelwahab et al. 2015a]. This information allows one to make informed decisions 

towards a more adaptive system [Orsini et al. 2015]. 

3.1.2 Four-Tier Design. In the four-tiered architecture, the fog is generally divided 

into two sub-layers based on servers’ capacity and vicinity to users. For instance, 

Bonomi et al. [2012] first gave a high-level architectural view of the fog distributed 

infrastructure for IoT. This work describes the fog computing system mainly from a 

network perspective. The four architecture layers are cloud data centers, network 

core, network edge, and embedded systems (endpoints). 

Tang et al. [2015] highlighted a 4-layer fog computing architecture in emerging 

smart cities. The proposed architecture places the cloud data center at the top (Layer 

1) and treat fog as a three-layer system with end user devices included. Layer 2 

consists of a number of intermediate computing nodes that target community-level 

services. Layer 3 has a group of edge computing nodes for neighborhood-wide area. 

Layer 4 at the bottom is sensing networks on critical infrastructures. 

Chang et al. [2014] introduced the architecture of Edge Cloud with edge nodes as 

basic building blocks. Edge nodes interact with mobile devices and provide low-

latency, bandwidth-efficient, and resilient services to end users. Edge nodes in the 

same network are grouped together to form an Edge Zone. The Edge Cloud is the 

federation of cloud data centers with edge zones. 

In a recent work by Souza et al. [2016], researchers have investigated the 

architecture of Combined Fog-Cloud (CFC). This topology model also vertically 

distributes computing servers in four layers. Between the top (cloud) and the bottom 

(end-user devices) layers are two fog layers. The first fog layer is composed of low-

latency nodes that are one hop (wireless access connection) away. In the second fog 

layer, computing nodes of medium capacity and latency are deployed to provide data 

aggregation service in a neighborhood area network (NAN). 

3.2 Logical View of the Hierarchical Design 

The logical view is concerned with the functionality that edge computing would 

provide to its users. In other words, the logical architecture describes the functional 

requirements taken from the problem domain. 

3.2.1 Three-Tier Architecture. Bonomi et al. [2014] described three key factors for fog 

software architecture. The proposed design comprises the following layers: IoT/IoE 

verticals layer, fog orchestration layer, and fog abstraction layer. This architecture 

aims at coordinating heterogeneous resources that span core service, edge services, 

and endpoints. The orchestration layer supports data aggregation, decision making, 

service migration, etc. The abstraction layer is mainly designed to expose a uniform 

interface to the clients and hide the heterogeneity of the platform. Dsouza et al. [2014] 

extended this logical architecture by adding a policy management module at the 

orchestration layer to enhance the capability of security management. 

Xu et al. [2014] describes a service-oriented architecture that can automate the 

integration of sensors. The system is mainly composed of a cloud middleware for 

cloud sensing service, an edge middleware for edge sensing service, and a sensor 
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platform for data acquisition. Servers in the edge layer are used to cache selected 

applications to slow down the growth of cloud dimension. 

3.2.2 Many-Tier Architecture. Researchers have proposed various ways of sub-

dividing an edge computing system into many smaller layers. Each layer is a 

collection of similar functions that provide data/services to the layer above it and 

received data/services from the layer below it. For example, a three-layered IoT 

architecture can be extended to be composed of five layers: business, application, 

processing, transport, and perception [Wu et al. 2012, and Khan et al, 2012]. 

Based on the basic data processing tasks that edge computing system can offer, 

Aazam and Huh [2015] showed a more elaborated 6-tier architecture. At the physical 

and virtualization layer, various physical/virtual devices are managed and 

maintained. At the monitoring layer, the system collects crucial statistics 

(performance, energy, etc.) of the underlying hardware. At the preprocessing layer, 

the fog refines data, analyzes data, and distills key knowledge. The obtained 

information is then stored in the temporary storage layer. Once the data has been 

delivered to the cloud and there is no need to keep a copy in local storage media, one 

can delete the data. Since edge devices frequently generate some private data, a 

security layer is added to handle sensitive data. Finally, the topmost transport layer 

is responsible for efficiently moving data to the cloud. 

Another six-layered general reference edge computing architecture has been 

proposed by Dastjerdi and Buyya [2016]. The architecture mainly consists of the 

application layer, the programming layer, the service layer, the management layer, 

the resource layer, and the IoT sensor/actuator layer. This architecture is more 

focused on the key functions that are required for delivering services to users. 

3.3 Architecture Level Optimization Strategies 

There have been many recent proposals of optimized architectures. These 

architectures normally feature finely-divided hierarchies or functionalities. We 

classify these optimization strategies into four groups based upon the number of 

physical layers and logical layers they have (Figure 2). The physical layer refers to 

the implementation of the edge computing infrastructure. Multiple physical layers 

mean the system is composed of physically different structures. The logical layer 

refers to system function and operating modes of the hardware. Multiple logical 

layers mean that the edge computing node may exhibit different runtime status.  

3.3.1 Single Physical Layer, Single Logical Layer (SPSL). Oftentimes these works use a 

traditional architecture with optimized software framework support. For example, 

Savolainen et al. [2013] described the open-source software architecture of their edge 

nodes, which are decomposed into three layers: the operating system layers 

(GNU/Linux), the application layer, and a JavaScript sandbox layer. Each node runs 

downloaded services called Spacelet, which allows external service providers to run 

software on demand on the edge nodes. Papageorgiou et al. [2015] introduced a 

streamification method for IoT data reduction at the network edge. The edge devices 

dynamically select appropriate data handlers as different IoT data sources require 

different data reduction techniques. Yangui et al. [2016] proposed a software 

framework based on the extension of existing platform-as-a-service (PaaS) to 

automate application provisioning in a hybrid cloud/fog environment. Manzalini and 

Crespi [2016] introduced the edge operating system which integrates software 

defined network (SDN) and network function virtualization (NFV).  Liang et al. [2017] 

discussed a hierarchical control strategy that combines SDN controller and local 
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controllers. The SDN controller manages the whole network and local controllers 

responsible for handling latency-sensitive requests.  

3.3.2 Single Physical Layer, Multiple Logical Layers (SPML). This type of optimization 

aims to enhance the efficiency of a specific layer in the edge-oriented computing 

systems. For example, Willis et al. [2014] proposed to dynamically leverage gateways 

in a multi-tenant fashion. They propose to share CPU cycles, unused memory 

capacity and extra disk space from the gateway devices for fog acceleration. The pull 

and push modes of edge systems have been investigated for better energy efficiency 

[Xu et al. 2011]. Abdelwahab et al [2016] designed a pull-based memory replication 

protocol for minimizing cloud-edge communication overhead. Li et al. [2016] 

leverages different system and performance states of servers to improve the energy 

flow in an in-situ server cluster.  

3.3.3 Multiple Physical Layers, Single Logical Layers (MPSL). Instead of severing users 

using a flat collection of fog servers, Tong et al. [2016] further proposed to deploy 

hierarchical edge cloud. In other words, the fog layer is composed of a tree hierarchy 

of server nodes. The system tends to assign tasks to lower tiers of servers first. 

During peak hours, it opportunistically place loads at higher tiers in the hierarchy. 

With appropriate task placement, this architecture is shown to be effective in 

improving resource utilization and reduce execution delay. This type of architecture 

is an extension of the four-tier edge node [Chang et al, 2014; Tang et al. 2015]. The 

major difference is that Tong et al. [2016] maintained one uniform fog layer with 

finely-divided hierarchies.  

3.3.4 Multiple Physical Layers, Multiple Logical Layers (MPML). There have been several 

works exploring heterogeneous hierarchical fog nodes. Giang et al [2015] proposed 

three generic abstractions for fog nodes: 1) edge nodes that produces data, 2) IO 

nodes that broker communications with edge nodes, and 3) compute nodes that are 

responsible for processing. Different from IO and compute nodes, the edge nodes are 

typically not reconfigurable and programmable. A distributed dataflow programming 

model is proposed to ease the development process for such three-layered fog 

environment.   Similarly, volunteer nodes can choose to participate as a data node or 

a compute node [Ryden et al. 2014].  Faruque et al. [2016] further spatially divided 

edge devices into multiple zones. By dividing sensor devices into access-point, base 

station, and end devices, one can increase the range of the sensor network.  

4. MANAGEMENT APPROACHES 

This section presents a detailed taxonomy of fog computing with respect to three 

different resource management levels. As shown in Figure 3, they are: back-end 
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Fig. 2. Diagrams comparing different types of architecture-level exploration 
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cloud infrastructure, edge systems, and front-end smart devices. The edge system 

includes both server-based edge and local edge systems.  

Back-end infrastructure can be either a few centralized large-scale cloud data 

centers [Chandramouli et al. 2012] or many geographically distributed cloud data 

centers [Fricker et al. 2016]. A common resource management challenge is to smartly 

distribute tasks of varying characteristics in the Cloud-Edge environment.  

On-premise computing systems play a key role in the post-cloud era as well. They 

are local resource-rich facilities that could be leveraged to support data- and 

compute- intensive tasks created by ubiquitous edge devices. These systems are 

deemed as local surrogates that operate on behalf of the remote back-end systems.  

Finally, as much as the edge devices are considered as enormous and ubiquitous, 

edge computing is only worth implementing with a legitimate resource allocation 

method, which would otherwise turn data processing into chaos. Unlike cloud centers, 

edge devices are more diversified and therefore more complicated.  
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Fig. 3. A taxonomy of edge-oriented resource management approaches 

4.1 Hybrid Provisioning 

Hybrid provisioning recognizes that centralized cloud resources are unsuited for 

processing ubiquitous data due to inefficient and expensive data movement. Hybrid 

Provisioning provides a unified view of cloud resource and edge resource. With hybrid 

provisioning, cloud and edge resources can complement and augment each other.   

An important attempt is to enable leverage distributed systems sitting at the 

network edge to enhance the performance of cloud infrastructure. Chandra et al. 

[2009] describes several classes of services for which cloud computing may not fit well. 

Dispersed-data-intensive services, experimental cloud service, as well as non-

commercial shared services all have problems with the pay-as-you-go cloud model. 

The authors proposed to enrich centralized cloud with volunteer dispersed computing 

resources to satisfy the requirements of such services. Sundarrajan et al. [2011] 

devised a new model called Nebula, which features dispersed computing resources, 

context-aware scheduling, and cost-effective management. An enhanced version of 

Nebula [Ryden et al. 2014] further supports data-intensive computing framework 

(e.g., MapReduce) on edge resources. 

There have been other projects that exploit the efficiency presented by hybrid 

resource provisioning to enhance end user experiences. Cloud4Home [Kannan et al. 

2011] aims at providing seamless data storage services on local/private and 

remote/public systems. It uses a distributed key-value store to build a uniform 

interface for data access, resource monitoring, and request routing. Personal Cloud 

(PCloud) [Jang et al. 2013] focuses on gracefully combines remote cloud resources 
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and local machines to improve mobile device capabilities. It gracefully maintains a 

pool of network-reachable resources for each end user.  

To enable efficient execution of data-intensive tasks on such a cloud-edge hybrid 

system, resource management decisions must take into account job characteristics 

and system dynamics. For example, Cloud4Home queries node resource information 

and determines the most suitable node that supports a request. The coordinator of 

PCloud rates each candidate resource according to the network connectivity 

conditions and a specific metric called performance index (PI). Nebula uses a scoring 

function to rank data nodes based on network bandwidth, service latency or 

proximity to the requesting user to reduce performance overhead.  

4.2 Task Placement 

Recent years have witness a shift in resource management focus from central 

cloud data center to distributed cloud systems [Hao et al. 2014]. Importantly, there is 

a growing interest in resource selection and service allocation problem considering 

different properties of in-cloud (i.e., within central/distributed cloud data center) and 

in-situ (i.e., near the dispersed data source) resources.  

Several studies aim to find a desirable design tradeoff in the so called Cloud-Edge 

topology [Chandramouli et al. 2012], Combined Fog-Cloud (CFC) system [Souza et al. 

2016], or Fog-to-Cloud (F2C) environment [Masip-Bruin et al. 2016]. The basic 

observation is that in-cloud compute nodes typically have the capacity and capability 

of high-performance data processing, whereas in-situ compute nodes exhibit less 

network communication cost and better responsiveness to local request.  

Chandramouli et al. [2012] considered cloud as an important communication hub 

for massive edge systems and focused on a class of applications that need to 

join/correlate edge data in real time. This work uses a cost-based optimizer to find 

the optimal task placement such that the global communication cost can be 

minimized. Souza et al. [2016] classified edge computing services into two distinct 

types: 1) a big amount of light-weight services and 2) a small number of resource-

hungry services. In this work, resources are represented using slots and the latency 

due to edge device interaction is considered. To optimize the Quality of Service (QoS), 

the authors formulated the service allocation as an ILP problem. Differently, Deng et 

al. [2016] proposed to solve the workload allocation problem through convex 

optimization techniques. Specifically, the authors decomposed the problem into three 

sub-problems: a convex optimization problem with linear constraints (power-delay 

tradeoff for fog), a mixed-integer nonlinear programming problem (power-delay 

tradeoff for cloud), and a job assignment problem that can be solved in polynomial 

time (communication latency minimization for traffic dispatch). Kang et al. [2017] 

showed that cloud-edge hybrid systems for machine learning must consider the load 

variation of each layer within a deep neural networks (DNNs) workload. The authors 

propose a fine-grained layer-level scheduling mechanism that can improve end-to-end 

latency while greatly saving mobile energy consumption. 

In addition to the cloud-fog co-optimization, load placement among distributed 

micro data centers or has been explored. In the context of fog computing, some small-

scale data centers could be easily overwhelmed if not scheduled appropriately. 

Steiner et al. [2012] showed how a network-aware data center scheduling can 

improve service for edge applications (e.g., virtual desktop). Their algorithm uses the 

live measurements of the network conditions and data center load to calculate an 

overall score for each data center. The score can be used to guide service placement 

and migration. Other than optimizing load placement using simple heuristics, 
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Fricker et al. [2016] qualitatively evaluated the gain achieved by the collaboration of 

data centers in the context of fog computing. This paper models a simple scenario: 

when one request cannot be accommodated by a data center, it may be forwarded to 

another one that has adequate capacity.  

4.3 Distributed Caching 

Edge caching grows out of the concept of content delivery networks (CDNs). 

Caching often-requested data on the logical edges of the Internet is an important way 

to better deliver dynamic Web content [Davis et al. 2004].   

Considering the trends towards more cost-efficient server hardware, companies 

are becoming willing to deploy computer resources at the edge level. Caching user 

content from remote cloud to a collection of edge nodes near the users help alleviate 

the burden of today’s over-subscribed data center. In addition, it can minimize 

communication overhead across the wide area network and reduces service latency. 

Gao et al. [2003] showed that smart data replication at edge server system could 

provide 5X performance improvement over conventional centralized architecture. Lin 

et al. [2007] aimed to provide full consistency for edge content and proposed a replica 

control protocols that execute all the transactions locally. Malandrino et al. [2016] 

studied various caching schemes from core-level switches to individual base stations. 

Using realistic large-scale data traces, they show that vehicular networks make a 

strong case for the adoption of mobile-edge caching.  

In addition to the performance issue, Xu et al. [2014] further looked at cloud 

scalability in the smart city era. Caching data at the distributed edge servers 

contributes to the growth slowdown of cloud, thereby alleviating the scalability issue. 

They proposed an Application Fragment Caching Algorithm which selectively puts 

cacheable parts of an application on to the edge server according to the anticipated 

benefit of the caching activity. This mechanism aims at maximizing the reduction of 

the resource usage in cloud components.  

As a tremendous amount of datasets are coming from end users, application 

caching becomes increasingly important. For example, in the fifth generation (5G) 

wireless networking era, Telco datacenters demands decentralized and flexible 

architectures where predictive resource management plays a crucial role. Caching 

strategic contents locally at base stations (BS) allows for higher user satisfaction and 

backhaul offloading. Zeydan et al [2016] investigated proactive content caching in 5G 

wireless networks. A general big data processing framework for analyzing users’ data 

traffic is discussed. The purpose of this platform is to store users’ data traffic and 

extract useful information for proactive caching decisions.  

In the fifth generation (5G) era, cloud radio access network deploys a centralized 

baseband signal processing unit (BBU). BBU is responsible for the baseband 

processing of a set of remote radio heads (RRHs). RRHs are radio transceivers that 

have become the crux of distributed base stations today. In the fog era, RRHs are 

equipped with storage and signal processing functionalities to form enhanced RRHs.  

Park et al. [2016] studied fog radio access network as a cache-aided system. RRH can 

be equipped with storage and signal processing functionalities to form an enhanced 

RRH. Edge caching can be performed to prefetch the most frequently requested files 

to the eRRHs’ local caches during off-peak traffic period. By coordinating processing 

at the BBU and at the eRRHs level, one can maximize the delivery rate while 

satisfying fronthaul capacity and RRH power constraints.  

In recent years, another line of works is about cloud gaming, in which games are 

stored and run on the cloud. To ensure a desirable online gaming experience, the 
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transmission delay of the game videos should be no more than 100ms [Jarschel et al. 

2011]. Lin and Shen [2015] proposed to build edge server (called supernode) to render 

game videos and stream them to nearby players. The supernode can adaptively 

adjust the encoding rate of different game videos based on their degrees of tolerance 

for lower quality. An improved version of the supernode design further considers the 

impact of social network [Lin and Shen, 2016]. The insight is that assigning social 

friends to the same supernode can lower data communication overhead.  

To reduce transaction latency, Romano and Quaglia [2014] proposed to route 

transactional requests to the origin sites through multiple edge cache servers. A 

protocol has been devised to identify the fastest data delivery path through a self-

exclusion process of less responsive edge cache servers. The proposed server selection 

scheme is lightweight since it does not require very complex coordination among 

geographically dispersed edge servers.  

Cooperation among edge caches is a key technique that can be used to enhance 

the capabilities of edge cache networks serving highly dynamic Web content. If the 

requested document is not available locally, the edge server can first contact nearby 

nodes to retrieve the document rather than turn to remote servers. Ramaswamy et 

al. [2007] demonstrated that cache cooperation can provide significant benefits to 

edge cache networks. Some challenges include cache placement problems, how to 

setup and maintain (cooperate and build groups), how to handle dynamism and 

adaptivity, and manage utilization. The authors have incorporated several strategies 

for improving the efficiency and effectiveness of cooperation.  

4.4 Computation Offloading 

Offloading is the leverage of external resource-rich system for extending the 

capabilities of mobile systems. In the case of computation offloading, the end user 

application can be partitioned so that the most computation-intensive operations can 

be moved to a resource-rich cloud surrogate such as Cloudlet [Satyanarayanan et al. 

2009]. Offloading is often preferable if the application requires high amount of 

computational processing and low amount of data communication. Most research 

efforts focus on offloading computation rather than data. For instance, CloneCloud 

leverages the great computation capability of the cloud to accelerate the execution of 

a selected portion of its mobile applications [Chun et al. 2011].  

Flores et al. [2014] compared different mobile cloud computing models, namely, 

offloading and delegation. Computation offloading allows users to take advantage of 

external computing resources and storage capacity. Task delegation is a different 

concept which aims at enriching the functionality of the device instead of alleviating 

its component from the burden of performing resource-/energy- intensive operations. 

Many previous works have investigated the offloading strategy in terms of where, 

when, and what to offload. Rudenko et al. [1998] demonstrated that a great amount 

of energy can be saved through computation offloading. Huertacanepa et al [2008] 

leveraged both historical execution data and current system status to perform 

adaptive offloading. Xian et al. [2007] proposed and efficient timeout scheme for 

computation offloading to improve the efficiency on mobile devices.  

The performance of mobile offloading can be greatly affected by the wireless 

network connectivity [Barbera et al. 2013]. Hu et al [2016] quantified how cloudlets 

impact different metrics such as response time and energy consumption relative to 

cloud offload. The paper shows that offloading to a distant cloud can result in even 

lower performance and higher energy costs than running locally on the mobile device. 

For highly interactive applications, even offloading to nearby clouds can be 
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detrimental to performance. Even for offloading over LTE, edge computing continues 

to provide superior results. Their results also show that offloading computation 

blindly to the cloud can be a losing strategy.  

Recent effort has focused on more complex computational offloading problem. For 

example, Oueis et al. [2015] did not treat the edge cloud as a pre-established system, 

but as a dynamically formed cluster. The composition of the cluster varies according 

to the service request. Orsini et al. [2015] further considered the context information 

of various mobile edge applications. With connectivity prediction, the proposed 

framework is able to foresee the effectiveness of offloading decisions. Instead of 

pushing memory replicas from the device to the cloud, Abdelwahab et al [2016] 

showed that pulling the replicas from the IoT devices can be more efficient. They 

proposed a protocol for computation offloading in the LTE environment with support 

of massive IoT devices. Gu et al. [2015] integrated fog computing and medical cyber-

physical systems to host virtual medical applications. Data must be uploaded to the 

associated base stations (BSs) before being routed to a service instance. The authors 

jointly investigate BS association, tasks distribution and VM placement.  

While most works have addressed the single-user computation offloading, 

Sardellitti et al. [2014] considered a much more general context: multiple mobile 

device users requesting computation offloading of their applications to the cloud. 

They formulated the problem as the joint optimization of the mobile radio resources 

and the computational resources. Alam et al. [2016] proposed a multi-agent based 

code offloading mechanism. To handle the dynamicity of resource requests, the 

method uses distributed reinforcement learning algorithm. Chen et al. [2016] also 

looked at the way to efficiently coordinate multiple wireless mobile devices for 

computation offloading. Differently, they proposed a game theory based approach 

that considers users interests during computation offloading.   

4.5 Content Preprocessing 

The desire to minimize the data movement overhead drives research on 

examining and pre-processing raw data at the edge. What is of particular interest is 

data in the form of time series, which are the primary kind of data in the IoT era. 

Surveillance camera, mobile phones, metering sensors all attempt to forward huge 

amount of time-series data (video, speech, text, etc.) continuously and in real time. 

Data reduction and data prioritization are two major approaches for content 

preprocessing.  

General data reduction/compression technique includes sampling, summarization, 

and approximation. Oftentimes, more than one data reduction techniques are used to 

preprocess data at the edge. For example, in addition to general loss-less compression 

such as GNU zip, Fog Data [Dubey et al. 2015] uses lossy data reduction methods 

(feature extraction and pattern mining) to reduce overhead. Song et al. [2016] focused 

on structured files and proposed a content-oriented method that decomposes a file 

into objects according to its structure. To facilitate the switching among different 

data reduction algorithms at the edge, Papageorgiou et al. [2015] proposed NECtar, a 

unified data handling interface. NECtar agent is based on identifying PIP 

(Perceptually Important Points) and is able to make data reduction decisions per 

incoming data item (e.g. stream data).  

Due to limited network bandwidth and energy capacity, data prioritization is 

very important for wireless multimedia big data. A common approach is to first 

determine the relative importance of different video frames, and then efficiently 

deliver the multimedia content to the cloud. Vigil [Zhang et al. 2015] aims at 
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optimizing the number of specified objects uploaded to remote data center while 

minimizing the bandwidth requirements. Vigil gives priority to more critical frames, 

especially when the wireless capacity is very limited. Wang et al. [2016] introduced 

the idea of multimedia sensing as a service (MSaaS). The resource allocation of 

MSaaS can be formulated as a video quality-aware (i.e., premium data vs. regular 

data) optimization problem with energy as major constraints. It has been further 

broken down into three sub-problems with regard to the frequency domain, the 

spatial domain, and the temporal domain.  

4.6 Service Migration 

One important aspect of edge resource management is to determine the location 

(in terms of which edge node) of running the service. Edge nodes are generally 

responsible for a relatively small geographical area. They are required to be deployed 

in close proximity to users to provide low-latency service access. A shared storage 

with ultra-high speed network connection is generally not available. Therefore, as a 

user moves across different locations, the service applications often need to be 

migrated to follow the user so that the benefit of edge computing is maintained.  

Taleb and Ksentini [2013] investigated the performance of service migration 

following user mobility and confirmed the advantages of service migration.  

To determine whether or not the service should be migrated out of the original 

host edge system, researchers have considered the distance between the user and the 

service as a key parameter. Service migration incurs a cost that is considered to be a 

non-decreasing function of the distance. If we choose not to migrate, the migration 

cost is zero. However, the user still incurs a transmission cost due to the need to get 

connected to a remote service provider. Researchers have analyzed the above problem 

using Markov Decision Process (MDP) [Urgaonkar et al. 2015]. Ksentini et al. [2014] 

proposed mobility-driven service migration in the one-dimensional (1-D) scenario 

based on MDPs, while Wang et al. [2015a] considered a more realistic two-

dimensional (2-D) mobility. Wang et al. [2015b] further pushed the theoretical 

results on step closer to practice. They evaluated the above scheme using real-world 

data and experimented with an emulated environment that contains one centralized 

cloud data center and multiple distributed micro data centers.  

Service migration techniques are mainly used to handle streaming applications 

from widely distributed devices such as mobile sensor and camera [Ottenwalder et al. 

2014, Saurez et al. 2016]. The assignment of a computing node to perform the stream 

processing has a significant impact on latency and bandwidth. Ottenwalder et al. 

[2014] showed that the placement of the stream processing has to be constantly 

adapted through migrations to new computing node. The idea is to alleviate 

performance degradation and reduce network utilization by predicting future 

migration targets and planning migration before they are required. The Foglet 

[Saurez et al. 2016] implementation focuses on meeting quality of service (QoS) 

expectations and a balanced resource usage among fog nodes. It can automatically 

mange the migration of application from one node to another.  

Minimizing the impact of migration is also a crucial design consideration. It is 

often time consuming to copy program state during migration. It also takes time to 

actually offloading the data once a new edge node is discovered. Su and Flinn et al. 

[2005] proposed to dynamically make replicas of stateful applications to optimize the 

performance of mobile systems that have resource constraints. This allows the user 

to hide the perceived cost of migration. Other than virtual machine based migration, 

Rusta [Valvag, et al. 2013] choose to enable light-weight process migration between 



35:20                                                                                                                            C. Li et al. 
 

 

ACM Computing Surveys Vol. xx, No. x, Article x, Publication date: Month YYYY 

clines of a group. It aims at facilitating using resources both on the client machine 

and in the cloud environment. Teka et al. [2016] proposed to use multipath TCP to 

ensure constant TCP connection when performing live migration. This mechanism 

greatly reduces migration latency between neighboring cloudlets. Machen et al. [2016] 

proposed a generic layered migration framework. A copy of the base layer is stored on 

every edge node, so that it does not need to be transferred in every migration.  

4.7 Load Coordination 

In the context of edge-level resource management, another line of work aims to 

coordinate various edge nodes.  

Manjunath et al. [2004] introduced a client-server based multimedia 

management framework that allows edge users to adapt content, organize files, 

upload content, and share data with other machines. Grieco et al. [2005] proposed 

distributed dispatchers to dynamically balance the load (through round-robin 

strategy, least loaded node, etc.) on a cluster of heterogeneous edge machines.  

Sheikh et al. [2015] considered a nano data center consists of a group of edge 

servers (also referred as nano servers). The first heuristics is to find a server which 

can fulfill the user request in the minimum expected time. The second heuristic is to 

find nano servers that are least recently used. Such server is likely to be light loaded 

and the request can be finished soon as time to serve a request contributes to the 

total power consumption. Note that sending request to the least loaded machine may 

be problematic if load information is stale [Dahlin, 1999]. Machines that appear to be 

underutilized may quickly become overloaded. Grieco et al. [2005] evaluated a 

modified algorithm on edge-computing services: sending requests to the least loaded 

server from a randomly selected server subset. 

Recent works have started to adopt a software-defined approach. For example, 

Truong et al. [2015] proposed to combine fog computing and software defined 

networking (SDN) to coordinate tasks and resource for Vehicular Ad-hoc Networks 

(VANETs). Cellular base stations (BSs) and Road-Side-Unit Controller (RSUCs) in 

the VANETs are crucial virtualized equipment for enabling fog computing services. 

These BSs and RSUCs are coordinated by a SDN controller. With data profiling, the 

controller is able to maximize the utilities of vehicles, RSUCs, and RSUs. 

The software-defined approach has been applied to edge embedded systems as 

well. Zeng et al. [2016] introduced fog-based software-defined embedded system (FC-

SDES). The network edges (cellular base stations) are equipped with certain storage 

or computation resources. The authors investigated the interaction among embedded 

clients, a set of storage servers, and a set of computation servers. Consequently, the 

task completion time consists of three basic components, i.e., computation time, I/O 

time and transmission time. One can balance the workload on both client and edge 

side by jointly managing task scheduling and image placement.  

Lai et al. [2016] explored QoS-aware multimedia streaming service over fog 

computing infrastructures. There are three kinds of nodes: an index node, a center 

node, and a group of edge nodes. The center node sends multimedia content to edge 

nodes according to the path determined by an index node. A dynamic edge selection 

mechanism is proposed to balance the loading of overall cloud network based on the 

loading of edge nodes. Destounis et al. [2016] also studied the dynamic resource 

allocation that arises in network computation. They aim at designing a universal 

methodology and algorithm to adaptively allocate resources in order to support 

maximum query rate. Their algorithm could orchestrate utilization of computation 

and bandwidth resources by performing dynamic load balancing, data routing, etc.  
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Cardellini [2015] extended Apache’s Storm architecture to run a distributed QoS-

aware scheduler. The proposed new architecture is suitable for managing streams of 

fog data. It has a monitoring module for estimating intra-node and inter-node 

network information. Based on the monitored information, a scheduler automatically 

performs operator reassignment when unexpected environmental changes occur.  

4.8 Adaptive Provisioning 

Considering the dynamism and uncertainty of edge requests, intelligently 

adjusting the capability/capacity of compute nodes at the fog layer is often necessary. 

Fog components should be orchestrated as adaptive systems that are able to react to 

internal and external changes of various operating conditions automatically.  

A common way is to adjust the system by tuning operational parameter based on 

monitored information. Fog servers are believed to have the distinct advantage of 

obtaining the operating conditions (network congestion, device loading, etc.) local to 

an end user [Zhu et al. 2013]. One can therefore take advantage of some fog-specific 

knowledge of the environment to fine tune the system at real-time. Through a series 

of fog-based load scaling methods (reducing HPPT requests, adjusting web object 

sizes, and re-organizing webpage), researchers form Cisco [Zhu et al. 2013] showed 

that one can automate user-aware website performance optimization.  

Xu et al. [2011] invested adaptation of data acquisition method in a cloud-fog-

sensor environment. A push operation allows fog server to subscribe to a particular 

data source to receive continuous reading. When facing sporadic request, it is 

believed to be less economical due to excessive data transmission. In contrast, a pull 

operation represents on-demand data query that incurs a round-trip data 

communication overhead for each query. By properly mixing the two operations and 

fine-tuning data delivery, one can greatly improve performance and reduce energy.  

On the other hand, research efforts have been made in building elastic fog 

resource capacity. For example, upon dynamic capacity scaling, fog servers can be 

designed to dynamically split/merge tasks [Hong et al. 2013]. This allows one to 

create on-demand fog compute instances that may follow system status. ThinkAir 

[Kosta et al. 2012] is a mobile cloud computing framework with on-demand resource 

allocation capability. Considering the high variance of workload, ThinkAir puts more 

emphasis on the dynamic creation, reusing, and recycling of resources in the cloud.  

Aazam and Huh [2015] studied the model for resource prediction, reservation, 

and pricing in the fog. It allows for better capacity planning, service creation, and 

resource provisioning. To ensure that users can be served by edge servers with 

sufficient capacity, Yin et al [2016] explored how online service provider (OSP) cloud 

provision fog infrastructure with flexible server placements. They consider various 

pragmatic requirements such as cost budgets, performance requirements, traffic 

constraints and existing server deployments.  

While computing and networking dynamics are the primary reasons for system 

adaptation, there are more factors that need to be considered. An example is building 

fog server system running on local renewable energy sources. InSURE [Li et al. 2015] 

is a rack-scale green energy powered fog infrastructure for in-field processing. Since 

InSURE is more likely to be deployed in rural areas, batteries are necessary to store 

green energy and serve as energy buffer. Adapting server loads (through frequency 

scaling, VM checkpointing, etc.) to renewable energy availability and battery 

discharging behavior is necessary in this scenario. Otherwise the system may incur 

increased service disruption, reduced data throughput and increased energy loss.  
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4.9 Resource Pooling/Sharing 

Nowadays the edge layer is becoming highly dense. Various mobile devices and 

smart devices could form a fairly resource-rich computing environment that can be 

leveraged to support service [Miluzzo et al. 2012; Abedin et al. 2015; Flores et al. 

2016]. It can be treated as a special form of cyber foraging that offloading is 

performed primarily among resource-constrained mobile/fixed gargets [Shi et al. 

2012]. Undoubtedly, this approach enables a range of applications that need to 

leverage external resources in proximity to process data timely. It is especially 

important in scenarios that fixed cloud/fog infrastructure is unavailable, highly 

unreliable, or prohibitively expensive (e.g., military, disaster, and rural area).  

The dynamically formed resource pool is known to be device cloud [Fahim et al 

2013]. If needed, different device clouds can further be connected to various sensor 

networks. They can share their resources/services in a seamless manner though 

appropriate design patterns (e.g. REST) and protocols (e.g. CoAP) [Shi et al. 2015]. 

On the other hand, a device may not have to share resource with distant nodes. For 

some high-end devices, cooperative device pairing based on short-range device-to-

device (D2D) communication can be enough [Abedin et al. 2015]. 

Efficient edge services require fine-grained computation/data offloading at the 

device level. Recently, Wang al. [2017] proposed a graph partition based functional 

cell distribution scheme between the sensor node and data aggregator. Reiter et al. 

[2017] proposed a general model that uses edge resources to solve the energy and 

performance issue of mobile devices. The benefits of near-edge offloading have been 

evaluated in prior work [Fahim et al 2013]. Having larger portion of computation 

provides more energy conservation and time saving opportunities. For larger data 

sets, this gain reduces due to the overhead introduced by data communication.  

The resource management problem of device cloud can be even trickier. There is 

an important trade-off between reduced energy consumption and the gains from the 

cooperation with distant nodes. Increasing the number of cooperating devices allows 

for a larger pool of resources, while it requires more energy for data transmission to 

obtain the increased communication rage [Nishio et al. 2013].   

In addition to energy consumption, responsiveness is another important concern. 

For device cloud users, service delay is a straightforward measure of the decrease of 

quality of experience (QoE). To quantify the satisfaction perceived by mobile user, 

many prior works have used a utility-based model [Miluzzo et al. 2012, Abedin et al. 

2015]. The utility of nodes in the device cloud can be modeled as a function of latency 

[Nishio et al. 2013]. For many IoT applications, enabling real-time control is critical. 

Maestro [Viswanathan et al. 2016] is designed for concurrent applications on the 

device cloud. Here a mobile application is represented as a workflow (Directed Acyclic 

Graph) composed of multiple parallelizable tasks along with dependencies. Maestro 

proactively replicates critical tasks to avoid deadline violation. It also performs task 

deduplication to simplify workflow and improve resource utilization.  

Many other issues need to be taken into consideration when sharing resources. 

First, the computing capability of other devices is largely unknown. Oftentimes, the 

device cloud exhibits a high degree of node heterogeneity [Nishio et al. 2013]. Second, 

the device cloud space is somewhat fragmented: resources are usually measured in 

disparate ways (energy budget, network latency, available bandwidth, etc.). A 

possible solution is to design a unified framework that uses “time” as the universal 

metric for different resources [Nishio et al. 2013]. Third, intermittent connectivity 

among devices could be normal and there are randomly joined nodes. To tackle these 

issues, Fernando et al. [2016] introduced Honeybee, a new resourcing sharing 
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Table III. A Classification of Works on Resource and Workload Management Approaches 

Approaches Related Works 

Hybrid 

Provisioning 

[Chandra et al. 2009], [Sundarrajan et al. 2011], [Kannan et al. 2011], [Ryden et al. 2014], 

[Jang et al. 2014], [Chang et al. 2014] 

Task 

Placement 

[Steiner, et al. 2012], [Chandramouli et al. 2012], [Hao et al.  2014], [Deng et al. 2016], 

[Fricker et al. 2016], [Souza et al. 2016], [Masip-Bruin et al. 2016], [Kang et al. 2017] 

Distributed 

Caching 

[Gao et al. 2003], [Davis et al. 2004], [Ramaswamy et al. 2007], [Lin et al. 2007], [Xu et al. 

2014], [Romano and Quaglia 2014],  [Lin et al. 2015], [Zeydan et al. 2016], [Lin et al. 2016], 

[Park 2016], [Malandrino et al. 2016]  

Computation 

Offloading 

[Sardellitti et al. 2014], [Orsini et al. 2015], [Oueis et al. 2015], [Gu et al. 2015], [Abdelwahab 

et al. 2016], [Hu et al. 2016], [Chen et al. 2016], [Tong et al. 2016], [Alam et al. 2016]   

Data 

Preprocessing 

[Rooney et al. 2005], [Shi et al. 2014], [Papageorgiou et al. 2015], [Zhang et al. 2015], [Dubey 

et al. 2015], [Wang et al. 2016], [Song et al. 2016] 

Service 

Migration 

[Su and Flinn 2005], [Valvag et al. 2013], [Ottenwalder et al. 2014], [Urgaonkar et al. 2015], 

[Wang et al. 2015a], [Wang et al. 2015b], [Machen et al. 2016], [Saurez et al. 2016], [Teka et 

al. 2016], [Willis et al. 2014] 

Load 

Coordination 

[Manjunath et al. 2004], [Grieco et al. 2005], [Truong et al. 2015], [Sheikh et al. 2015], 

[Cardellini et al. 2015], [Lai et al. 2016], [Destounis et al. 2016], [Zeng et al. 2016] 

Adaptive 

Provisioning 

[Xu et al. 2011], [Kosta et al. 2012], [Zhu, et al. 2013], [Aazam and Huh 2015], [Li et al. 

2015], [Yin et al. 2016], [Hong et al. 2016] 

Resource 

Sharing 

[Newton et al. 2009], [Miluzzo et al. 2012], [Nishio et al. 2013], [Fahim et al. 2013], [Shi et al. 

2015], [Abedin et al. 2015], [Viswanathan et al. 2016], [Fernando et al. 2016], [Pamboris and 

Pietzuch 2016], [Flores et al. 2016], [Wang et al. 2017], [Reiter et al. 2017] 

 
strategy that leverages work stealing to balance loads among devices and periodically 

discovery resources to manage the dynamism.  

Prior proposals have explored optimizing the ability to partition application code. 

For example, Wishbone [Newton et al. 2009] looks at sensing application configured 

as a stream-oriented collection of operators (dataflow graph). It partitions stream 

operators between sensors and servers to minimize resource. Wishbone determines 

how each operator in the dataflow graph will actually perform based on profiling 

information. C-RAM [Pamboris and Pietzuch, 2016] is a partition strategy that can 

split program state between a mobile device and a remote computing node without 

developer intervention. It automatically partitions application source code based on 

fine-grained profiling. Once remote node fails, C-RAM can switch to offline execution 

with the support of a virtual memory mechanism designed for iOS.  

4.10 Classification 

Finally, Table III maps the taxonomy of resource management approaches to prior 

works that have been surveyed in this section. 

5. OPTIMIZATION OBJECTIVES 

In this section we describe prior works based on their optimization objectives and the 

heuristics/strategies used by them.   

5.1 Delay and Execution Time 

Fog systems normally need to handle time-sensitive requests under agreed 

Service Level Agreements (SLAs). The presence of system/workload dynamics has a 

significant impact on the latency of fog computing. 
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5.1.1. Transmission Time. Many works chose to reduce transmission time via smart 

network adaptation. Lai et al. [2016] proposed to adapt video data to the current 

network conditions. The edge node receives the multimedia content from a specific 

center node according to the path given by the index node, and adjusts content 

according to the end device's bandwidth. Romano et al. [2014] considered network 

path diversity and proposed a selection logic that allows the identification of the edge 

server that might provide better performance guarantee. Yin et al. [2016] developed a 

novel method to take advantage of the latency ranking, which is much less sensitive 

to delay prediction errors to search the ideal edge location.  

With appropriated management, a multi-layer fog may further reduce delay. 

Souza et al. [2016] investigated a dual-layer topology aiming to avoid the high-

latency access on upper fog layers. The computation of total delay for a service 

considers each fog layer with different delay. Tong et al. [2016] enabled execution of a 

mobile application on hierarchical edge cloud servers. Placing mobile programs at 

high-tier servers reduces resource contention, but also spends a longer time on 

transmitting the program states to these servers via the network. Thus, a joint 

optimization of workload optimization and node capacity provisioning is necessary. 

Reducing transmission time is also critical for data/service migration. The 

transmission time (between the access point of a mobile sensor and the computing 

node that performs processing) changes dynamically [Ottenwalder et al. 2014]. Su 

and Flinn [2005] showed that replication allows for seamless service migration 

between surrogates with negligible latency. Teka et al. [2016] argued that low-

latency VM migration can be achieved with multipath TCP (MPTCP).  

Reducing data size is an effective way to reduce transmission time. Fog 

computing nodes with data deduplication capabilities are ideal for time-sensitive 

tasks [Dubey et al. 2015]. In addition, one can also trade off data quality for lower 

latency. To reduce transmission delay under unfavorable network condition, Lin et al. 

[2014b] adjusted encoding bitrates to lower video quality level on their fog nodes. 

Many workloads include both delay-tolerant and delay-intolerant data. Yassine et al. 

[2016] investigated dynamic scheduling of multimedia edge data. Delay-tolerant 

requests include data replications and backup contents that typically have very large 

deadlines that span few hours to days. Delay-intolerant data include video processing 

and massively interactive video games that must be transferred between data 

centers at a specific rate and time.  

5.1.2. Execution Time. The problem of minimizing execution time requires optimal 

task allocation. Nebula [Ryden et al. 2014] intends to select the best performing 

server nodes for computation to reduce job execution time. Viswanathan et al. [2016] 

showed that task deduplication leads to efficient real-time, in-situ processing of 

simplified workflows (with fewer tasks than before) as well as to better utilization of 

computing resources. Alam [2016] explored a machine learning based mobile agent 

who can reduce execution time. 

5.1.3. Round-Trip Time. Viswannathan et al. [2013] argued that ubiquitous mobile 

applications require real-time analysis of raw data generated in the field. Both the 

task property and resource selection have an effect on the timeliness. They proposed 

a stage-wise threshold-based heuristic for assigning tasks to resource providers. To 

select the right data center, Steiner et al. [2012] collected live measurements of 

network and compute performance. An overall score is calculated that takes account 

of various resources. CloudAware’s optimization solver [Orsini et al. 2015] is able to 

decide which compute instances on what edge nodes to use for offloading. The solver 
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calculates the cost that is derived from a specific optimization target such as 

computation acceleration, bandwidth saving, latency minimization, etc.  

Oueis et al. [2015] proposed a two-step resource allocation process to satisfy as 

much user request as possible. In the first step local resources of fog components are 

allocated based on a specific scheduling rule. In the second step, unsatisfied requests 

(due to resource scarcity) are processed by a dynamically formed fog node cluster, 

following certain optimization objective. Priority is given to tasks with the lowest 

latency tolerance. This imposes an earliest deadline first (EDF) scheduling. 

5.1.4. Real-time Support. Providing real-time support mechanism for streaming data 

has been explored from different aspects. Chandramouli et al. [2012] looked at 

continuous queries running over streaming data from a large number of edge-devices 

and the Cloud. Nishio et al. [2013] modeled the utility of nodes as a function of the 

round-trip latency. Abdelwahab et al. [2015a] proposed to perform sensing resource 

discovery through a gossip based algorithm that requires a time complexity of O(r-

1logn). Their design objective is to construct the virtual domains, as fast as possible 

and with minimal communication overhead between the agent and the devices as 

well as between the devices. Papageorgiou et al [2015a] proposed to “streamify” data 

reduction techniques that are otherwise not used in real-time scenarios, but rather 

on the complete data set. Their technique avoids delays in pre-processing and 

forwarding data items. Their basic ideas are: 1) being applicable in real-time and per 

item; 2) not delaying the data item forwarding. 

5.2 Energy and Power Demand 

Energy is consumed when fog components performs computation or send/receive 

data. It is crucial to account for power behaviors while designing fog systems.  

5.2.1. Communication Energy. In the wireless communication domain, communication 

energy often refers to radio energy consumption. Due to the proximity to users, fog 

systems have lower radio energy consumption [Alam et al. 2016]. A more detailed 

transmission expenditure model may consider the energy consumption due to electric 

circuit, data aggregation, and signal amplification [Abedin et al. 2015]. In the fog 

radio access network, some communication hubs such as remote radio heads (eRRH) 

can be subject to transmit power constraint [Park et al. 2016]. 

The communication energy typically depends on the size of the transmitted data 

and the network bandwidth. Transmission of a large snapshot can considerably 

increase device energy consumption [Pamboris et al. 2016]. For a Cloudlet, VM 

synthesis typically consumes significant amount of power due to the large payload. 

Lewis et al, [2014] showed by realistic measurements that the energy consumption of 

mobile device that perform offloading is directly proportional to payload size.  

Nishio et al. [2012] discussed a trade-off between performance gain and energy 

saving: it often requires more transmission energy to obtain larger communication 

rage. Fahim et al. [2013] developed an experimental platform to show insights into 

the energy behaviors of device cloud. Barbera et al [2013] studied the data 

communication overhead under different levels of synchronization and report the 

costs in terms of energy. Hu et al. [2016] qualitatively compared different offloading 

scenarios (cloudlet vs. remote cloud). Real measurements showed that offloading to a 

remote data center can result in even higher energy costs than running locally.  

Similar to latency optimization, an important approach to communication power 

reduction is minimizing data transmission size. Data reduction technique has 

reduced the power needed for data transmission (from Fog to the cloud) for the Fog 
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Data architecture [Dubey et al. 2015]. Given wireless communication energy budget, 

Wang et al. [2016] divided an image into crucial premium information and 

unimportant regular information to ensure optimal multimedia transmission quality.  

Another line of work has been focused on the communication pattern in the cloud 

and fog environment. If too many users choose the same wireless channel to offload 

simultaneously, they may cause undesirable interference to each other. This hence 

can lead to low data rates, long data transmission time and low energy efficiency 

[Chen et al. 2015]. Current LTE network incurs such an inefficiency issue facing 

large simultaneous access from ubiquitous devices. Sardellitti et al. [2014] looked for 

the best way to connect users to a nearby base station and to a remote cloud so that 

the overall communication energy is minimized. Xu et al. [2011] studied different 

data acquisition methods, i.e., push and pull mechanism. By dynamically adjusting 

the base push and supplementary pull rates for each sensor, the total energy cost is 

reduced. Abdelwahab et al. [2015b] also looked at the pull and push operation of 

memory replicas. They took advantage of the sparsity at both the network and 

memory levels to reduce delay and energy consumption in a LTE environment.  

5.2.2. Computation Energy. Computation power has long been a problem in servers 

and data centers. Laoutaris et al. [2008] summarized the power and energy issue of 

conventional data center and show that nano data center could help address it. Jalali 

et al. [2014] further described the model for estimating the energy consumption of 

accessing data from nano datacenters. The model allows one to identify applications 

that are best suitable for running on nano data centers. Lebre et al. [2016] further 

provided a detailed model for estimating the computation and cooling power for 

distributed cloud infrastructure in the fog era.  

Execution time is a major factor that affects computing energy in the fog. This 

has been proved on both fog system and edge devices. For example, on-demand VM 

provisioning on cloudlet incurs high energy consumption due to the relatively longer 

application-ready time [Lewis et al., 2014]. The partitioned execution scheme of 

mobile applications [Pamboris et al. 2016] has shown to be more energy-efficient due 

to significantly reduced execution time on mobile devices. Sheikh et al. [2015] 

propose to select a server that is the least recently used – such a server are likely to 

be lightly loaded and therefore may result in a faster execution time.  

To reduce computation power, various low-power designs and control techniques 

are used. Fog data [Dubey et al. 2015] uses low power processor node, namely, Intel 

Edison to process data locally. Stanley-Marbell [2011] designed and implemented an 

embedded multiprocessor system for energy-efficient in-situ data processing. Wen et 

al. [2012] propose to dynamically configure the clock frequency in the mobile device to 

reduce energy consumption. Manjunath et al. [2004] enhanced the Quality of Service 

(QoS) while maximizing the battery lifetime of the client devices. The system has to 

communicate to the client ahead of time about the size of the data burst to receive 

before going into a low power mode and when to wake up for the next burst.  

Running large tasks remotely can save significant amounts of power, and is often 

orthogonal to other system-level power saving techniques [Rudenko et al. 1998]. For 

battery-powered systems, a convenient way is to set a timeout and offload program if 

the task is not finished after a given timeout [Xian et al. 2007]. When performing 

offloading, both the energy consumption of remote nodes and the residual energy 

available to these nodes should be considered. Shi et al. [2012] proposed an energy-

aware scheme that can allocate more tasks to devices with enough residual energy.  

Considering the ubiquitous service requests, Do et al. [2015] argued that data 

center carbon footprint would increase without appropriate resource allocation. To 
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optimize sustainability, Li et al. [2015] proposed to power fog servers with green 

energy sources (such as solar panel) and use battery as energy buffer/backup. 

Dynamic control of the energy flow from the solar panel to fog server has been shown 

to be crucial for maintaining high throughput and minimize service disruption.  

5.3 Scalability and Availability 

The demands for service availability and scalability have increased substantially 

over the years. Xie et al. [2002] argued that distributing jobs to an overlay network of 

edge servers improves both service availability and scalability. Ramaswamy et al. 

[2007] devised a scalable content delivery network that emphasizes the cooperation 

among edge caches near the network edge. Romano et al. [2014] presented a protocol 

which exploits the node diversity and redundancy to improve the end-to-end latency. 

This protocol is inherently scalable since it requires the slightest coordination among 

edge nodes. Recently, Pahl et al. [2016b] proposed to use a container-based system to 

deal with scalability, flexibility, and multi-tenancy concerns.  

To improve the availability as well as latency, Gao et al. [2003] proposed to 

decouple edge server’s local request processing from the store-and-forward processing 

of orders to the backend server. At the distributed cloud level, Hancock [2015] 

devised availability policies that leverage multiple service providers to provide video 

files – a failure of any provider will not affect the reachability of the files. For those 

surrogates of the cloud, they have also been designed to rapidly capture dynamics of 

the devices includes connectivity, and availability [Abdelwahab et al. 2015].  

Another way to improve resiliency is to create checkpoints for critical states. 

Network failures greatly affect techniques that offload part of the application to 

remote nodes [Pamboris, et al. 2016]. By periodically retrieving a snapshot of the 

program state on remote server, local devices can easily recover from a failure.  

To ensure that the edge computing system is running properly, heartbeat signals 

are widely used. For example, Ramaswamy et al. [2007] proposed a failure resilient 

edge cache network. It employs heartbeat messages to detect failures of caches. To 

ensure failure resiliency, each document’s lookup and update information is 

replicated at all the caches in the document’s beacon ring. Nebular [Ryden et al. 2014] 

is a fog platform resilient to a variety of failures in a volunteer computing 

environment. If the heartbeats are missed, the system will try to re-execute tasks to 

achieve fault tolerance. Similarly, Honeybee [Fernando et al. 2016] also uses a 

periodic signal as an indication that the worker is alive and the network is accessible.  

6. CHALLENGES AND OPPORTUNITIES 

Although many prior works have explored the design and optimization of an edge-

oriented computing system, several key problems remain open. From the studies 

surveyed above, we have identified the following opportunities that are expected to 

drive innovation within this domain: 

— New Hardware Technologies. Very few fog/edge computing designs today 

intend to incorporate emerging hardware technologies. This includes, but are 

not limited to, non-volatile storage technologies, low-power reconfigurable 

devices such as FPGAs, 3D-stacking that integrate DRAM memories on top of 

cores, photonics for communication, etc. Significant architectural advancement 

at the edge level is required to exploit these promising technologies.  

— Application-Driven Processing. It is crucial to exploit parallelism on 

ubiquitous fog/edge machines, i.e., rethinking system (architecture, operating 

systems, virtual machines, compiler tools, and programming languages) design 
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for enabling fine-grained fog device level parallelism. Importantly, edge data 

processing should be able to adapt to the emerging applications (e.g., training 

and inference workloads in the era of AI) and environment.  

— Heterogeneity & Dynamism. Edge computing is a double-edged sword. In the 

fog environment, heterogeneity is both larger in scale and greater in depth. 

How to combine edge devices into a talent pool is considered the foremost 

challenge any edge-oriented computing systems need to take care of today and 

tomorrow. The system should be able to orchestrate the functionalities of an 

unbalanced network with nodes of various cluster sizes, different storage space, 

mismatched computation power and unpredictable dynamics. 

— Cross-Layer Co-Exploration. Current fog/edge system designs are largely 

decoupled from data center level management. Most data centers today heavily 

rely on aggressive resource management to improve system utilization while 

maintaining QoS. Leveraging the data processing capabilities at different 

layers of the computing stack can contribute to enabling data centers to stay on 

track with their performance requirement. Importantly, the resulting system is 

expect to exhibit a synergism in which the Cloud-Fog-Edge system can yield a 

cost-effectiveness far better than that can be offered today.  

— Energy and Sustainability. Power and energy management are still open to 

research due to the ever-increasing compute load, evolving workload patterns, 

and heightening demand for cost-effectiveness and sustainability. In recent 

years, many computing systems even start to tap into non-conventional power 

provisioning solutions such as renewable power supply, energy storage 

systems (battery, supercapacitor) and aggressive power capping techniques. 

Harvesting distributed energy (solar, wind) can be an interesting step ahead 

for power management research in the fog and edge computing era.  

— Human Activity Awareness. A possible future work addressing fog/edge 

performance and efficiency includes bringing human factors to edge computer 

design and management. For example, given user feedback, the fog system 

may leverage approximate computing to reduce energy overhead. The system 

can also provide task acceleration based on user habit information. Many more 

opportunities might arise, provided a strong support in the technology itself.  

— Security, Privacy, and Resiliency. Some of the other future works include 

security measures and resiliency supports in the paradigm. Although not 

discussed in this survey, security and privacy are important design 

considerations. IoT systems today are still highly vulnerable and are likely to 

cause widespread disruption of services.  It is more difficult to address because 

unlike protection for cloud centers, protection for edge devices are more 

diversified and therefore more complicated. 

7. CONCLUSION 

Although it would still take time for edge-oriented computing systems to evolve from 

prototypes to our daily common platforms, the concepts and the technologies 

themselves are without doubt promising and exciting. Edge computer systems of 

various forms are projected to become crucial links for an efficient information 

processing architecture in the near future. Recent years have witnessed an 

increasing number of system studies in this area. On this foundation, many parties 

have also proposed resource management and optimization strategies. In this article, 
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we have surveyed a wide range of edge-oriented computing systems. It is hoped that 

this article will provide useful insights for both academics and practitioners. 
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