
Characterizing and Orchestrating NFV-Ready Servers for
Efficient Edge Data Processing

Lu Zhang
Shanghai]iao Tong University

luzhang@sjtu.edu.cn

Yunxin Liu
Microsoft Research

yunxin.liu@microsoft.com

ABSTRACT

Chao Li
Shanghai]iao Tong University

lichao@cs.sjtu .edu .cn

YangHu
The University of Texas at Dallas

yang.hu4@utd allas.edu

Minyi Guo
Shanghai]i ao Tong University

guo-my@sjtu.edu.cn

KEYWORDS

Pengyu Wang
Shanghai]iao Tong University

wpybtw@sjtu .edu.cn

Quan Chen
Shanghai]iao Tong University

chen-qu an@sjtu.edu.cn

The fast-growing Internet of Things (loT) and Artificial intelligence
(AI) applications mand ate high-performance edge data ana lytics.
This requirement cannot be fully fulfilled by prior works that focus
on either small architectures (e.g., accelerators) or large infrastruc­
ture (e.g., cloud data centers). Sitting in betwe en the edge and cloud,
th ere have been many server-level design s for augmenting edge
data processing. However, they often require specialized hardw are
resour ces and lack scalability as well as agility.

Other than reinventing the wheel, we explore tapping int o un ­
derutilized network infrastructure in the incoming 5G era for aug­
menting edge data ana lytics. Specifically, we focus on efficiently
deploying edge data processing applications on Network Functi on
Virtualization (NFV) ena bled commodity servers. In such a way,
we can benefit from the service flexibilit y of NFV while greatly
reducing the cost of many servers deployed in the edge network.
We perform extensive experiment s to investigate the characteristics
of packet pro cessing in a DPDK-based NFV platform and discover
the resource under-utili zation issue when using the DPDK polling­
mode.Then, we prop ose a framework named EdgeMiner, which can
harve st the potentially idle cycles of the cores for data processing
purpose. Meanwhile, it can also guarantee the Quality of Service
(QoS) of both the Virtu alized Network Functions (VNFs) and Edge
Data Processing (EDP) applications wh en they are co-running on
the same server.

CC S CONCEPTS
• General an d reference -> Measurement; • Software and its
engineering -> Process management; • Networks -> Network
servers.

Permission to make digital or hard copies of all or par t of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitt ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists. requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
IWQoS '19, Jun e 24-25, 2019, Phoenix , A Z, USA
© 2019Association for Computing Machinery.
ACM ISBN 978-1-4503-6778-3/19/06... $15.00
https://doLorg/10.1145/3326285.3329057

Network Function Virtu alization, resour ce und er-utili zation, edge
data processing, QoS

ACM Reference Format:
Lu Zha ng , Chao Li, Pe ngy u Wang , Yun xin Liu , Yang Hu, Q ua n Che n ,
an d Minyi Guo . 2019. Cha racte riz ing and Orches trating NFV-Ready Serv ers
for Efficien t Edge Data Proce ss ing. In IEEE/ACM Int ernati onal Sy mposium
on Quality of Service (IWQoS '19), June 24-25,2019, Phoenix, AZ, USA. ACM ,
New York, NY, USA, 10 pages. https :/ /doi. orgi l 0.1145/ 3326285.3329057

1 INTRODUCTION
Deploying data analytic applications and Al-enabled services near
the edge is becoming increasin gly popular tod ay since movin g
stored or in-flight data to the cloud can be problematic. According
to Gartner, there will be over 20 billion loT devices inst alled by 2020
[9], which will create large quantiti es of data needing to be analyzed.
Integratin g domain-specific accelerators in end devices (e.g., smart
ph one s or video cameras) can boost Edge Data Proc essing (EDP),
but it is inadequate due to limited capa city and scalability. Faced
with a deluge of edge traffic, it is also critical to tap into auxiliary
edge systems for augmented EDP. Recentl y, man y pioneer studies
have explored such hierarchical topology, includin g the Cloud-Fog­
Edge three-layer design [7, 38] or four- layer design [34].

However, there are no well-established architectures for the aug­
ment ed EDP landscape [25]. Even though various edge computing
solutions [5, 24, 32, 36, 37] have been explored over the years, they
typically assume certain specialized hardw are such as smar t gate­
ways, mini clusters, or network devices to process th e raw data.
For example, XPro [36] proposes an energy-efficient architecture
for smart body sensing. ParaDrop [37] and Fog Computer [8] high­
light smart gateways for processing data stream near users . At the
server level, Cloudlet [32] uses virtu alized local cluster s to augment
mobile services and InSURE [24] leverages standalone cluster s to
pr e-process raw data onsite. Recently, Microsoft introduces Data
Box Edge/Gateway [5], which is a physical network appliance that
uses AI to analyze and transform data before it is uploaded to Azure.

The above systems impro ve different edge-orient ed services for
sure, but they can be less cost-efficien t and scalable. Oftentimes,
enormous mini data centers or fog computing nodes need to be

IWQoS '19, Jun e 24-25, 2019, Phoenix, AZ, USA Lu Zhang, Chao Li, Pengyu Wang, Yunxin Liu, Yang Hu, Ouan Chen , and Minyi Guo

In-Situ Acceleration Augmented Edge Data Processinig

I II
I II -:::=.
I JJJ1i \I I
I II d \\
I II ~ ~ I
I II

~ ~: :1 ~
I * J ~
I I
L'~D~r :.!...1 L __ ~~'J~'__ _ I

Fig ure 1: The case for Au gmented Edge Data Processing

physically deployed in a specific region. Thi s unavoidably increases
capital expenses (Capex) and opera tional expenses (Opex). Worse ,
due to the reliance on specialized hardware, one can hardly accom­
modate edge traffic surge or react to failure scena rios. Without
over-prov isioning edge reso urces, one has to offload traffic to re­
mote data centers every now and then.

Moreover, since existing designs introd uce various application­
speci fic platform s, it is difficult to coordina te diverse applications
across different vendors. While all of th ese sys tems may operate
und er the same open standard in the future , currently there is no
universally accepted one. The edge computing space is th erefore
somewha t fragmented. Many existing technologies only provide
a certain degree of fun ctionality. For example, popular suites of
proprietary pr otocols including XlO [1], Z-Wave [2], and ZigBee
[4], all of which are incompatible with each other. Unless a single
spec ific kind of equipment is used, one has to find a way to sha re
device data with others.

Thi s work is driven by the observation that currently the re is not
a strong motivation for provisioning a wide spectrum of specialized
appliances for generic EDP tasks. Rather than exploring and re­
defining a new type of edge architecture , we propose to unleash the
performance and capac ity potential on edge equipment already in
place. Specifically, in this paper we set out to explore leveraging the
under-utilized NFV serve rs at the edge to co-loca te th e emerging
edge computation workloads.

Our argument stands on the recent trend towards Network Func­
tion Virtualization (NFV) [10] with the aim of improving the net­
work's manageabilit y and reducing th e capital expenditure . NFV
implement s the network function (NF) (e.g., routing, detection, and
load balance , etc.) as software in virtual machines (VMs) or con­
tain ers, which allows virtual NFs to be deployed on commodity
off-the-she lf (COTS) serve rs . On the othe r hand , being deployed
between the end devices and the data centers, these COTS servers
deployed with NFs are naturally formed as a mesh network of com­
puting nodes that can process or store data locally and pu sh all
received data to a central cloud , as shown in Figur e l.

In fact, th e European Telecommunications Standar d Institute
(ETSI) advoca tes reusing existing NFV infrastructure and the man­
agement capabilit y of NFV to the largest exten t possible in the
edge computing era [16]. In recent years, NFV at the network edge
(e.g. virtualized Customer Premises Equipment, vCPE) is gaining in­
creasing attention. According to an IDC report [30], the worldwide

market for NFV infrastructure at the network edge is expected to
grow from a base of $67.8 million in 2016 to $1.16 billion in 2021 at
a compound annual growth rate (CAGR) of 76.4%. Such increasing
yet under-utilized [40] computing infrastru cture makes it attrac tive
for users who want more affordable, deploy-on-demand edge com­
puting power. Doing so also allows one to speed up th e adoption
and delivery of our edge applications as well.

In this paper, we propose EdgeMiner, an augmented EDP frame­
work that enables NFV-ready COTS serv ers to efficiently host aug­
ment ed EDP applications such as th e edge video enco ding and
image processing applications. Towards this goal, we perform exten­
sive exper iments to character ize the resource utilization of DPDK­
based NFV COTS servers. Intel DPDK [18] is designed to mitigate
the overhea ds of softwa re packet pro cessin g by optimizing th e
kern el network stack and allowing direct dat a access to bypass
the kern eL However, our cha rac terization results show th at , in
contras t to the core network scenar io, DPDK-based NFV platform
has poor CPU utilization at the network edge with lower packet
receive/sendin g rate. Motivated by our observa tion, EdgeMine r
smartly mines the idle CPU resources of DPDK-based NFV plat­
forms without impairing the performance and capacity of VNFs. It
leverages batch proce ssing and batch-int errupt to discover the idle
CPU resource of DPDK-based NFV platforms. We also propose a
Dynamic Search Core (DSC)algorithm to guarantee the QoS ofE DP
applications. We evaluate our framework using the typical network
function and popular EDP applications such as image proc essin g
and video encoding.

To the best of our knowledge, th is work is first to provision EDP
applications on the flexible network infr astructures.

Thi s paper makes the followin g key contributions :

• We conduct extensive experiment s to measure the architec­
ture characteristic of a DPDK-based NFVplatform under var­
ious configurations. We demonstrate the under-utilization
issue of serve rs.

• We propose EdgeMiner, a light -weight edge processing frame­
work that allows VNFs and EDP tasks to co-locate on com­
modity servers. We design scheduling schemes that can guar ­
ant ee the QoS of both type s of applications.

• We evaluate EdgeMiner using typical network functions and
EDP applications such as x264 (a video encoding benchmark)
and vips (an image processing benchmark). We show that
EdgeMiner can save 13%-90% CPU utili zation when th ere
are no EDP applications and guarantee the QoS of EDP ap­
plications when deploying them on the NFV platforms.

The rest of this paper is organized as follows. Section 2 provides
the background and furth er motivates our work. Section 3 character­
izes the packet processing behavior on DPDK-based NFV platforms
and investigates the capacity potential of the COTS servers. Section
4 proposes our EdgeMiner framewo rk. Section 5 evaluates our de­
sign with representative appli cations. Section 6 introduces related
work and finally Section 7 concludes the paper.

2 BACKGROUND AND MOTIVATION
In th is section we briefly int rodu ce th e essential concep ts of NFV
and EDP. Our driving insight is that traditional DPDK-based NFV
platforms are generally underutilized in the edge; one can actually

Cha racte rizing a nd Orchestratin g NFV-Ready Servers for Efficient Edge Dat a Processing IWQoS '19, June 24- 25, 2019, Phoen ix, AZ, USA

deploy EDP applications as a type of network fun ction (NF) to
fully utili ze the NFV servers. In such a way, we can provide edge
computing services with high cost-efficiency and service agility.

2.1 Network Function Virtualization
NFV proposes to move various network functions from hardware
"middleboxes" to software appliances in VMs or containers. Deploy­
ing virtualized network functions (VNF) as softwa re on commod­
ity servers has man y advantages such as reducing cost th rough
workloa d conso lidation, simplifying resource management, and
fast deployment as so forth.

In order to achieve the line rate for packet processing, today 's
NFV-enabled serve r adopts several op timization stra tegies . Many
NFV platform s take advantage of the state-of-the-art I/O libraries
such as Intel DPDK [18], RP_Ring [28] and Netmap [31]. All the
above libraries reduce the performance overheads in the traditional
kern el network stack. In order to deeply study NFV platforms, in
thi s paper, we mainl y focus on NFV platforms usin g DPDK for
high-performance packet I/O.

2. 1. 1 Packet Processing of DPDK. Intel DPDK packet I/O library
offers a set of primitives th at allow users to create efficient user­
space NFs on x86 platforms, particularly for high-speed data plane
applications. DPDK mainly operates in a polling mode ra ther than
th e traditi onal int errupt packet I/O, which can reduce the time
spent for packet traveling in the server. DPDK also uses huge pages
to pre-allocate large regions of memory, which can reduce the TLB
miss and packet transmission overhea d. In thi s case, applications
perform DMA opera tions and access data directly from the NIC
without involving kernel process ing and memory copy. Moreover,
some architectures can further use DDIO (Direct Data I/O) whi ch
directly accesses data from NICs to LLC to reduce the lat ency of
memory access. Additionally, DPDK requires each VNF to occupy
one dedicated CPU core to avo id context switches . Ail of these
efforts are made to provide high-performance packet I/O opera tions
and a high-performance NFV system.

While DPDK achieves very high th roughput with agg ress ive
optimization, it has sacrificed the efficiency of resource utili zation.
When the packet transmission rate is low (e.g., below 10 Gigabits/s),
DPDKwill suffer from rather poor CPU utili zation due to its reliance
on busy polling. Additionally, since it pre-allocates large regions of
memory, it unnecessarily causes memory capacity waste when the
packet access rate is low.

2.1.2 Service Funct ion Chaining. Network services often require
various NFs. A packet usually traverses a series of sequenced net­
work fun ctions before th e final application pr ocesses it, which is
called Service Function Cha in (SFC). SFC implement ed in NFV
platform s can easily scale and change its locations on demand .

EFSI standards [10] show that different NFs have significantly
different processing and performance requir ement s. Some NFs have
a high per-core throughput (Mpps), e.g., switches; and some have a
low thr oughput as a few kilo pp s, e.g., encryption applications. In
thi s case, one NF in a service cha in that drops packet s will waste
vas t amount of processing resources in earlier NFs of the cha in.
The imbalanced computing capabilities cause resour ce waste, and
as the length of SFC increases, this situa tion will be worse.

2.2 Edge Data Processing on NFV Platforms
For tradit ional Io'T sys tems, raw data generated from edge devices
is sent to applications deployed in the Cloud thr ough the network.
There are several disadvantages of th is Cloud-centric model: 1)
large latency overh ead: a large amount of data movement thr ough
the network will cause severe energy and latency overheads; 2) de­
ployment problems: it is impractical to connect all the edge devices
with th e Cloud, and; 3) secur ity and pr ivacy issues: sending th e
edge data to the Cloud may raise secur ity and privacy issues.

Rather than cons tan tly movin g a hu ge amount of data to the
Cloud, recent years has witnessed a new trend towards edge-oriented
data processing. EDP is a natural extens ion with the evolution of
mobile base stations and the converge nce ofIT and telecommunica­
tions networkin g. Typically, EDP applications can be implemented
in a virtualized enviro nment [16, 32]. In othe r words, th e un der­
lying platform tha t hosts EDP tasks and NFV workloads is quite
similar. EDP emphasizes data processing at the edge network, while
the NFV platform is focused on processing network packets. With
appropriate design and modification , one can actually deploy com­
put ational edge serv ices as network functions. It allows operators
to benefit as much as possible from their inves tment, by hosting
both VNFs and EDP applications on the same platform .

Nevertheless, it is imp ortant not to aggress ively subscribe the
NFV-enabled servers as both EDP tasks and VNFs have QoS requir e­
ments. VNFs gene ra lly pursue high th roughput and low latency
for packets processing. Similarly, EDP applications face very strict
deadlin e. Moreover, EDP applications are cha racterized by latency,
proximity and real-tim e running. Thu s, intelligent orchestration of
computing and network resour ces is of paramount import ance.

3 CHARACTERIZING NFV SERVERS
Traditi onal NFV platforms mainly focus on high performance but
overlook resource efficiency. In this section, we conduct extens ive
experiments to investigate the resource utilization of a DPDK-based
platform in terms of CPU and memory utili zation und er different
configura tions. The results of experiments show that there are lots
of underutili zed resources, which motivate our design of co-running
EDP applications on network infrastructure.

3.1 Experiment Setup
3.1.1 Platform Conf iguration. Our physical platform configuration
is show n in Table 1. The server uses 4 Intel 1350 IGigabit Etherne t
NICs assoc iated with the single socket. Th e operating sys tem is
Ubuntu Linux 16.04 and th e version of DPDK is 17.08. All of our
exper iments are based on openNetVM [42].

The platform architecture in our experiment is shown in Figure
2. Wh en the sys tem starts, a man ager thread pr e-allocates mem­
ory pools trte rnempooi creates in Huge Pages to store incoming
packets. Ail threads are pinned to dedicated CPU cores in our ex­
periment. Next, we will introdu ce the flow of packet processing
in detail: Wh en packets arrive in th e sys tem, th e RX thread will
fetch the data from the NIC with zero copy (0). Then the RXthr ead
will look up th e flow table to decide whi ch VNF is selected and
th en send the packet to th e corres ponding VNF's RX queue (@).
VNFI reads packets from its RX queue and processes them usin g
user-defined functions (0). Then, all packets will be sent to VNFI's

IWQoS '19, Jun e 24-25, 2019, Phoenix, AZ, USA Lu Zhang, Chao Li, Pengyu Wan g, Yunxin Liu, Yan g Hu, Ouan Chen, an d Minyi Guo

Table 1: Platform configuration Table 2: Different VNFs computation cost

Item
COTS System

Processor

Memory

NIC

Configuration
Ubuntu 16.04, single socket
Int el Xeon £5-2620 v3@2.40GHz
6 phys ical cores (disabled HyperThreadin g)
15MB 13 cache for the socket
64KB11 cache,256KB L2 cache each core
32GB DDR4 tot al
HugeSize=2MB and 1024 HugePage
Int el i350, 4 port each 1Gigabit

User
Space

~ Forward DPI Aes_encryptPkt Size
64bytes 40cycles 300cycles 3.3K cycles
128bytes 40cycles 330cycles 9K cycles
256bytes 40cycles 340cycles 20K cycles
512bytes 40cycles 360cycles 43K cycles
1024bytes 40cycles 370cycles 88K cycles

AES_en cryption/DES3ncryption: This func tion aims to en ­
crypt/dec ryp t UDP packets using speci fied encryp tion/decryp tion
algori thm, and then forward them to spec ific NFs. Since thi s fun c­
tion needs to encry pt the packet payload usin g th e encrypti on
algori thm, it's a computation-intens ive fun ction .

Table 2 shows the computa tion cost of processing one packet
un der different packet sizes. Forward consumes only about 40 cy­
cles and the comp utation cost maintain s although the packet size
increases du e to its simple ope ration. DPI needs to rea d both the
header and payload of a packet and inspect packet for secur ity. With
packet size increasing, its computa tion cost increases slightly. As
for AES_ encrypt, it needs not only to read the header and payload of
a packet , but also to pro cess the packet using a complex algorithm.
Thus, AES_e ncryp t consumes the most cycles to process a packet ,
and the computation cost is highly corre lated to the packet size.

Figure 2: Packet processing on NFV platforms

TX queue. When the polling mode is used, CPU cores will be always
busy to wait and pro cess packets while VNF1 is running (i.e. busy
polling). If the interrupt mo de is used, the core pinned to VNF1
will be sleep when there is no incomin g packets or other situations
(e.g., backpressure). The wake -up th read aims to monitor each NF's
information and decide wh en to activa te the VNF thread (ID). Th e
TX thread polls to read packets from the Nf'I 's TX queue, and then
moves the pac kets into anothe r NF's RX (NF2 RX) or sends them
to the NIC based on the destination information of the packets (@).
The packets processed by NFl will be processed by NF2 «i)). Thus,
th e TX th read moves the pac kets from NFl to NF2, and then NF2
processes the packets in the same manner as step 0 . After NF2 pro­
cesses the packet s, the TX th read checks th e packet' s destinati on
information and decides to move the packet out of the system (fil) .

3.7.2 Network Function Workloads. In our experiments, we choose
three typical NFs to explore reso urce utili zation characteristics of
DPDK-based NFV platforms:

Forward: Thi s network func tion is similar to the Ipv4/Ipv6
packet forwarding network funct ion . After receiving packets, For­
ward reads the destination inform ati on of packets and then sends
packets to the next VNF.

DPI: Deep Packet In spection (DPI) is an esse ntial securi ty ap­
proac h in the network. It is applied in network applications includ­
ing network intrusion detection system (IDS) and Web application
firewalls.Thi s network function can locate, identify, classify, rerout e
and block packets.

3. 7.3 Test Traffic. In th is paper, we utilize a DPDK-based packet
generator to generate packets with different packet sizes and differ­
ent trans miss ion rates. Since AES_encrypt can only process UDP
packets, all the experim ents are based on UDP packets. We have 4
ports in our packet gene rator serve r, we can gene ra te up to 4 Gb
network packets. The packet gene rator runs on a separate server
and connec ts to the test server directly.

3.2 VNF Memory Bandwidth
Since mem ory access is an important component wh en VNFs pro­
cess packets, it is necessary to study the characteristics of VNFs
memory utilization. We use events provided by Performance Moni­
tor Unit [6] to monit or the memory bandwidth. The resour ce mon ­
itor distill s cruc ial inform ati on for th e sys tem to make informe d
decisions. We use libpfm4 library to translate human -readable per­
formance event names to machine-readable event code. The monit or
uses the perf-event interface of Linux to access hardware perfo r­
man ce counters. Th e perfor mance event name used in the mem­
ory bandwidth monitor is hswep_unc_ imcX::UNC_M_CA S_COUNT.
Thi s register coun ts the numb er of DRAM CAS commands recorded
at integrated memory controller (IMe) at CPU socket X. Addition­
ally, to obtain the peak memory bandwidth of our server, we utili ze
th e STREAM Benchmark [3] to measure th e peak memory band­
width and we get 18.4GB/s.

As show n in Figure 3, we present the memory utilization ofthree
network fun ction s wi th different packet sizes and different tr an s­
mission rates. For each VNF, the memory bandwidth usage grows
as the packet size and transmission rate increase. It is clear that the
memory bandwidth usage is very small in all the experiments, and
th e highest mem ory bandwidth usage is onl y 4.7% of the server

Characterizing and Orchestr ating NFV-Ready Servers for Efficient Edge Data Processing IWQoS '19, June 24- 25, 2019, Phoen ix, AZ, USA

5

~ 4
o 64byte s o 128bytes o 256bytes D5 12bytes o 1024bytes

~=
~ 3.....
Q.,

2
~=......e
E

0...
:.;

OP I Aes_encrypt

Figure 3: Memory bandwidth usage of different VNFs under different packet rate s

Fig ure 4: CPU utilization of on-demand inter rupt

3.3 VNF CPU Utilizat ion

peak bandwidth usage from VNF Aes_encrypt with 1024 packet size
under 4Gb spee d. In thi s case , we can cons ider that VNFs in our
expe riments are not memory-bandwidth bounded. Thus, we will
study the cha racteristics of CPU utili zation in detail and focus on
CPU utili zation in our framework.

In this subsection, we set up exper iments to explore CPU utili zation
of VNFs. Under the DPDK polling mode, NFs that are busy waiting
for packets waste lots of CPU resource in low-speed network. Thu s,
an int errupt mode would be helpful for saving the resource, as is
done in NFV platforms such as Netm ap [31] and ClickOS [27].

because the packet rate decreases and the NF has larger probability
to become the SLEEP status.

Considering th at a VNF needs to switch between the SLEEP
and ACTIVE status in th e interrupt mode, the context switch and
other extra sys tem costs are inev itable. To obta in a detailed CPU
utili zation breakd own of interrupt mode, we collect two kinds of
CPU utilization: User CPU, which is occupied by the user applica­
tion; and System CPU, which contains CPU time utilized by system
interrupts, context swi tches and othe r sys tem operations. In th is
part , we only explore the CPU utilization of Forward and DPI since
Aes_encrypt are always busy.

Figure 5 shows a breakdown of CPU utili zation ofVNFs in the
on-demand interrupt mode. Except for 64Bytes packet processing
in DPI, all the other resu lts show that user-defined functions only
account for less than 50%total CPU cycles. When running Forward,
there is only at most 36%CPU utili zation on user applications and
the othe rs are wasted by system opera tions. Both results show
hu ge resource waste and with th e packet size increasin g, system
opera tion cost becomes more severe.

However, the wasted CPU utilization is beyond what we can see
in the above cases. Considering that when the packet size is 64 bytes,
the VNF will receive a packet every 1488 cycles with 2.4GHz fre­
quency. Note that Forward processes a packet with about 40 cycles.
Thu s, CPU utilization for processing a packet is 40/ 1488 "" 3%. Even
though this procedure contains other user-defined applications such
as reading packets from the RX queue and writing packets into the
TX queue, 3%and 82%have too large difference.

To handl e the shortcoming of on-demand int errupt, we design
a batch int errupt to measure thi s sys tem. The experiments are as
follows: when VNF's RX queue is empty, the NF thr ead will enter
SLEEP status to save the CPU cycles. The Wakeup Thr ead monitors
VNF's RX queue and if the size of the RX queue is larger than the
batch size, it will send the ACTIVE semaphore to the VNF Thr ead.

Figure 6 shows the CPU utili zation in the batch interrupt mode.
Both Forward and DPI save a great amount of CPU ut ilization . In
addition to th e total CPU utilization , we explore th e breakdown
of CPU utilization in thi s batch situation as well. Wh en it uses
batch int errupt manner, user CPU utilization will occupy a large
ratio in both VNFs. Even in th e wors t case, wh en th e packet size
is 1024 bytes, the user CPU utili zation will occupy 67%and 82%in
Forward and DPI respectively. In this case, using batch interrupt is

1024bytes

• Forw ardD DPIo Aes encrypt

I28bytes 2S6bytes Sl 2bytes
Packet Size

Don ly pollin g

Mbytes

0.8

0.2

o

0.4

0.6

3.3.1 CPU Utilization ofSingle VNF. On-demand interrupt is used
in Netmap and ClickOS: if there is no packet in the VNF RX queue,
th e NF Thread will enter sleep sta tus and wait for the wakeup
semaphore specifically for it. In the meantime, the wakeup thread
monitors th e VNF's RX queue. Once the VNF's RX queue is not
empty, the wakeup thread will send the semaphore to wake up the
VNF thread immediately.

Figure 4 shows the CPU utili zation of different applications us­
ing thi s strategy. Since the pollin g mode of DPDK will be always
busy wa iting and processin g the pac kets , the CPU utili zation of
the polling-only mode remains at 100%. The CPU utili zati on of
Aes_encrypt is also 100%in both polling and interrupt mode due to
its high computation cost. DPI and Forward reveal import ant CPU
resource-wasting information in DPDK-based platforms. As the
packet size grows, the CPU utilization of the NF decreases mainly

IWQoS '19, Jun e 24-25, 2019, Phoenix, AZ, USA Lu Zhang, Chao Li, Pengyu Wang, Yunxin Liu, Yang Hu, Ouan Chen , and Minyi Guo

0.8 'E
Q!

0.6 =>
c.

0.4 U...
"0.2 ::>

= SYS_CJlU
......... Forward user cpu ratio

c::::::J user_cpu
......... DPI user cpu ratio

0.35I--------~r="*::::::::.::----,

0.3~
.~ 0.25 .--..........
~ 0.2
::; 0.15
=> 0.1
o 0.05

O+-'-----'-.....----'-.....--'-.....--'-,.-'=....----'----'--,'----Jy'--'-r-'--'-tO

VNFs and Packet Size(Bytes)

c::::::J user_CllU ~S)'S_C PU

~ Fonvard user cpu ratio DPI user cpu ratio
0.9 .,-- - - - - - - - - - - - - - - - - -, 0.6
Q8 OS= 0.7 .• 'E

~U ~~

] 0.5 0.3 §:
s ~:~ 0.2 ';::
~ 0.2 0.1 ~
U 0.1

o 0

Figure 5: CPU utilization breakdown of on-demand inter­
rupt

Figure 6: CPU ut ili zation breakdown for batch interrupt

Figure 7: CPU utilization of varying interrupt size

(a) Forward

Packct .1 Forward 1 Drop .1 A cs_ cncrY)lt 1 Packets .
(1.488i\1)l)ls) . 0.688i\1)l)ls _~'--"";';----J (0.82I\1)l)ls)

Cap acity : Cal' aci ty:
1.4881\1pps 0.821\1pps

Fig ure 8: The example of SFC wi th different cos t

Qlen < i\IinThreshold
&& ACT IV E

Qlen > i\Iax Th resh old
&& S LEEP

- 64byles
- 128byles
- 2S6bvles
- 512bYles
- 1024b Ie

I 13 25 37 49 61 73 85 97
Interrup t Size

(b) DP!

o

100 , - - -r=::::;::;:;:='====il
~ 80

5 60

E: 40
U

20 ~~~g;~gj

- 64byles
- 128byles
- 2S6byles
- Sl 2byles
- 1024bvle

~~""" M0"];1i
I 13 25 37 49 61 73 85 97

Interrupt Size

100 , - - - , ;:==0=:::== :::;""]

~80

== 60=>
E: 40
U

20

a good way to save CPU utili zation for ene rgy-saving purpose or
data processing purpose.

To und erstand th e relationship between batch size and CPU
utili zation, we design a fine-grained experiment to measure CPU
utilization . In our experiment, we change the batch size from 1
to 100. As shown in Figure 7, as interrupt size increase s, CPU
utilization of VNFs decreases. In our experiment, no experiment
drops any packet s. In othe r word s, it keeps a desired throughput
of VNFs. Our results show that smartly choos ing the interrupt size
allows us to save more resources.

3.3.2 CPU Utilization in Service Function Chain. In the above sub­
sections, we have discussed th e CPU utili zation of sing le VNF in
DPDK-based NFV platforms with different configurations. In the
real world, network functions will be chained to process the packets
assigned by users. The CPU utili zation of Service Function Chain
(SFC) is also an important design cons idera tion. Due to th e im­
balanced computation cost in SFC, th e downstr eam VNF will be
overloaded and it will drop the packets which have been processed
in th e up stream NF. The resources used by the up stream NF is
useless if th e downstream NF has larger computation cost than
the upstream VNF[ll] . Figure 8 shows such situation when wasted
work exists.

In order to avoid wasted work due to the imbalance of VNFs in
SFC, we design and impl ement a local backpressure algorithm as
shown in Figure 9. The Wakeup Thread chec ks the inform ation
of the upstream VNF (Forward!DPI) Thread and the downstre am
VNF (A es_encrypt). Once the queue size of Aes_encrypt is larger

Figure 9: Local backpressure diagram

than the maximum thr eshold, the ForwardlDPI Threa d will enter
SLEEP status, and if the queue size of Aes_encrypt is less than the
min threshold, the Wakeup Thread will immediately wak e up the
ForwardlDPI Thread and continue processing packets. In this way,
we can guarantee the throughput of the whole SFC and reduce CPU
utilization waste.

We test the CPU utilization of th e first network fun ction as
shown in Table 3. In this case, we can also see lots of CPU utili zation
saved using backpr essure .

All above experiments aim to show the characteristic of the CPU
utilization on DPDK-based NFV platforms. We mine those free CPU
cycles of servers running VNFs and we deploy EDP applications on
the NFV platforms to share the precious computing resource. In the
next section, we will discuss how EDP can be deployed in the NFV
platform with the QoS guar antee of both the VNF and the EDP.

4 DEPLOYING EDGE COMPUTING
Our charac terization and evaluation results show that there are still
lots of resources wasted in traditi onal DPDK-based NFV platforms.
How to utili ze those idle reso urces present s a grea t challenge. An
intuitive way to improve sys tem utili zation is to co-locate some
different applications on the same server [19]. Cons idering that
there are a growing amount of EDP applications (e.g., image pro­
cessing, video processing) actively looking for auxiliary computing
resource suppo rt at the edge, it would be highly profitable if we

Characterizing and Orchestr ating NFV-Ready Servers for Efficient Edge Data Processing IWQoS ' 19, June 24- 25, 2019, Phoen ix, AZ, USA

(1)

Table 3: In flu en ce of backpressure

Po lling Mode Backpresure
Service Drop Service Drop Forward DPI

Rate (Mpps) Rate (Mpps) CPU CPU
(Mpps) (Mpps) Util. Util

64B 1.488 0.688 0.87 0.07 9% 20%
128B 0.844 0.524 0.33 0.04 3% 7.6%
256B 0.453 0.313 0.142 0.012 1.5% 3.3%
512B 0.23 0.163 0.0668 0.008 0.7% 1.7%
1024B 0.12 0.0877 0.0323 0.003 0.3% 1%

c:::> Core with VNF c:::> Core with EDP- ----------------- ---- --- ---- ----------- ,
II---- - --- - --- - --- - - ~ I- - --- - - -- - --- - --- -~ I
: : Edge Serve r I :: Edge Server 2 : :
"~~"~~'I
:,~~: ,~~::
II~~I I~~II

::~~: :~~: :,L L _

~ ~~p~~~t~ ~~~~~~ J

:~----------.:_---------.:_-----------~~~::::::::::::::::::::::::::::::;:.:
: : Edge Server I : : ' £4 e Server]../ ::
I, I I I,
: I Core 0 Core 1 : I Core 0" , Core 1 : II: I : ' ... I I:~__~~~~ ~ !:~~_3__ J ~__~~e_: ~~~t J!
~ -- -- -- ----- - ---~~-~~~~~g--- - --- - --- -- -_:

Figure 10 : Resource saving with core sharing

can smartly deploy th em on NFV platforms. In thi s case, we can
jointl y improve network infrastru cture utili zation and reduce edge
serve r requirement , as shown in Figure 10.

In this paper, we propose EdgeMiner, a resource harvesting strat­
egy for deploying EDP applications on flexible network infrastruc­
tur e. Some prior works, which focus on the application co-location
in a data center, allow the latency-critical and batch applications to
share the memory system resources (e.g., Last Level Cache, DRAM
bandwidth) [26, 39]. However, very few studies focus on sharing
the CPU cores for edge computation augmentation. Prior work [19]
tri es to enable the sha ring of cores in a data center, but it mainl y
emphas izes shar ing-aware dynamic voltage and frequency scaling
(DVFS). Different from prior ar ts, EdgeMiner is a simple but effec­
tive meth od that allows one to co-run packet processing tasks and
EDP applications on share d cores .

Co-running EDP applications and VNFs is non-trivial. Due to
th e tran smission latency, unfinished EDP applications canno t be
moved to the Cloud in the last minut e. These tasks have to respect
a strict deadlin e and be well-managed. We cannot simply schedule
EDP applications only during the server's idle period, since there
exists limited CPU slack lime that can be exploited on current NFV
platforms. Thus, we design a sche duling algorithm to guarantee
the QoS of EDP applications.

4.1 Over view of EdgeMiner
EdgeMiner can improve th e CPU util ization of edge servers as
well as meeting th e QoS of EDP applications. The overv iew of
EdgeMiner is show n as Figure 11. This framework mainly contains

three modules: EDP profiling, sha ring initialization , and dynamic
tuning. Import antly, we use a metric called QoS Urgency (QU) to
evaluate the difficulty of achieving the QoS.

actua l runt imeQU = ---,---­
time limit

As an EDP application approac hes the deadline, its QU becomes
larger. In this case, it often becomes more difficult to meet the target
QoS due to limited time and greatly increase d computing resource
requirement. In the following subsections, we will discuss the three
compo nents in detail.

4.7.7 fOP Profi ling. In this component, we characterize common
EDP applications and record their approximate runtime. Thus, we
can estimate the CPU cycles needed for processing incoming edge
applications, based on profiling results such as sizes of data. Addi­
tionally, each EDP application also has its certain QoS requirement
which we can consider it as the time limit. After profiling, we can
calculate the QUof each EDP application. This is the most important
factor to cons ider in the following steps.

4.7.2 Sharing Initialization. In this compo nent, we decide how to
co-run the NFs and the EDP applications. In Figure 11, we can see
that different cores and different EDP applications are labeled by
different colors. The core color show n in the figure represents differ­
ent CPU utili zation used by VNFs. Similarly, different color of EDP
applications means different QU value. In the initialization ph ase,
we sort the EDP applications by the QU and the CPU utili zation of
the core. Afterwards, we co-run the least-QU EDP application with
the highest CPU util ization core; we also co-run the highest-QU
EDP application with the lowest CPU utilization core. If there exists
two EDP applications that have the same QU, we sort them based on
the time limit. If the number of EDP applications is larger than the
number of NFs, we will run th e EDP applications on the idle core .
If the numb er of NFs is larger than the numb er ofEDP applications,
there will be some cores only host VNFs. According to the above
co-running mechanism, VNFs tha t exhibit th e lowest utili zation
will occupy a single core without shar ing. In this case, it will save
power due to the low CPU consumption.

4.7.3 Dynam ic Tuning. The above co-running mechani sm alone
may not meet EDP applications ' target QoS. In order to meet th e
QoS requirement, we monitor the information ofEDP applications
and check if EDP applications should move to the idle core or the
core which has more CPU resources . We called this mechanism as
Dyn amic Search Core (DSC), as shown in Algo rithm 1. It allows
EdgeMiner to efficiently tap into curre nt NFV-ready servers .

5 EVALUATION
In this section, we firstly evaluate the performance ofEDP applica­
tion s when co-ru nning with VNFs using batch-interrupt and th e
backpressure algorithm. Secondly, we demonstrate the performance
of our DSC algorithm.

5.1 Workload
We have introduced VNFs and the DPDK-based platform in Section
3. Since we mainly focus on CPU utili zation, we select CPU-bound
applications as our benchm arks. We choose two applications from

IWQoS '19, Jun e 24-25, 2019, Phoe nix, AZ, USA Lu Zhan g, Chao Li, Pengyu Wan g, Yunxin Liu, Yan g Hu, Ouan Chen , and Minyi Guo

Core 0

Dynam ic Tuning

EDP3

EDPI

I
I
I
I
I
I
I
IL _

.-----------------------
I
I
I
I
I
I
I

~ :
EDQoS

Monitor

S har ing In itia lization
-- ----- ---~--- - ---- ---

EDP Profil ing

{ · ·· · · · ·· · · T~·~t··· ···· · ···~ :·· · ··· ·· Vid~· ··· · · · · :

: ~.~.~~r.~~~ ; ; ~.~~?:~~i.~.!? :

...............................:
Image . . Speech

: ~.':??:~~.i.~.!? : ; ~.':??:~~i.~.!? .

J (r un-time, target QoS)
p--- -- - -- -- -- -- - - ----- ---- ---- - - ,

I

Edge Data Processing :
I
I
I
I
I

f-----+!: ~===:
I
I
I
I
I

-- - - - - - - - - - - - - - ~ ~ - - - - - - - - - - - - - - _ :
Core with

VNF
-::_-_-_-......' Idle Core C PU Used by VNF

__--:l~~ increas ing
Increasing QU

Figure 11: Overview of EdgeMin er

Algorithm 1 Dynamic Search Core Algori thm
Definition:

Trea l : T im e rea ll y elaps ing
Ttar get : Longest ti me of Edge data pr ocessing
Tsingle : Run ti me of EDP ru nn ing in single core
Ttrans : Ti me to change core
Rat io, : Ratio of NF using th e it h core

I : fo r EDP is run ni ng w ith core} do
2: Get Trea l
3: Find th e CORESET w hose Ratio < (1 - QU)
4: for corei. E CORESET do
5: T _ (I-Rat iok)·Ttarget - Tsingle

tra ns - Rat io j Rat iov
6: if Ttra ns > Treal then
7: Conti nue
8: else if Ttran s < Treal then
9: rem ov e coree out of CORESET

10: else
11: change EDP f rom core) to corek
12: end if
13: end for
14: end for

co-ru nning combina tion. As the figure shows, the batch interrupt
scheme can steep ly degrade the EDP application's processing time
compared with the on-de mand int errupt mechan ism. It is evident
that we can harvest mor e CPU resources on VNF-ready servers to
process EDP applications.

5.3 Effectiveness of Back Pressure Algorithm
As mention ed in section 3.3.2, local backpressure algo rithm can
save CPU utili zati on in SFC without affecting the performan ce of
network services. In thi s expe riment we use backpressure algo­
rithm to harvest CPU free cycles and measur e the perform ance of
EDP applica tions . As shown in Figure 13, th e normalized perfor­
mance degradation of co-located EDP applications is less than 15%.
Import antl y, our result s show that if we use the backpressure mech­
anism, it only slightly delays EDP applicatio ns wh en the packet
size is large (e.g., more than 256B). In other words, we may provide
high -performan ce processing ofEDP applications depending on
the character istics of the netw ork packets.

Table 4: Edge processing workloads

Name Information Workload
vips Image processing Image wi 18K * 18K pixe ls
x264 video enco ding 30fps /640 * 360 pixels

PAR-SEC [35]. The detailed inform ation of workloads is shown in
Table 4. Both the two wo rkloads are popular in EDP applications :
v ips is an image processing librar y and x264 is an app lica tion for
encoding video streams int o the H.264 compression form at.

5.2 Effectiveness of Batch Interrupt
We evalua te the impact of batch packet process ing mechani sm on
EDP applications performance. We run EDP applications on the core
that has used by VNFs and record the EDP application's processi ng
time. Figure 12 shows the normalized processing time of different

5.4 QoS of Edge Data Processing
Although batch int errupt and backpressure schemes provide a way
to exploit free computing resour ces, they still cannot provide satis­
factory QoS guaran tee. To ensure bett er QoS ofEDP applications,
it is imp ortant to carefully schedule computing resources. We use
the 90% QoS po licy (the QoS tar get performanc e is 90% of solo
performance) to evaluate our DSC algorithm. According to the 90%
QoS policy, if the run -time degradation is less than 1.11x, there will
be no imp act on the QoS.

For the above experiment, when the EDP applications (both the
x264 and vip s) co-ru n wi th Forward, all the degradati on of EDP
applications are less th an l.llx (the most is l. 08 wh en the packet
size is 64 an d Forward co-ru ns with x264). In thi s case, using th e
batch packet processing, we can guarantee the QoS of cert ain EDP
applications even without extra compensation. Moreove r, we test
the 95% QoS policy as well. Th e results are shown in Figure 14.
From Figure 14, we can see that the DSC can achieve the QoS of
the EDP applications (both 90%QoS policy and 95%QoS policy).

Characterizing and Orchestr ating NFV-Ready Servers for Efficient Edge Data Processing IWQoS '19, June 24- 25, 2019, Phoen ix, AZ, USA

12
~ OO" ",,,.~ Interru pt~ ~ 00,, _ . ,,"",,"" ~ 7

.~ 10 • Bat ch Int e r rupt .~ 6 DBatch Interrupt

& 8

~
~ 5

~
]

~~Ih
]4

~~Ih~ 4
5 3
§ 2

~ z;
1

0
128 256 512 1024

Pa cket Size(B)'tes)

6464 128 256 512 1024
Packet Size(Dytes)

64 128 256 5 12 1024
Packet Size(Bytes)

tr rj n-dema ud In lelTIII)1

• Bat ch Interru pt

n l ~ , Ih

o On-d emand Interru pt

64 128 256 512 1024
Pa cke t Size(Bytes)

10 -,------------,

(a) Forward +x264 (b) Forward-vips (c) DPI+x264 (d) DPI+vips

Figure 12: The Influence of batch processing when co-running the NFs and the edge date processing. a) -d) represent different
co-location between the VNFs and EDP applications. Y-axis represents the time co-running with NF / the time when running
the edge data processing in a single core.

(a) EDP co-run with Forwa rd

DPl+ x26J
threading scheduling [13] and reducing cache miss [15]. All of prior
works focus on high performance of packet processing to meet the
network line rate. Th ey lack cons ider ing th e reso urce utilization .
Excep t for these NFV accelera tion techniques, th e NFVnice [21]
and Flurries [41] benefit from running multip le NFs in a single core
to increase th e core utili zation and make th e NFV system more
flexible. Th ese works are orthogo na l to our work and we mainl y
focus on the edge serve r to deploy EDP applications in the core
used by the NF to increase the core util ization .

(b) EDP co-run with DP!

1.2 -,-- - - - - - - - --,

6-1 128 2S6 512 102..
Packet Si"le(h~tes)

0.95

·1 1.15
... 1.1

"
] 1.05..
E
i

FflnHu tl+x26-1

... ...

6-1 128 256 5 12 102-1
Pac kd Sizc(B~,tcs)

l.l18

" ~ 1.416

§
1.0-1"]
1.112

l
i

0.98

0.96

6.2 Edge Data Process ing
To reduce the latency, there is a trend to process data on the edge
devices close to the users. Li et al. [24] develop a susta inable in-situ
serve r sys tem to pre-process the raw data near where th e data is
located. However, this work mainly focuses on the energy manage­
ment in the in-situ data center. Lane et al. [22] use a static model to
per form deep learn ing recogniti on on loT devices; Song et al. [33]
represent an autonomous and increment al computing framework
and architecture for deep learning based Io'Tapplications. All the
above work mainly focuses on how to process the edge data in a
high-performance or sustainable way. However, they don't consider
how to deploy EDP applications in the existed systems such as the
NFV-Ready servers.

tHb yt es II 28bytes I 64byt es 1128bytes I 64bytes II28b)'te s I256b ytes I S12bytes

NDPl+ x264 FOlwal1~+x26-t NDPl+ x264
Packet size and Coloca tion

: ~~ rr=;----------r=,--r:::::;:::;::;::O::=~:;;=il

107
105

_ 103

~1~
";: 97
~ 95

93
9 1
89
87
85 t-'--'--'-r'--'--'-t-'--'--',-'--'--'''':'-'--'-r'--'--'-,-'--'--',-'--'--'-j

Figure 13: Normalized runtime when EDP applications co­
run with VNFs using the backpressure algorithm

Figure 14: Using DSC algorithm to meet QoS of EDP

6 RELATED W ORK
In this section, we discuss represent ative prior studies in different
domains that are most relevant to our work.

6.1 H igh-Performance NFV System
Man y pri or work s aim to provide high-performan ce and flexible
platforms for NFY. Prior work s [23, 29] enhance the indi vidu al
NF performance to speed up the NFV's performance; Some works
[17, 27, 42] focus on th e packet delivery between different NFs
to reduce the performance degradat ion ; In works [14, 20], they
employ heterogeneous platforms such as GPU to accelera te the
packet processing. There are also some works use the characteristic
of computer architecture to accelerate the packet processing such as

6.3 Im proving Utilization of Data Processing
There have been many prior works on improving the QoS ofla tency­
critical applications [26, 39]. These works leverage different mech­
anisms to make the latency-critical app lications co-loca ted with a
batch job on the same serve r to improve th e resource utili zation .
It is critical to guarantee th e QoS of th e latency-crit ical applica­
tions at the same time. Bubble-Up [26] and Bubble-Flux [39] bound
performance degradation while impr oving chip multiprocessor uti­
lization . Additionally, HOPE [12] exploits management workloads
scheduling and applies grap h-base d task allocation to improve com­
putation and reduce energy consumption. However, all these works
mainly focus on the interference between the latency-critical tasks
and batch jobs or performance improv ing of tasks in a data center.
Our work concentra tes on th e edge computing scena rio and th e
co-running of VNFs and EDP applications.

IWQoS ' 19, June 24-25, 2019, Phoenix, AZ, USA Lu Zhang, Chao Li, Pengy u Wang, Yunxin Liu, Yang Hu, Ouan Chen, and Minyi Guo

7 CONCLUSION
The rapid growth of loT applications places demand on innovative
data processing infrastructure that are responsive, efficient , and
scalable. In thi s paper, we study the CPU utili zation cha rac teris­
tics of DPDK-based NFV platforms in detail to demonstrate the
unde rutilization issue of servers in edge network. We show that
one can effectively harvest 13%-90%free CPU resources on DPDK­
based platforms with batch interrup t mechanism and backpressure
algori thm. Using th e saved resources, we prop ose EdgeMiner, a
light- weight edge processing framework that allows VNFs and EDP
tasks to co-run on commodity servers. We also devise scheduling
schemes that can guarantee the QoS of both type s of applications.
The proposed design , which expands the breadth and impact of to­
day's network infrastructure , has the potent ial to greatly contribute
to building a more connected, smarter world.

8 ACKNOWLEDGEMENT
This work is partially sponsored by the National R&D Program of
China (No. 2018YFB1004800). Yang Hu is supported by NSF grant
1822985. Corresponding author is Chao Li.

REFERENCES
[1] 2014. X10 Protocol. https://buil dyour smarthome.co/home-automation/pr otocols/

x10/.
[2] 2014. Z-Wave. https://buildyoursm arthom e.co/h om e-aut om ation/protocols/

z-wave/.
[3] 2016. STREAM Benchmark htt p://www.cs.virgini a.edu /str eam /FTP/Code/.
[4] 2018. ZigBee Alliance. https:/ /www.zigbee.or g.
[5] Azure . 2019. Azure Data Box fam ily. htt ps://azure.microsoft.com/en-us/services/

storage/da tabox /.
[6] Intel. Corpora tion. 2017. In tel 64 and ia -32 archite cture s develop er 's man ­

ual.. https://www.int el.com /cont en t/www/u s/en /ar ch itecture-and - technology/
64- ia-32-arc h itectur es- softwa re-develop er - manual-325462.h tml.

[7] Amir Vahid Dastjerdi and Rajkumar Buyya. 2016. Fog com puting: Helpin g th e
Intern et of Things rea lize its po tential. Computer 49. 8 (2016), 112- 116.

[8] Har ish chandra Dubey,Jing Yang , Nick Cons tant, Amir Mohammad Amid , Qing
Yang, and Kunal Makodi ya. 2015. Fog data: Enhancing telehealth big data through
fog computing. In Proceedings of ASE BigData & Sociaiinfo rmatics 2015. ACM, 14.

[9] Natha n Eddy. 2015. Gar tne r: 21 Billion loT Devices To Invade By
2020. https://w w w.inform ati on week com /m ob ile/m obil e-d evices/
ga rtner-21-billion - iot-devices- to- invade- by-2020/d/d-id/1323081.

[10] GSNFV ETSI. 2013. Network fun ction s virtual ization (nfv) : Architectural frame ­
work ETsI Gs NFV 2. 2 (2013), VI.

[11] Joel Halp ern and Carlos Pigna taro . 2015. Service f unction chaining (sfc) architec­
ture. Technica l Report.

[12] Yang Hu , Chao Li, Lon gju n Liu , and Tao L1. 2016. HO PE: Enablin g Efficient
Servic e Orche stration in Software-Defined Dat a Centers. In Proceedings of the
2016 International Confe rence on Supercomputing (ICS '16). ACM. New York , NY,
USA, Ar ticle 10, 12 pages. htt ps:/ /doi.org/10.1145/2925426.2926257

[13] Yang Hu and Tao Li. 2016. Tow ards efficien t se rve r architectur e for vir tualized
net work fun cti on deploym ent : Implications and implem en tati on s. In The 49th
Annual IEEE/A CM International Sym posium on Microarchit ecture. IEEE Press, 8.

[14] Yang Hu and Tao Li. 2018. Ena bling Efficien t Network Service Func tion Cha in
Deploym en t on Heterogeneous Server Platfo rm. In High Perf orman ce Computer
Archit ecture (HPCA), 2018 IEEE International Sy mposium on. IEEE, 27-39.

[15] Yang Hu , Mingco ng Song, and Tao L1. 2017. Towards full conta inerization in
con taine rized network func tion virtualization. A CM SIGOPS Operating Systems
Review 51, 2 (2017), 467-481.

[16] Yun Chao Hu, Milan Patel, Dario Sabella, Nurit Sprecher, and Valerie Youn g. 2015.
Mobile edge computing - A key technology toward s 5G. ETSI whit e paper 11, 11
(2015), 1-16.

[17] jinho Hwan g, K K_ Rama krishnan, and Timothy Wood . 2015. NetVM: high per­
forman ce and flexible networking using virtualization on commodity plat forms.
IEEE Transactions on Network and Service Management 12, 1 (2015), 34-47.

[18] Intel. 2012. Data Plane Deve lopmen t Kit. https://w ww.dpdkorg/.
[19] Har shad Kastur e, Davide B Bar tolini, Na tha n Beckmann, a nd Dan iel Sanche z.

2015. Rubik: Fast analytical power managem ent for laten cy-criti cal sys tems. In
Microarchitecture (AfICRO), 2015 48th An nual IEEE/ACM Internat ional Symposium
on. IEEE, 598-610.

[20] Ioongi Kim , Keon j an g, Keunho ng Lee, San gwoo k Ma,J unhy un Shim, and Sue
Moon . 2015. NBA (netwo rk balanci ng act):A high-perform an ce pa cket processing
framework for heterogeneou s processors. In Proceedings of the Tenth European
Conf erence on Computer Systems. ACM, 22.

[21] Sameer G Kulkarni , Wei Zhang ,Jinho Hwang, Shriram Rajagopalan, KK Ramakr ­
ishnan , Tim othy Wood, Mayutan Arumaithura i, and Xiao ming Fu. 2017. Nfvn ice:
Dyn ami c backp ressure and scheduling for nfv se rv ice cha ins. In Proceedings of
the Conf erence of the ACM Special Interest Group on Data Comm unication. ACM,
71-84.

[22] Nicho las D Lane , Sourav Bhatt acharya , Petko Georgiev, Claudio Forli vesi, and
Fahim Kaw sar . 2015. An ea rly resource cha ra cterization of deep learning on
wea ra bles, smartpho nes and internet-of- thin gs devices. In Proceedings of the 2015
internat ional workshop on internet of things towards appli cations. ACM, 7- 12.

[23] Boj ie Li, Kun Tan , Layon g Lar ry Luo, Yanqing Pen g, Renqian Luo, Nin gyi Xu ,
Yongqian g Xion g, Peng Che ng, and Enhong Chen. 2016. Clicknp: Highly flexible
and high pe rforma nce network processin g with reconfigurable hard war e. In
Proceedings of the 2016 ACM SIGCOMM Conf erence. ACM, 1-14.

[24] Chao Li, Yang Hu , Lon gjun Liu , Ju ncheng Gu, Mingco ng Song , Xia oyao Lian g,
Jinglin g Yua n, and Tao L1.2015. Towards sustainable in-situ serv er systems in
the big data era. In ACM SIGARCH Computer Archi tectur e New s, Vol. 43. ACM,
14-26.

[25] Chao Li, Yushu Xue,Jing Wang, Weigon g Zha ng , and Tao Li. 2018. Edge-O riented
Computing Paradigm s: A Sur vey on Arch itecture Design and System Mana ge­
ment. ACM Computing Surveys (CSUR) 51, 2 (2018), 39.

[26] Jason Mar s, Lingjia Tang, Robert Hundt, Kev in Skadro n , an d Mar y Lou Soffa.
2011. Bubble-up : Increasing utili zati on in mod ern warehouse sca le computers via
sensible co-loc ations. In Proceedings ofthe 44th annual IEEE/ACM International
Sy mposium on Microarchitecture. ACM, 248- 259.

[27] joao Mar tins, Moham ed Ahmed, Cos tin Raiciu, Vladim ir Oltea nu , Michio Ho nda,
Roberto Bifulco, and Felipe Hu ici. 2014. ClickOS and the art of network fun ction
virtualization . In Proceedings ofthe 11th USENIX Conf erence on Networked Systems
Design and Implementation. USENIX Associat ion, 459-473.

[28] nt op . 2015. PF_RING zc. http://ww w.n top.org/p rod ucts/p Cringi pC
ring-zc-zero-copy /.

[29] Auro j it Panda , Sangj in Han , Keon Jan g, Me lvin Walls, Sylvia Rat na samy, a nd
Scott Shenker. 2016. NetB rick s: Taki ng the V out ofNFV.. In OSDI. 203- 216.

[30] Rohit Mehra Rajesh Ghai, Petr Ji rovsk y. In . d.]. Worldwid e vCPE/uCPE For e­
cas t, 20173A$202 1: NFV at the Netwo rk Edge. http s://www.idc.coml getdoc.jsp?
containerId=US41429616.

[31] Luigi Rizzo. 2012. Netm ap : a novel fram ewo rk for fast pa cket I/O. In 21st USENIX
Security Symposium (USENIX Security 12).1 01-11 2.

[32] Mahadev Satyanara yana n, Victo r Bahl, Ramon Caceres , and Nigel Dav ies. 2009.
The case for vm-based cloudlets in mobile comp uting. IEEEpervasive Computing
(2009).

[33] Mingco ng Song, Kan Zhong , Ji aqi Zhang , Yang Hu , Du o Liu, Weigo ng Zhang,
Jin g Wang, and Tao L1. 2018. In-Situ AI: Towards Autonomous and Increment al
Deep Learning for loT Systems. In 2018 IEEE InternatiOnal Sy mpOsium On High
PerfOrmance COmputer Archit ecture (HPCA). IEEE, 92- 103.

[34] Bo Tang, Zhen Chen, Gera ld Heffe rman , Tao Wei, Haibo He, and Qing Yang. 2015.
A hierar ch ical distr ibuted fog computing arc hi tec ture for big dat a ana lysis in
smart cities. In Proceedings ofASE BigData & Sociaiinf ormatics 2015. ACM, 28.

[35] Prin ceton Univ ersity. 2010. PARSEC. h ttp :/ /parsec.cs.princeton .edu/ .
[36] Aas en Wang, Lizhon g Che n , and Wenyao Xu. 2017. XPro : A cros s-end pro cess­

ing archite ctur e for da ta ana lytics in weara bles. In ACM SIGA RCH Computer
Archit ecture News, Vol. 45. ACM, 69-80.

[37] Dale Willi s, Arkodeb Dasgup ta , and Suma n Banerjee . 2014. Pa raD rop : a mu lt i­
tenant plat form to dynamically install third party services on wireless gateways.
In Proceedings of the 9th ACM workshop on Mob ility in the evolving internet
architecture. ACM, 43-48.

[38] Yi Xu a nd Sumi Hela l. 2014. Applica tio n caching for clo ud-sensor sys tems. In
Proceedings of the 17th ACM international confe rence on Modeling, analys is and
simulation of wireless and mobile sys tems. ACM, 303-306.

[39] Hailon g Yang, Alex Breslow, Jason Mars, and Lingj ia Tang. 2013. Bubb le-flux:
Precise online qos management for increased utilization in warehouse scale
computers. In SIGARCH Computer Archit ecture News, Vol. 41. ACM, 607-618.

[40] Yishay Yove!. 2017. Why NFV is Long on Hyp e, Sho r t on Value. http s://w ww.
catone tworks .com/blog/why- nfv- is- lon g-on- hyp e- short-on- value/ .

[41] Wei Zha ng, j inh o Hwa ng, Sh riram Rajagopalan , KK Ramakrishn an, and Tim othy
Wood . 2016. Flurries: Countless fine-grain ed nfs for flexible per-flow customiza­
tion . In Proceedings of the 12th Internat ional on Conf erence on emerging Networking
EXperim ents and Technologi es. ACM, 3-17.

[42] Wei Zhang , Guyue Liu, Wenhui Zha ng , Neel Sha h , Phillip Lopreiat o, Grego ire
Todeschi, KK Ramakrishnan, and Tim othy Wood. 2016. OpenN etVM: A platfo rm
for high performan ce network service chains. In Proceedings of the 2016 workshop
on Hot topics in Middleboxes and Network Function Virtualization. ACM, 26- 31.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

