Characterizing and Orchestrating NFV-Ready Servers for
Efficient Edge Data Processing

Lu Zhang Chao Li Pengyu Wang
Shanghai Jiao Tong University Shanghai Jiao Tong University Shanghai Jiao Tong University
luzhang@sjtu.edu.cn lichao@cs.sjtu.edu.cn wpybtw@sjtu.edu.cn
Yunxin Liu Yang Hu Quan Chen

Microsoft Research The University of Texas at Dallas Shanghai Jiao Tong University
yunxinliu@microsoft.com yang.hu4@utdallas.edu chen-quan@sjtu.edu.cn
Minyi Guo

Shanghai Jiao Tong University
guo-my@sjtu.edu.cn

ABSTRACT

The fast-growing Internet of Things (IoT) and Artificial intelligence
(AI) applications mandate high-performance edge data analytics.
This requirement cannot be fully fulfilled by prior works that focus
on either small architectures (e.g., accelerators) or large infrastruc-
ture (e.g., cloud data centers). Sitting in between the edge and cloud,
there have been many server-level designs for augmenting edge
data processing. However, they often require specialized hardware
resources and lack scalability as well as agility.

Other than reinventing the wheel, we explore tapping into un-
derutilized network infrastructure in the incoming 5G era for aug-
menting edge data analytics. Specifically, we focus on efficiently
deploying edge data processing applications on Network Function
Virtualization (NFV) enabled commodity servers. In such a way,
we can benefit from the service flexibility of NFV while greatly
reducing the cost of many servers deployed in the edge network.
We perform extensive experiments to investigate the characteristics
of packet processing in a DPDK-based NFV platform and discover
the resource under-utilization issue when using the DPDK polling-
mode. Then, we propose a framework named EdgeMiner, which can
harvest the potentially idle cycles of the cores for data processing
purpose. Meanwhile, it can also guarantee the Quality of Service
(QoS) of both the Virtualized Network Functions (VNFs) and Edge
Data Processing (EDP) applications when they are co-running on
the same server.

CCS CONCEPTS

« General and reference — Measurement; - Software and its
engineering — Process management; + Networks — Network
servers.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

IWQoS °19, June 24-25, 2019, Phoenix, AZ, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6778-3/19/06...$15.00
https://doi.org/10.1145/3326285.3329057

KEYWORDS

Network Function Virtualization, resource under-utilization, edge
data processing, QoS

ACM Reference Format:

Lu Zhang, Chao Li, Pengyu Wang, Yunxin Liu, Yang Hu, Quan Chen,
and Minyi Guo. 2019. Characterizing and Orchestrating NFV-Ready Servers
for Efficient Edge Data Processing. In IEEE/ACM International Symposium
on Quality of Service (IWQoS °19), June 24-25, 2019, Phoenix, AZ, USA. ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3326285.3329057

1 INTRODUCTION

Deploying data analytic applications and Al-enabled services near
the edge is becoming increasingly popular today since moving
stored or in-flight data to the cloud can be problematic. According
to Gartner, there will be over 20 billion IoT devices installed by 2020
[9], which will create large quantities of data needing to be analyzed.
Integrating domain-specific accelerators in end devices (e.g., smart
phones or video cameras) can boost Edge Data Processing (EDP),
but it is inadequate due to limited capacity and scalability. Faced
with a deluge of edge traffic, it is also critical to tap into auxiliary
edge systems for augmented EDP. Recently, many pioneer studies
have explored such hierarchical topology, including the Cloud-Fog-
Edge three-layer design [7, 38] or four-layer design [34].
However, there are no well-established architectures for the aug-
mented EDP landscape [25]. Even though various edge computing
solutions [5, 24, 32, 36, 37] have been explored over the years, they
typically assume certain specialized hardware such as smart gate-
ways, mini clusters, or network devices to process the raw data.
For example, XPro [36] proposes an energy-efficient architecture
for smart body sensing. ParaDrop [37] and Fog Computer [8] high-
light smart gateways for processing data stream near users. At the
server level, Cloudlet [32] uses virtualized local clusters to augment
mobile services and InSURE [24] leverages standalone clusters to
pre-process raw data onsite. Recently, Microsoft introduces Data
Box Edge/Gateway [5], which is a physical network appliance that
uses Al to analyze and transform data before it is uploaded to Azure.
The above systems improve different edge-oriented services for
sure, but they can be less cost-efficient and scalable. Oftentimes,
enormous mini data centers or fog computing nodes need to be

IWQoS ’19, June 24-25, 2019, Phoenix, AZ, USA

In-Situ A i A

d Edge Data P

g

Figure 1: The case for Augmented Edge Data Processing

physically deployed in a specific region. This unavoidably increases
capital expenses (Capex) and operational expenses (Opex). Worse,
due to the reliance on specialized hardware, one can hardly accom-
modate edge traffic surge or react to failure scenarios. Without
over-provisioning edge resources, one has to offload traffic to re-
mote data centers every now and then.

Moreover, since existing designs introduce various application-
specific platforms, it is difficult to coordinate diverse applications
across different vendors. While all of these systems may operate
under the same open standard in the future, currently there is no
universally accepted one. The edge computing space is therefore
somewhat fragmented. Many existing technologies only provide
a certain degree of functionality. For example, popular suites of
proprietary protocols including X10 [1], Z-Wave [2], and ZigBee
[4], all of which are incompatible with each other. Unless a single
specific kind of equipment is used, one has to find a way to share
device data with others.

This work is driven by the observation that currently there is not
a strong motivation for provisioning a wide spectrum of specialized
appliances for generic EDP tasks. Rather than exploring and re-
defining a new type of edge architecture, we propose to unleash the
performance and capacity potential on edge equipment already in
place. Specifically, in this paper we set out to explore leveraging the
under-utilized NFV servers at the edge to co-locate the emerging
edge computation workloads.

Our argument stands on the recent trend towards Network Func-
tion Virtualization (NFV) [10] with the aim of improving the net-
work’s manageability and reducing the capital expenditure. NFV
implements the network function (NF) (e.g., routing, detection, and
load balance, etc.) as software in virtual machines (VMs) or con-
tainers, which allows virtual NFs to be deployed on commodity
off-the-shelf (COTS) servers. On the other hand, being deployed
between the end devices and the data centers, these COTS servers
deployed with NFs are naturally formed as a mesh network of com-
puting nodes that can process or store data locally and push all
received data to a central cloud, as shown in Figure 1.

In fact, the European Telecommunications Standard Institute
(ETSI) advocates reusing existing NFV infrastructure and the man-
agement capability of NFV to the largest extent possible in the
edge computing era [16]. In recent years, NFV at the network edge
(e.g. virtualized Customer Premises Equipment, vCPE) is gaining in-
creasing attention. According to an IDC report [30], the worldwide

Lu Zhang, Chao Li, Pengyu Wang, Yunxin Liu, Yang Hu, Quan Chen, and Minyi Guo

market for NFV infrastructure at the network edge is expected to
grow from a base of $67.8 million in 2016 to $1.16 billion in 2021 at
a compound annual growth rate (CAGR) of 76.4%. Such increasing
yet under-utilized [40] computing infrastructure makes it attractive
for users who want more affordable, deploy-on-demand edge com-
puting power. Doing so also allows one to speed up the adoption
and delivery of our edge applications as well.

In this paper, we propose EdgeMiner, an augmented EDP frame-
work that enables NFV-ready COTS servers to efficiently host aug-
mented EDP applications such as the edge video encoding and
image processing applications. Towards this goal, we perform exten-
sive experiments to characterize the resource utilization of DPDK-
based NFV COTS servers. Intel DPDK [18] is designed to mitigate
the overheads of software packet processing by optimizing the
kernel network stack and allowing direct data access to bypass
the kernel. However, our characterization results show that, in
contrast to the core network scenario, DPDK-based NFV platform
has poor CPU utilization at the network edge with lower packet
receive/sending rate. Motivated by our observation, EdgeMiner
smartly mines the idle CPU resources of DPDK-based NFV plat-
forms without impairing the performance and capacity of VNFs. It
leverages batch processing and batch-interrupt to discover the idle
CPU resource of DPDK-based NFV platforms. We also propose a
Dynamic Search Core (DSC) algorithm to guarantee the QoS of EDP
applications. We evaluate our framework using the typical network
function and popular EDP applications such as image processing
and video encoding.

To the best of our knowledge, this work is first to provision EDP
applications on the flexible network infrastructures.

This paper makes the following key contributions:

e We conduct extensive experiments to measure the architec-
ture characteristic of a DPDK-based NFV platform under var-
ious configurations. We demonstrate the under-utilization
issue of servers.

We propose EdgeMiner, a light-weight edge processing frame-

work that allows VNFs and EDP tasks to co-locate on com-

modity servers. We design scheduling schemes that can guar-
antee the QoS of both types of applications.

e We evaluate EdgeMiner using typical network functions and
EDP applications such as x264 (a video encoding benchmark)
and vips (an image processing benchmark). We show that
EdgeMiner can save 13%-90% CPU utilization when there
are no EDP applications and guarantee the QoS of EDP ap-
plications when deploying them on the NFV platforms.

The rest of this paper is organized as follows. Section 2 provides
the background and further motivates our work. Section 3 character-
izes the packet processing behavior on DPDK-based NFV platforms
and investigates the capacity potential of the COTS servers. Section
4 proposes our EdgeMiner framework. Section 5 evaluates our de-
sign with representative applications. Section 6 introduces related
work and finally Section 7 concludes the paper.

2 BACKGROUND AND MOTIVATION

In this section we briefly introduce the essential concepts of NFV
and EDP. Our driving insight is that traditional DPDK-based NFV
platforms are generally underutilized in the edge; one can actually

Characterizing and Orchestrating NFV-Ready Servers for Efficient Edge Data Processing IWQoS ’19, June 24-25, 2019, Phoenix, AZ, USA

deploy EDP applications as a type of network function (NF) to
fully utilize the NFV servers. In such a way, we can provide edge
computing services with high cost-efficiency and service agility.

2.1 Network Function Virtualization

NFV proposes to move various network functions from hardware
"middleboxes" to software appliances in VMs or containers. Deploy-
ing virtualized network functions (VNF) as software on commod-
ity servers has many advantages such as reducing cost through
workload consolidation, simplifying resource management, and
fast deployment as so forth.

In order to achieve the line rate for packet processing, today’s
NFV-enabled server adopts several optimization strategies. Many
NFV platforms take advantage of the state-of-the-art I/O libraries
such as Intel DPDK [18], RP_Ring [28] and Netmap [31]. All the
above libraries reduce the performance overheads in the traditional
kernel network stack. In order to deeply study NFV platforms, in
this paper, we mainly focus on NFV platforms using DPDK for
high-performance packet I/O.

2.1.1 Packet Processing of DPDK. Intel DPDK packet I/O library
offers a set of primitives that allow users to create efficient user-
space NFs on x86 platforms, particularly for high-speed data plane
applications. DPDK mainly operates in a polling mode rather than
the traditional interrupt packet I/O, which can reduce the time
spent for packet traveling in the server. DPDK also uses huge pages
to pre-allocate large regions of memory, which can reduce the TLB
miss and packet transmission overhead. In this case, applications
perform DMA operations and access data directly from the NIC
without involving kernel processing and memory copy. Moreover,
some architectures can further use DDIO (Direct Data I/O) which
directly accesses data from NICs to LLC to reduce the latency of
memory access. Additionally, DPDK requires each VNF to occupy
one dedicated CPU core to avoid context switches. All of these
efforts are made to provide high-performance packet I/O operations
and a high-performance NFV system.

While DPDK achieves very high throughput with aggressive
optimization, it has sacrificed the efficiency of resource utilization.
When the packet transmission rate is low (e.g., below 10 Gigabits/s),
DPDK will suffer from rather poor CPU utilization due to its reliance
on busy polling. Additionally, since it pre-allocates large regions of
memory, it unnecessarily causes memory capacity waste when the
packet access rate is low.

2.1.2 Service Function Chaining. Network services often require
various NFs. A packet usually traverses a series of sequenced net-
work functions before the final application processes it, which is
called Service Function Chain (SFC). SFC implemented in NFV
platforms can easily scale and change its locations on demand.

EFSI standards [10] show that different NFs have significantly
different processing and performance requirements. Some NFs have
a high per-core throughput (Mpps), e.g., switches; and some have a
low throughput as a few kilo pps, e.g., encryption applications. In
this case, one NF in a service chain that drops packets will waste
vast amount of processing resources in earlier NFs of the chain.
The imbalanced computing capabilities cause resource waste, and
as the length of SFC increases, this situation will be worse.

2.2 Edge Data Processing on NFV Platforms

For traditional IoT systems, raw data generated from edge devices
is sent to applications deployed in the Cloud through the network.
There are several disadvantages of this Cloud-centric model: 1)
large latency overhead: a large amount of data movement through
the network will cause severe energy and latency overheads; 2) de-
ployment problems: it is impractical to connect all the edge devices
with the Cloud, and; 3) security and privacy issues: sending the
edge data to the Cloud may raise security and privacy issues.
Rather than constantly moving a huge amount of data to the
Cloud, recent years has witnessed a new trend towards edge-oriented
data processing. EDP is a natural extension with the evolution of
mobile base stations and the convergence of IT and telecommunica-
tions networking. Typically, EDP applications can be implemented
in a virtualized environment [16, 32]. In other words, the under-
lying platform that hosts EDP tasks and NFV workloads is quite
similar. EDP emphasizes data processing at the edge network, while
the NFV platform is focused on processing network packets. With
appropriate design and modification, one can actually deploy com-
putational edge services as network functions. It allows operators
to benefit as much as possible from their investment, by hosting
both VNFs and EDP applications on the same platform.
Nevertheless, it is important not to aggressively subscribe the
NFV-enabled servers as both EDP tasks and VNFs have QoS require-
ments. VNFs generally pursue high throughput and low latency
for packets processing. Similarly, EDP applications face very strict
deadline. Moreover, EDP applications are characterized by latency,
proximity and real-time running. Thus, intelligent orchestration of
computing and network resources is of paramount importance.

3 CHARACTERIZING NFV SERVERS

Traditional NFV platforms mainly focus on high performance but
overlook resource efficiency. In this section, we conduct extensive
experiments to investigate the resource utilization of a DPDK-based
platform in terms of CPU and memory utilization under different
configurations. The results of experiments show that there are lots
of underutilized resources, which motivate our design of co-running
EDP applications on network infrastructure.

3.1 Experiment Setup

3.1.1 Platform Configuration. Our physical platform configuration
is shown in Table 1. The server uses 4 Intel 1350 1Gigabit Ethernet
NICs associated with the single socket. The operating system is
Ubuntu Linux 16.04 and the version of DPDK is 17.08. All of our
experiments are based on openNetVM [42].

The platform architecture in our experiment is shown in Figure
2. When the system starts, a manager thread pre-allocates mem-
ory pools (rte_mempool_create) in Huge Pages to store incoming
packets. All threads are pinned to dedicated CPU cores in our ex-
periment. Next, we will introduce the flow of packet processing
in detail: When packets arrive in the system, the RX thread will
fetch the data from the NIC with zero copy (). Then the RX thread
will look up the flow table to decide which VNF is selected and
then send the packet to the corresponding VNF’s RX queue (8).
VNF1 reads packets from its RX queue and processes them using
user-defined functions (@). Then, all packets will be sent to VNF1’s

IWQoS 19, June 24-25, 2019, Phoenix, AZ, USA

Table 1: Platform configuration

Item Configuration

COTS System | Ubuntu 16.04, single socket

Intel Xeon E5-2620 v3@2.40GHz

6 physical cores (disabled HyperThreading)

Prosrsser 15MB L3 cache for the socket
64KB L1 cache,256KB L2 cache each core
Memor 32GB DDR4 total
y HugeSize=2MB and 1024 HugePage
NIC Intel 1350, 4 port each 1Gigabit
Az ©_Wakeup Thread |
=
& © ©
° Flow
Director

User
y Space
—— - ———— === —|
L RXT 5
Z = Kernel
Bypass
§° bl [s) ;% Space

TR T T

Figure 2: Packet processing on NFV platforms

TX queue. When the polling mode is used, CPU cores will be always
busy to wait and process packets while VNF1 is running (i.e. busy
polling). If the interrupt mode is used, the core pinned to VNF1
will be sleep when there is no incoming packets or other situations
(e.g., backpressure). The wake-up thread aims to monitor each NF’s
information and decide when to activate the VNF thread (®). The
TX thread polls to read packets from the NF1’s TX queue, and then
moves the packets into another NF’s RX (NF2 RX) or sends them
to the NIC based on the destination information of the packets ().
The packets processed by NF1 will be processed by NF2 (®). Thus,
the TX thread moves the packets from NF1 to NF2, and then NF2
processes the packets in the same manner as step @. After NF2 pro-
cesses the packets, the TX thread checks the packet’s destination
information and decides to move the packet out of the system (©).

3.1.2 Network Function Workloads. In our experiments, we choose
three typical NFs to explore resource utilization characteristics of
DPDK-based NFV platforms:

Forward: This network function is similar to the Ipv4/Ipvé
packet forwarding network function. After receiving packets, For-
ward reads the destination information of packets and then sends
packets to the next VNF.

DPI: Deep Packet Inspection (DPI) is an essential security ap-
proach in the network. It is applied in network applications includ-
ing network intrusion detection system (IDS) and Web application
firewalls. This network function can locate, identify, classify, reroute
and block packets.

Lu Zhang, Chao Li, Pengyu Wang, Yunxin Liu, Yang Hu, Quan Chen, and Minyi Guo

Table 2: Different VNFs computation cost

e Es L Forward DPI Aes_encrypt
64bytes 40cycles | 300cycles | 3.3K cycles
128bytes 40cycles | 330cycles | 9K cycles
256bytes 40cycles | 340cycles | 20K cycles
512bytes 40cycles | 360cycles | 43K cycles

1024bytes 40cycles | 370cycles | 88K cycles

AES_encryption/DES_encryption: This function aims to en-
crypt/decrypt UDP packets using specified encryption/decryption
algorithm, and then forward them to specific NFs. Since this func-
tion needs to encrypt the packet payload using the encryption
algorithm, it’s a computation-intensive function.

Table 2 shows the computation cost of processing one packet
under different packet sizes. Forward consumes only about 40 cy-
cles and the computation cost maintains although the packet size
increases due to its simple operation. DPI needs to read both the
header and payload of a packet and inspect packet for security. With
packet size increasing, its computation cost increases slightly. As
for AES_encrypt, it needs not only to read the header and payload of
a packet, but also to process the packet using a complex algorithm.
Thus, AES_encrypt consumes the most cycles to process a packet,
and the computation cost is highly correlated to the packet size.

3.1.3 Test Traffic. In this paper, we utilize a DPDK-based packet
generator to generate packets with different packet sizes and differ-
ent transmission rates. Since AES_encrypt can only process UDP
packets, all the experiments are based on UDP packets. We have 4
ports in our packet generator server, we can generate up to 4 Gb
network packets. The packet generator runs on a separate server
and connects to the test server directly.

3.2 VNF Memory Bandwidth

Since memory access is an important component when VNFs pro-
cess packets, it is necessary to study the characteristics of VNFs
memory utilization. We use events provided by Performance Moni-
tor Unit [6] to monitor the memory bandwidth. The resource mon-
itor distills crucial information for the system to make informed
decisions. We use libpfm4 library to translate human-readable per-
formance event names to machine-readable event code. The monitor
uses the perf event interface of Linux to access hardware perfor-
mance counters. The performance event name used in the mem-
ory bandwidth monitor is hswep_unc_imcX:UNC_M_CAS_COUNT.
This register counts the number of DRAM CAS commands recorded
at integrated memory controller (IMC) at CPU socket X. Addition-
ally, to obtain the peak memory bandwidth of our server, we utilize
the STREAM Benchmark [3] to measure the peak memory band-
width and we get 18.4GB/s.

As shown in Figure 3, we present the memory utilization of three
network functions with different packet sizes and different trans-
mission rates. For each VNF, the memory bandwidth usage grows
as the packet size and transmission rate increase. It is clear that the
memory bandwidth usage is very small in all the experiments, and
the highest memory bandwidth usage is only 4.7% of the server

Characterizing and Orchestrating NFV-Ready Servers for Efficient Edge Data Processing IWQoS ’19, June 24-25, 2019, Phoenix, AZ, USA

5

& . [oC64bytes D128bytes O256bytes O512bytes D1024bytes |

:

2 3

k.

< 2 A

2

> 1

: Al dllll mm [il

£ ,

= 4Gb | 3Gb | 2Gb | 1Gb 4Gb | 3Gb | 2Gb | 1Gb 4Gb | 3Gb 2Gb | 1Gb
Forward DPI Aes_encrypt

Figure 3: Memory bandwidth usage of different VNFs under different packet rates

Donly polling B Aes_encrypt DPI BForward I
1
= 08
S
S o6
5
5 0.4
~
© 0.2
0 - : T -
64bytes 128bytes 256bytes 512bytes 1024bytes
Packet Size

Figure 4: CPU utilization of on-demand interrupt

peak bandwidth usage from VNF Aes_encrypt with 1024 packet size
under 4Gb speed. In this case, we can consider that VNFs in our
experiments are not memory-bandwidth bounded. Thus, we will
study the characteristics of CPU utilization in detail and focus on
CPU utilization in our framework.

3.3 VNF CPU Utilization

In this subsection, we set up experiments to explore CPU utilization
of VNFs. Under the DPDK polling mode, NFs that are busy waiting
for packets waste lots of CPU resource in low-speed network. Thus,
an interrupt mode would be helpful for saving the resource, as is
done in NFV platforms such as Netmap [31] and ClickOS [27].

3.3.1 CPU Utilization of Single VNF. On-demand interrupt is used
in Netmap and ClickOS: if there is no packet in the VNF RX queue,
the NF Thread will enter sleep status and wait for the wakeup
semaphore specifically for it. In the meantime, the wakeup thread
monitors the VNF’s RX queue. Once the VNF’s RX queue is not
empty, the wakeup thread will send the semaphore to wake up the
VNF thread immediately.

Figure 4 shows the CPU utilization of different applications us-
ing this strategy. Since the polling mode of DPDK will be always
busy waiting and processing the packets, the CPU utilization of
the polling-only mode remains at 100%. The CPU utilization of
Aes_encrypt is also 100% in both polling and interrupt mode due to
its high computation cost. DPI and Forward reveal important CPU
resource-wasting information in DPDK-based platforms. As the
packet size grows, the CPU utilization of the NF decreases mainly

because the packet rate decreases and the NF has larger probability
to become the SLEEP status.

Considering that a VNF needs to switch between the SLEEP
and ACTIVE status in the interrupt mode, the context switch and
other extra system costs are inevitable. To obtain a detailed CPU
utilization breakdown of interrupt mode, we collect two kinds of
CPU utilization: User CPU, which is occupied by the user applica-
tion; and System CPU, which contains CPU time utilized by system
interrupts, context switches and other system operations. In this
part, we only explore the CPU utilization of Forward and DPI since
Aes_encrypt are always busy.

Figure 5 shows a breakdown of CPU utilization of VNFs in the
on-demand interrupt mode. Except for 64Bytes packet processing
in DPIJ, all the other results show that user-defined functions only
account for less than 50% total CPU cycles. When running Forward,
there is only at most 36% CPU utilization on user applications and
the others are wasted by system operations. Both results show
huge resource waste and with the packet size increasing, system
operation cost becomes more severe.

However, the wasted CPU utilization is beyond what we can see
in the above cases. Considering that when the packet size is 64 bytes,
the VNF will receive a packet every 1488 cycles with 2.4GHz fre-
quency. Note that Forward processes a packet with about 40 cycles.
Thus, CPU utilization for processing a packet is 40/1488 ~ 3%. Even
though this procedure contains other user-defined applications such
as reading packets from the RX queue and writing packets into the
TX queue, 3% and 82% have too large difference.

To handle the shortcoming of on-demand interrupt, we design
a batch interrupt to measure this system. The experiments are as
follows: when VNF’s RX queue is empty, the NF thread will enter
SLEEP status to save the CPU cycles. The Wakeup Thread monitors
VNF’s RX queue and if the size of the RX queue is larger than the
batch size, it will send the ACTIVE semaphore to the VNF Thread.

Figure 6 shows the CPU utilization in the batch interrupt mode.
Both Forward and DPI save a great amount of CPU utilization. In
addition to the total CPU utilization, we explore the breakdown
of CPU utilization in this batch situation as well. When it uses
batch interrupt manner, user CPU utilization will occupy a large
ratio in both VNFs. Even in the worst case, when the packet size
is 1024 bytes, the user CPU utilization will occupy 67% and 82% in
Forward and DPI respectively. In this case, using batch interrupt is

IWQoS ’19, June 24-25, 2019, Phoenix, AZ, USA

C—Juser_cpu
—&— Forward user cpu ratio

C—sys_cpu
——DPI user cpu ratio

0.9 0.6

0.8 -
= 07 - 05 8
2 0.6 - 04 2
8 051 &
= F03 =
T 04 1 o
; 0.3 \ g & F 0.2 5

0.2 4 @
&= L
S o1 0.1 =

0 0
64 | 128 | 256 | 512 |1024 64 | 128 | 256 | 512 ||024
Forward DPI

VNFs and Packet Size(Bytes)

Figure 5: CPU utilization breakdown of on-demand inter-
rupt

100 100
64bytes 64bytes
380 1 ——128bytes = 80 ——128bytes
= 256bytes S 256bytes
= 60 —512bytes = 60 ——512bytes
= \\ ——1024bytes g ——1024bytes
£ 40 1 & 40
S} o
20 4 20 A i
Y VNN 2 M nss Ay K\N "\
R A e 0+

1 13 25 37 49 61 73 85 97
Interrupt Size

1 13 25 37 49 61 73 85 97
Interrupt Size

(a) Forward (b) DPI

Figure 7: CPU utilization of varying interrupt size

a good way to save CPU utilization for energy-saving purpose or
data processing purpose.

To understand the relationship between batch size and CPU
utilization, we design a fine-grained experiment to measure CPU
utilization. In our experiment, we change the batch size from 1
to 100. As shown in Figure 7, as interrupt size increases, CPU
utilization of VNFs decreases. In our experiment, no experiment
drops any packets. In other words, it keeps a desired throughput
of VNFs. Our results show that smartly choosing the interrupt size
allows us to save more resources.

3.3.2 CPU Utilization in Service Function Chain. In the above sub-
sections, we have discussed the CPU utilization of single VNF in
DPDK-based NFV platforms with different configurations. In the
real world, network functions will be chained to process the packets
assigned by users. The CPU utilization of Service Function Chain
(SFC) is also an important design consideration. Due to the im-
balanced computation cost in SFC, the downstream VNF will be
overloaded and it will drop the packets which have been processed
in the upstream NF. The resources used by the upstream NF is
useless if the downstream NF has larger computation cost than
the upstream VNF[11]. Figure 8 shows such situation when wasted
work exists.

In order to avoid wasted work due to the imbalance of VNFs in
SFC, we design and implement a local backpressure algorithm as
shown in Figure 9. The Wakeup Thread checks the information
of the upstream VNF (Forward/DPI) Thread and the downstream
VNF (Aes_encrypt). Once the queue size of Aes_encrypt is larger

Lu Zhang, Chao Li, Pengyu Wang, Yunxin Liu, Yang Hu, Quan Chen, and Minyi Guo

C——Juser_cpu
—&— DPI user cpu ratio

C—sys_cpu
—&— Forward user cpu ratio

0.35 1
= "_‘_. H\‘\‘\‘ L 0.8 2
S 0.25 4 é‘
§ 02 0.6 2
g 0.15 0.4 ©
= 0l - 5
sl

5 |- B,

64 | 128 | 256 | s12 |1024] 64 | 128 | 256 l 512 |1024
Forward DPI

VNFs and Packet Size(Bytes)
Figure 6: CPU utilization breakdown for batch interrupt
vy Forward DIyl yes encrypt |ooahct g
(1.488Mpps) 0.688Mpps LSt [Mpps)

Capacity: Capacity:
1.488Mpps 0.82Mpps

Figure 8: The example of SFC with different cost

Qlen > MaxThreshold
& & SLEEP

-

Qlen < Min Threshold
&& ACTIVE

Figure 9: Local backpressure diagram

than the maximum threshold, the Forward/DPI Thread will enter
SLEEP status, and if the queue size of Aes_encrypt is less than the
min threshold, the Wakeup Thread will immediately wake up the
Forward/DPI Thread and continue processing packets. In this way,
we can guarantee the throughput of the whole SFC and reduce CPU
utilization waste.

We test the CPU utilization of the first network function as
shown in Table 3. In this case, we can also see lots of CPU utilization
saved using backpressure.

All above experiments aim to show the characteristic of the CPU
utilization on DPDK-based NFV platforms. We mine those free CPU
cycles of servers running VNFs and we deploy EDP applications on
the NFV platforms to share the precious computing resource. In the
next section, we will discuss how EDP can be deployed in the NFV
platform with the QoS guarantee of both the VNF and the EDP.

4 DEPLOYING EDGE COMPUTING

Our characterization and evaluation results show that there are still
lots of resources wasted in traditional DPDK-based NFV platforms.
How to utilize those idle resources presents a great challenge. An
intuitive way to improve system utilization is to co-locate some
different applications on the same server [19]. Considering that
there are a growing amount of EDP applications (e.g., image pro-
cessing, video processing) actively looking for auxiliary computing
resource support at the edge, it would be highly profitable if we

Characterizing and Orchestrating NFV-Ready Servers for Efficient Edge Data Processing IWQoS ’19, June 24-25, 2019, Phoenix, AZ, USA

Table 3: Influence of backpressure

Polling Mode
Service | Drop
Rate | (Mpps)| Rate

Backpresure
Service | Drop | Forward | DPI
(Mpps) [CPU | CPU

(Mpps) (Mpps) Util. Util
64B 1.488 0.688 0.87 0.07 9% 20%
128B 0.844 0.524 0.33 0.04 3% 7.6%

256B 0.453 0.313 0.142 0.012 1.5% 3.3%
512B 0.23 0.163 | 0.0668 | 0.008 0.7% 1.7%
1024B 0.12 0.0877 | 0.0323 | 0.003 0.3% 1%

<= Core with VNF <= Core with EDP

ee—e——___Separated Running
o e e e e e i |
1! EdgeServer 1
1y .
! E Core0 Core 1
E 1 Core2 Core3
1 [N
1

Figure 10: Resource saving with core sharing

can smartly deploy them on NFV platforms. In this case, we can
jointly improve network infrastructure utilization and reduce edge
server requirement, as shown in Figure 10.

In this paper, we propose EdgeMiner, a resource harvesting strat-
egy for deploying EDP applications on flexible network infrastruc-
ture. Some prior works, which focus on the application co-location
in a data center, allow the latency-critical and batch applications to
share the memory system resources (e.g., Last Level Cache, DRAM
bandwidth) [26, 39]. However, very few studies focus on sharing
the CPU cores for edge computation augmentation. Prior work [19]
tries to enable the sharing of cores in a data center, but it mainly
emphasizes sharing-aware dynamic voltage and frequency scaling
(DVES). Different from prior arts, EdgeMiner is a simple but effec-
tive method that allows one to co-run packet processing tasks and
EDP applications on shared cores.

Co-running EDP applications and VNFs is non-trivial. Due to
the transmission latency, unfinished EDP applications cannot be
moved to the Cloud in the last minute. These tasks have to respect
a strict deadline and be well-managed. We cannot simply schedule
EDP applications only during the server’s idle period, since there
exists limited CPU slack lime that can be exploited on current NFV
platforms. Thus, we design a scheduling algorithm to guarantee
the QoS of EDP applications.

4.1 Overview of EdgeMiner

EdgeMiner can improve the CPU utilization of edge servers as
well as meeting the QoS of EDP applications. The overview of
EdgeMiner is shown as Figure 11. This framework mainly contains

three modules: EDP profiling, sharing initialization, and dynamic
tuning. Importantly, we use a metric called QoS Urgency (QU) to
evaluate the difficulty of achieving the QoS.
QU = acti{al rzfnt.ime (1)
time limit
As an EDP application approaches the deadline, its QU becomes
larger. In this case, it often becomes more difficult to meet the target
QoS due to limited time and greatly increased computing resource
requirement. In the following subsections, we will discuss the three
components in detail.

4.1.1 EDP Profiling. In this component, we characterize common
EDP applications and record their approximate runtime. Thus, we
can estimate the CPU cycles needed for processing incoming edge
applications, based on profiling results such as sizes of data. Addi-
tionally, each EDP application also has its certain QoS requirement
which we can consider it as the time limit. After profiling, we can
calculate the QU of each EDP application. This is the most important
factor to consider in the following steps.

4.1.2 Sharing Initialization. In this component, we decide how to
co-run the NFs and the EDP applications. In Figure 11, we can see
that different cores and different EDP applications are labeled by
different colors. The core color shown in the figure represents differ-
ent CPU utilization used by VNFs. Similarly, different color of EDP
applications means different QU value. In the initialization phase,
we sort the EDP applications by the QU and the CPU utilization of
the core. Afterwards, we co-run the least-QU EDP application with
the highest CPU utilization core; we also co-run the highest-QU
EDP application with the lowest CPU utilization core. If there exists
two EDP applications that have the same QU, we sort them based on
the time limit. If the number of EDP applications is larger than the
number of NFs, we will run the EDP applications on the idle core.
If the number of NFs is larger than the number of EDP applications,
there will be some cores only host VNFs. According to the above
co-running mechanism, VNFs that exhibit the lowest utilization
will occupy a single core without sharing. In this case, it will save
power due to the low CPU consumption.

4.1.3 Dynamic Tuning. The above co-running mechanism alone
may not meet EDP applications’ target QoS. In order to meet the
QoS requirement, we monitor the information of EDP applications
and check if EDP applications should move to the idle core or the
core which has more CPU resources. We called this mechanism as
Dynamic Search Core (DSC), as shown in Algorithm 1. It allows
EdgeMiner to efficiently tap into current NFV-ready servers.

5 EVALUATION

In this section, we firstly evaluate the performance of EDP applica-
tions when co-running with VNFs using batch-interrupt and the
backpressure algorithm. Secondly, we demonstrate the performance
of our DSC algorithm.

5.1 Workload

We have introduced VNFs and the DPDK-based platform in Section
3. Since we mainly focus on CPU utilization, we select CPU-bound
applications as our benchmarks. We choose two applications from

IWQoS ’19, June 24-25, 2019, Phoenix, AZ, USA

EDP Profiling
J (run-time, target QoS) i
e N
i Edge Data Processing !
1
1

Processing | 1)

1

Text :i Video |

Analysis Processing !

| Somsoiamatimnend Mok :

| S . S — 1
Corewith ,-=77~~ S Idle Core

VNF ==-7 -

R

Lu Zhang, Chao Li, Pengyu Wang, Yunxin Liu, Yang Hu, Quan Chen, and Minyi Guo

Dynamic Tuning

EDP1 \”4 Core 0

=
=]
=]
=
=}
=

H
0
W

~

/A Core 1
ED QoS)
Core 2
! < Core3 >

CPU Used by VNF

. : Increasing QU
increasing

—

Figure 11: Overview of EdgeMiner

Algorithm 1 Dynamic Search Core Algorithm

Definition:

Treaql : Time really elapsing
Ttarget : Longest time of Edge data processing
Tsingle : Runtime of EDP running in single core
Ttrans : Time to change core
Ratio; : Ratio of NF using the ith core

1: for EDP is running with corej do

& Get Treal

3. Find the CORESET whose Ratio < (1 — QU)

4. for corej € CORESET do
(1_Ru“0k)‘Ttarget_ single

& Tirans = Ratio;—Ratiog
6: if Ttrans > Treal then
7 Continue
8: else if Tirgns < Tyeq) then
9: remove corey out of CORESET
10: else
11: change EDP from corej to corey
12: end if
13: end for
14: end for
Table 4: Edge processing workloads
Name Information Workload
vips | Image processing | Image w/ 18K * 18K pixels
X264 video encoding 30fps/640 * 360 pixels

PAR-SEC [35]. The detailed information of workloads is shown in
Table 4. Both the two workloads are popular in EDP applications:
vips is an image processing library and x264 is an application for
encoding video streams into the H.264 compression format.

5.2 Effectiveness of Batch Interrupt

We evaluate the impact of batch packet processing mechanism on
EDP applications performance. We run EDP applications on the core
that has used by VNFs and record the EDP application’s processing
time. Figure 12 shows the normalized processing time of different

co-running combination. As the figure shows, the batch interrupt
scheme can steeply degrade the EDP application’s processing time
compared with the on-demand interrupt mechanism. It is evident
that we can harvest more CPU resources on VNF-ready servers to
process EDP applications.

5.3 Effectiveness of Back Pressure Algorithm

As mentioned in section 3.3.2, local backpressure algorithm can
save CPU utilization in SFC without affecting the performance of
network services. In this experiment we use backpressure algo-
rithm to harvest CPU free cycles and measure the performance of
EDP applications. As shown in Figure 13, the normalized perfor-
mance degradation of co-located EDP applications is less than 15%.
Importantly, our results show that if we use the backpressure mech-
anism, it only slightly delays EDP applications when the packet
size is large (e.g., more than 256B). In other words, we may provide
high-performance processing of EDP applications depending on
the characteristics of the network packets.

5.4 QoS of Edge Data Processing

Although batch interrupt and backpressure schemes provide a way
to exploit free computing resources, they still cannot provide satis-
factory QoS guarantee. To ensure better QoS of EDP applications,
it is important to carefully schedule computing resources. We use
the 90% QoS policy (the QoS target performance is 90% of solo
performance) to evaluate our DSC algorithm. According to the 90%
QoS policy, if the run-time degradation is less than 1.11x, there will
be no impact on the QoS.

For the above experiment, when the EDP applications (both the
x264 and vips) co-run with Forward, all the degradation of EDP
applications are less than 1.11x (the most is 1.08 when the packet
size is 64 and Forward co-runs with x264). In this case, using the
batch packet processing, we can guarantee the QoS of certain EDP
applications even without extra compensation. Moreover, we test
the 95% QoS policy as well. The results are shown in Figure 14.
From Figure 14, we can see that the DSC can achieve the QoS of
the EDP applications (both 90% QoS policy and 95% QoS policy).

Characterizing and Orchestrating NFV-Ready Servers for Efficient Edge Data Processing IWQoS ’19, June 24-25, 2019, Phoenix, AZ, USA

10 7 12 = ;
& T ©10n-demand Interrupt 26 lm £1On-demand Interrupt & 10n-demand Interrupt @7 £1On-demand Interrupt
- 4 £ i
'.g 8 1 — OBatch Interrupt E s © Batch Interrupt .E. 10 1 Batch Interrupt 6 - “Batch Interrupt
£ | g . g 81 €5 -
= = -] =) =
:N: | -g 3 1 -‘El 6 4 E 4 4
=T 44 =] =34
: : 2 ‘ ‘ E | E
s 5 ; 5 52 -
Z 24 ’ 1 z 1 . | z 45 vasem r4 14 T r [- I
| I —-— -
; Imimim . BN ,/=weww JCEIEEINN
64 128 256 512 1024 64 128 256 512 1024 64 128 256 512 1024 64 128 25 512 1024
Packet Size(Bytes) Packet Size(Bytes) Packet Size(Bytes) Packet Size(Bytes)

(a) Forward+x264 (b) Forward+vips

(c) DPI+x264 (d) DPI+vips

Figure 12: The Influence of batch processing when co-running the NFs and the edge date processing. a)-d) represent different
co-location between the VNFs and EDP applications. Y-axis represents the time co-running with NF / the time when running

the edge data processing in a single core.

108 12
, Forward+x264 DPI+x264
E 1.06 Forward+vips E LIS DPE+vips
£ 104 5oL
= £
2 12 T 1os
E -
g E !
z
0.98 095
0.96 0.9
64 128 256 512 1024 64 128 25 512 1024

Packet Size(Bytes) Packet Size(bytes)

(a) EDP co-run with Forward (b) EDP co-run with DPI

Figure 13: Normalized runtime when EDP applications co-
run with VNFs using the backpressure algorithm

1 Without DSC
1 With DSC

>
@

Runtime(s)
N
|
l‘é
I
£
1

64bytes | 128bytes | 64bytes | 128bytes | 256bytes | 512bytes
NDPI+x264

64bytes I 128bytes
NDPI+x264

Forware+x264
Packet size and Colocation

Figure 14: Using DSC algorithm to meet QoS of EDP

6 RELATED WORK

In this section, we discuss representative prior studies in different
domains that are most relevant to our work.

6.1 High-Performance NFV System

Many prior works aim to provide high-performance and flexible
platforms for NFV. Prior works [23, 29] enhance the individual
NF performance to speed up the NFV’s performance; Some works
[17, 27, 42] focus on the packet delivery between different NFs
to reduce the performance degradation; In works [14, 20], they
employ heterogeneous platforms such as GPU to accelerate the
packet processing. There are also some works use the characteristic
of computer architecture to accelerate the packet processing such as

threading scheduling [13] and reducing cache miss [15]. All of prior
works focus on high performance of packet processing to meet the
network line rate. They lack considering the resource utilization.
Except for these NFV acceleration techniques, the NFVnice [21]
and Flurries [41] benefit from running multiple NFs in a single core
to increase the core utilization and make the NFV system more
flexible. These works are orthogonal to our work and we mainly
focus on the edge server to deploy EDP applications in the core
used by the NF to increase the core utilization.

6.2 Edge Data Processing

To reduce the latency, there is a trend to process data on the edge
devices close to the users. Li et al. [24] develop a sustainable in-situ
server system to pre-process the raw data near where the data is
located. However, this work mainly focuses on the energy manage-
ment in the in-situ data center. Lane et al. [22] use a static model to
perform deep learning recognition on IoT devices; Song et al. [33]
represent an autonomous and incremental computing framework
and architecture for deep learning based IoT applications. All the
above work mainly focuses on how to process the edge data in a
high-performance or sustainable way. However, they don’t consider
how to deploy EDP applications in the existed systems such as the
NFV-Ready servers.

6.3 Improving Utilization of Data Processing

There have been many prior works on improving the QoS of latency-
critical applications [26, 39]. These works leverage different mech-
anisms to make the latency-critical applications co-located with a
batch job on the same server to improve the resource utilization.
It is critical to guarantee the QoS of the latency-critical applica-
tions at the same time. Bubble-Up [26] and Bubble-Flux [39] bound
performance degradation while improving chip multiprocessor uti-
lization. Additionally, HOPE [12] exploits management workloads
scheduling and applies graph-based task allocation to improve com-
putation and reduce energy consumption. However, all these works
mainly focus on the interference between the latency-critical tasks
and batch jobs or performance improving of tasks in a data center.
Our work concentrates on the edge computing scenario and the
co-running of VNFs and EDP applications.

IWQoS 19, June 24-25, 2019, Phoenix, AZ, USA

7 CONCLUSION

The rapid growth of IoT applications places demand on innovative
data processing infrastructure that are responsive, efficient, and
scalable. In this paper, we study the CPU utilization characteris-
tics of DPDK-based NFV platforms in detail to demonstrate the
underutilization issue of servers in edge network. We show that
one can effectively harvest 13%-90% free CPU resources on DPDK-
based platforms with batch interrupt mechanism and backpressure
algorithm. Using the saved resources, we propose EdgeMiner, a
light-weight edge processing framework that allows VNFs and EDP
tasks to co-run on commodity servers. We also devise scheduling
schemes that can guarantee the QoS of both types of applications.
The proposed design, which expands the breadth and impact of to-
day’s network infrastructure, has the potential to greatly contribute
to building a more connected, smarter world.

8 ACKNOWLEDGEMENT

This work is partially sponsored by the National R&D Program of
China (No. 2018YFB1004800). Yang Hu is supported by NSF grant
1822985. Corresponding author is Chao Li.

REFERENCES

[1] 2014. X10 Protocol. https://buildyoursmarthome.co/home-automation/protocols/
x10/.

[2] 2014. Z-Wave. https://buildyoursmarthome.co/home-automation/protocols/
z-wave/.

[3] 2016. STREAM Benchmark. http://www.cs.virginia.edu/stream/FTP/Code/.

[4] 2018. ZigBee Alliance. https://www.zigbee.org.

[5] Azure. 2019. Azure Data Box family. https://azure.microsoft.com/en-us/services/
storage/databox/.

[6] Intel. Corporation. 2017. Intel 64 and ia-32 architectures developer’s man-
ual,. https://www.intel.com/content/www/us/en/architecture-and-technology/
64-ia-32-architectures- software-developer-manual-325462.html.

[7] Amir Vahid Dastjerdi and Rajkumar Buyya. 2016. Fog computing: Helping the
Internet of Things realize its potential. Computer 49, 8 (2016), 112-116.

[8] Harishchandra Dubey, Jing Yang, Nick Constant, Amir Mohammad Amiri, Qing
Yang, and Kunal Makodiya. 2015. Fog data: Enhancing telehealth big data through
fog computing. In Proceedings of ASE BigData & Sociallnformatics 2015. ACM, 14.

[9] Nathan Eddy. 2015. Gartner: 21 Billion IoT Devices To Invade By
2020. https://www.informationweek.com/mobile/mobile-devices/
gartner-21-billion-iot-devices- to- invade- by-2020/d/d-id/1323081.

[10] GSNFV ETSL 2013. Network functions virtualization (nfv): Architectural frame-
work. ETsI Gs NFV 2, 2 (2013), V1.

[11] Joel Halpern and Carlos Pignataro. 2015. Service function chaining (sfc) architec-
ture. Technical Report.

[12] Yang Hu, Chao Li, Longjun Liu, and Tao Li. 2016. HOPE: Enabling Efficient
Service Orchestration in Software-Defined Data Centers. In Proceedings of the
2016 International Conference on Supercomputing (ICS ’16). ACM, New York, NY,
USA, Article 10, 12 pages. https:/doi.org/10.1145/2925426.2926257

[13] Yang Hu and Tao Li. 2016. Towards efficient server architecture for virtualized
network function deployment: Implications and implementations. In The 49th
Annual IEEE/ACM International Symposium on Microarchitecture. IEEE Press, 8.

[14] Yang Hu and Tao Li. 2018. Enabling Efficient Network Service Function Chain
Deployment on Heterogeneous Server Platform. In High Performance Computer
Architecture (HPCA), 2018 IEEE International Symposium on. IEEE, 27-39.

[15] Yang Hu, Mingcong Song, and Tao Li. 2017. Towards full containerization in
containerized network function virtualization. ACM SIGOPS Operating Systems
Review 51, 2 (2017), 467-481.

[16] Yun Chao Hu, Milan Patel, Dario Sabella, Nurit Sprecher, and Valerie Young. 2015.
Mobile edge computing - A key technology towards 5G. ETSI white paper 11, 11
(2015), 1-16.

[17] Jinho Hwang, K K_ Ramakrishnan, and Timothy Wood. 2015. NetVM: high per-
formance and flexible networking using virtualization on commodity platforms.
IEEE Transactions on Network and Service Management 12, 1 (2015), 34-47.

[18] Intel. 2012. Data Plane Development Kit. https://www.dpdk.org/.

[19] Harshad Kasture, Davide B Bartolini, Nathan Beckmann, and Daniel Sanchez.
2015. Rubik: Fast analytical power management for latency-critical systems. In
Microarchitecture (MICRO), 2015 48th Annual IEEE/ACM International Symposium
on. IEEE, 598-610.

Lu Zhang, Chao Li, Pengyu Wang, Yunxin Liu, Yang Hu, Quan Chen, and Minyi Guo

[20] Joongi Kim, Keon Jang, Keunhong Lee, Sangwook Ma, Junhyun Shim, and Sue
Moon. 2015. NBA (network balancing act): A high-performance packet processing
framework for heterogeneous processors. In Proceedings of the Tenth European
Conference on Computer Systems. ACM, 22.

Sameer G Kulkarni, Wei Zhang, Jinho Hwang, Shriram Rajagopalan, KK Ramakr-

ishnan, Timothy Wood, Mayutan Arumaithurai, and Xiaoming Fu. 2017. Nfvnice:

Dynamic backpressure and scheduling for nfv service chains. In Proceedings of

the Conference of the ACM Special Interest Group on Data Communication. ACM,

71-84.

Nicholas D Lane, Sourav Bhattacharya, Petko Georgiev, Claudio Forlivesi, and

Fahim Kawsar. 2015. An early resource characterization of deep learning on

wearables, smartphones and internet-of-things devices. In Proceedings of the 2015

international workshop on internet of things towards applications. ACM, 7-12.

Bojie Li, Kun Tan, Layong Larry Luo, Yanqing Peng, Rengian Luo, Ningyi Xu,

Yonggiang Xiong, Peng Cheng, and Enhong Chen. 2016. Clicknp: Highly flexible

and high performance network processing with reconfigurable hardware. In

Proceedings of the 2016 ACM SIGCOMM Conference. ACM, 1-14.

Chao Li, Yang Hu, Longjun Liu, Juncheng Gu, Mingcong Song, Xiaoyao Liang,

Jingling Yuan, and Tao Li. 2015. Towards sustainable in-situ server systems in

the big data era. In ACM SIGARCH Computer Architecture News, Vol. 43. ACM,

14-26.

Chao Li, Yushu Xue, Jing Wang, Weigong Zhang, and Tao Li. 2018. Edge-Oriented

Computing Paradigms: A Survey on Architecture Design and System Manage-

ment. ACM Computing Surveys (CSUR) 51, 2 (2018), 39.

[26] Jason Mars, Lingjia Tang, Robert Hundt, Kevin Skadron, and Mary Lou Soffa.
2011. Bubble-up: Increasing utilization in modern warehouse scale computers via
sensible co-locations. In Proceedings of the 44th annual IEEE/ACM International
Symposium on Microarchitecture. ACM, 248-259.

[27] Joao Martins, Mohamed Ahmed, Costin Raiciu, Vladimir Olteanu, Michio Honda,

Roberto Bifulco, and Felipe Huici. 2014. ClickOS and the art of network function

virtualization. In Proceedings of the 11th USENIX Conference on Networked Systems

Design and Implementation. USENIX Association, 459-473.

ntop. 2015. PF_RING ZC. http://www.ntop.org/products/pf_ring/pf_

ring-zc-zero-copy/.

[29] Aurojit Panda, Sangjin Han, Keon Jang, Melvin Walls, Sylvia Ratnasamy, and
Scott Shenker. 2016. NetBricks: Taking the V out of NFV.. In OSDI. 203-216.

[30] Rohit Mehra Rajesh Ghai, Petr Jirovsky. [n. d.]. Worldwide vCPE/uCPE Fore-
cast, 20174A$2021: NFV at the Network Edge. https://www.idc.com/getdoc.jsp?
containerld=US41429616.

[31] Luigi Rizzo. 2012. Netmap: a novel framework for fast packet I/O. In 21st USENIX
Security Symposium (USENIX Security 12). 101-112.

[32] Mahadev Satyanarayanan, Victor Bahl, Ramon Caceres, and Nigel Davies. 2009.

The case for vin-based cloudlets in mobile computing. IEEE pervasive Computing

(2009).

Mingcong Song, Kan Zhong, Jiaqi Zhang, Yang Hu, Duo Liu, Weigong Zhang,

Jing Wang, and Tao Li. 2018. In-Situ AIl: Towards Autonomous and Incremental

Deep Learning for IoT Systems. In 2018 IEEE InternatiOnal SympOsium On High

PerfOrmance COmputer Architecture (HPCA). IEEE, 92-103.

[34] Bo Tang, Zhen Chen, Gerald Hefferman, Tao Wei, Haibo He, and Qing Yang. 2015.
A hierarchical distributed fog computing architecture for big data analysis in
smart cities. In Proceedings of ASE BigData & Sociallnformatics 2015. ACM, 28.

[35] Princeton University. 2010. PARSEC. http://parsec.cs.princeton.edu/.

[36] Aosen Wang, Lizhong Chen, and Wenyao Xu. 2017. XPro: A cross-end process-
ing architecture for data analytics in wearables. In ACM SIGARCH Computer
Architecture News, Vol. 45. ACM, 69-80.

[37] Dale Willis, Arkodeb Dasgupta, and Suman Banerjee. 2014. ParaDrop: a multi-

tenant platform to dynamically install third party services on wireless gateways.

In Proceedings of the 9th ACM workshop on Mobility in the evolving internet

architecture. ACM, 43-48.

Yi Xu and Sumi Helal. 2014. Application caching for cloud-sensor systems. In

Proceedings of the 17th ACM international conference on Modeling, analysis and

simulation of wireless and mobile systems. ACM, 303-306.

Hailong Yang, Alex Breslow, Jason Mars, and Lingjia Tang. 2013. Bubble-flux:

Precise online qos management for increased utilization in warehouse scale

computers. In SSIGARCH Computer Architecture News, Vol. 41. ACM, 607-618.

Yishay Yovel. 2017. Why NFV is Long on Hype, Short on Value. https://www.

catonetworks.com/blog/why-nfv-is-long-on-hype-short-on-value/.

Wei Zhang, Jinho Hwang, Shriram Rajagopalan, KK Ramakrishnan, and Timothy

Wood. 2016. Flurries: Countless fine-grained nfs for flexible per-flow customiza-

tion. In Proceedings of the 12th International on Conference on emerging Networking

EXperiments and Technologies. ACM, 3-17.

Wei Zhang, Guyue Liu, Wenhui Zhang, Neel Shah, Phillip Lopreiato, Gregoire

Todeschi, KK Ramakrishnan, and Timothy Wood. 2016. OpenNetVM: A platform

for high performance network service chains. In Proceedings of the 2016 workshop

on Hot topics in Middleboxes and Network Function Virtualization. ACM, 26-31.

(21

(22

(23

[24

(25

N
)

[33

‘@
&

[39

(40

[41

[42

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

