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Abstract — Eco-friendly energy sources (i.e. green power) 

attract great attention as lowering computer carbon footprint has 

become a necessity. Existing proposals on managing green energy 

powered systems show sub-optimal results since they either use rigid 

load power capping or heavily rely on backup power. We propose 

Chameleon, a novel adaptive green throughput server. Chameleon 

comprises of multiple flexible power management policies and 

leverages learning algorithm to select the optimal operating mode 

during runtime. The proposed design outperforms the state-of-the-art 

approach by 13% on performance, improves system MTBF by 42%, 

and still maintains up to 95% green energy utilization. 

Keywords: throughput server, green power, adaptation, learning 

I. INTRODUCTION  

Computer system inevitably enters the landscape of design for 
sustainability as the IT power footprint has become a global 
concern. According to the Uptime Institute, the 3-year energy 
expenditure has already exceeded the server equipment cost since 
2012 [1]. If we continue to rely on conventional fossil fuel based 
electricity, a 1MW data center will cause over 10000 metric ton of 
CO2 emissions annually [2]. Driven by the rising energy price and 
the warning of climate change, industry and academia alike are 
focusing more attention than ever on eco-friendly sources of 
power such as wind and solar energy.  

There have been several emerging system designs that exploit 
renewable energy. For example, HP has announced its carbon-free 
data center prototype that is entirely powered by onsite green 
energy sources. Similarly, eBay is experimenting with a small data 
center that integrates a 665kW solar array. Recently, Apple has 
also patented several solar energy driven electronic devices and 
renewable energy power management circuitry. For these systems, 
minimizing power consumption is no longer the sole aim of the 
design. Instead, they emphasize efficient use of renewable energy 
resources for lowering the reliance on conventional utility power. 
 The time-varying nature of renewable power supplies poses 
unconventional challenges for system power management. Due to 
their sensitivity to power disturbances, computing systems must 
maintain a continuous balance between the fluctuating renewable 
power budget and the variable IT power demand. To cope with 
this issue, recent studies have been working on two power 
management approaches, which we refer to as either energy-
oriented design or performance-oriented design. The former 
approach emphasizes matching load power demand to power 
budget to maximize the benefit of renewable energy usage. The 
later approach, on the other hand, leverages backup power (i.e., 
battery or utility grid) to maintain desired workload performance 
when green energy generation is inadequate. Nevertheless, neither 
approach provides desirable trade-off between workload 
performance and energy efficiency. When the green power drops 

significantly or become intermittently 

unavailable, the energy-oriented design often put computer system 
into low-power states and therefore compromises the performance. 
In contrast, performance-oriented design suffers from degraded 
energy utilization since the typical round-trip energy efficiency of 
lead-acid battery is only 75% [3].  
 Furthermore, biased power management schemes can cause 
various troubles in addition to the performance and efficiency 
problems. For example, an avid user of energy-oriented design can 
experience thermal cycling (TC) issue due to the excessive on/off 
power cycles during aggressive load matching [4]. This issue 
refers to repeated heating and cooling of sections of the 
microelectronics and can lead to permanent devices failures (e.g., 
cracks on circuit boards). On the other hand, heavily relying on 
energy backup to handle the stochastic workload surges and 
supply sags increases the required energy storage capacity, which 
adds to the overall cost of infrastructure. 
 In this study we tackle the above challenges using a unique 
hybrid power management strategy. The main idea is to gracefully 
switch between the two mutually exclusive power management 
policies to boost system performance and enhance reliability 
without sacrificing overall renewable energy usage effectiveness.  
 We propose Chameleon, an adaptive many-core system that 
explores intelligent adaptation of power management policy for 
maximizing the benefits of green energy usage. Our system 
comprises of multiple power management schemes and each 
scheme is referred to as a power management mode. During 
operation, Chameleon learns from the feedback-based system-
environment interaction and selects the optimal power 
management mode based on the previous experience and the 
observed outcome. We term this power management design as 
mode-switching power management (MSPM).  
 The advantage of Chameleon is two-fold. First, as it integrates 
multiple power management schemes, it could overcome the 
shortcomings of relying on any single of them.  Second, the online 
learning capability enables the system to better adapt to the diverse 
and complex operating environment.  

This paper makes the following contributions:  
 We propose novel mode-switching power management 
(MSPM) mechanism to harvest the benefits of different 
renewable power management schemes. It enables green 
servers to adapt themselves to the time-varying renewable 
power budget automatically and efficiently. We show that 
MSPM could achieve up to 95% energy utilization depending 
on the actual renewable energy resource availability. 
 We explore learning algorithm to help Chameleon achieve 
high adaptability in various environment conditions. We show 
that Chameleon server outperforms the state-of-the-art design 
by 12.8% on system throughput. We also feed the system with 
load power variability information to make it reliability-aware. 
By curtailing unnecessary power tuning activities, Chameleon 
could increase the processor MTBF by 42% on average. 

* Authors contribute equally                  



The rest of this paper is organized as follows. Section 2 
introduces Chameleon design and proposes the mode switching 
power management scheme. Section 3 describes evaluation 
framework. Section 4 presents experimental results. Section 5 
discusses related work and Second 6 concludes the paper. 
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Figure 1: The Chameleon power management framework for 
server systems powered by intermittent green energy sources 

II. CHAMELEON AND THE MODE-SWITCHING 

POWER MANAGEMENT 

Chameleon is a power management framework for servers 
powered by emerging green energy sources. In particular, it targets 
throughput servers that are used for scientific computing or data 
processing jobs which typically do not have strict completion 
deadline. These servers often desire significant amount of time 
(days/weeks to run) and consume large amount of energy. 
Leveraging green energy to power these systems could greatly 
save conventional utility power bills and lower negative 
environmental impact.  

A. Chameleon: Overview and Rationale 

Figure 1 depicts the power provisioning hierarchy of a green 
datacenter across facility level and server level. At the facility 
level, onsite renewable energy generation (e.g., wind turbine or 
solar panel) and utility grid are connected together through 
appropriate circuit breakers and power conversion interfaces. An 
automatic transfer switch (ATS) can seamlessly switch the load to 
an onsite diesel generator in case that both renewable power 
system and utility grid fail. Eventually, power enters server racks 
through power distribution units (PDU). Each server rack is 
supported by distributed UPS batteries [5] for handling transient 
power interruptions. Such UPS placement topology has been 
adopted by Google and Facebook for improving energy 
conversion efficiency [5].  

At the server level, each dual-corded server connects to two 
power strips (rack-level PDUs): one connects to the primary 
power and the other connects to local UPS batteries. Modern 
intelligent rack-level PDUs from HP and IBM have provided the 
capability of monitoring and managing the power budget on each 
individual power outlet. Normally, servers run at their designated 
speed if the rack-level PDU hasn’t enforced power capping on the 
outlet. However, when renewable power supply fluctuates 
severely or becomes intermittently unavailable, it is crucial to 
change the power budget on each outlet and adjust the server 
power demand accordingly. 

Chameleon provides a way to gracefully adapt server load to 
the time-varying green power budget. As shown in Figure 1, each 
server features a Chameleon micro-controller that interacts with 
the server power supply, throughput processor, and the power 
monitor. The controller enables the system to intelligently 

leverage energy resources (i.e., the variable renewable power 
budget and the limited stored energy) for a better tradeoff between 
efficiency and performance. 

Chameleon does not emphasis using utility grid to provide 
backup energy due to three reasons. First, from a sustainability 
point of view, utility power yields low power efficiency (due to 
power transmission loss) and high carbon footprint. Second, in 
crowded urban areas utility power feeds are often at their capacity 
and electricity access for datacenter is restricted.  Third, in remote 
areas or developing countries, utility grid is less reliable which in 
turn degrades the overall availability of grid-dependent system. 

B. The Chameleon  -Controller 

Chameleon neither aggressively follows the variable power 
budget nor heavily borrows stored energy from the distributed 
UPS batteries. Instead, it combines the two approaches by defining 
multiple power management modes: energy-oriented control mode 
(E-mode) and performance-oriented control mode (P-mode). 
When E-mode is activated, the server gives high priority to 
primary power supply for maximizing the direct use of green 
energy. When P-mode is activated, the server yields high priority 
to stored energy (secondary power supply) for maintaining desired 
workload performance. Such approach is referred to as mode-
switching power management (MSPM). 

The Chameleon micro-controller is the major hardware 
addition in our design and the key component that supports 
MSPM. Figure 2 shows its internal architecture which consists of 
a Chameleon memory that stores important system profiling 
information, a mode tuning agent that manages the mode 
switching activities, a mode register that specifies current power 
management mode, and several pieces of firmware that execute 
actual load power control.  

During runtime, the micro-controller performs three tasks 
concurrently: monitoring, analyzing, and tuning. First, it maintains 
a load power consumption history record for the last N evaluation 
frames. It also tracks the average IPC and the power states of each 
processor core in a profiling table. All these data are updated 
dynamically in the Chameleon memory, ensuring timely diagnosis 
of the system. Second, the micro-controller analyzes its past power 
management effectiveness based on the stored monitoring data. At 
the end of each coarse-grained mode-tuning interval, it updates the 
mode register with a newly selected mode code. Finally, at each 
fine-grained cycle, the power control firmware executes load 
tuning instruction based on the specified power management mode 
and the supply-load power mismatch at that given timestamp.  
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Figure 2: The control architecture of mode-switching power 
management mechanism in Chameleon  -controller 



In this study we mainly consider dynamic voltage and 
frequency scaling (DVFS) and processor power gating (PG) as 
major load tuning knobs.  Each processor core is connected to an 
on-chip voltage regulator module (VRM) through a power-gating 
transistor. Therefore, the power control firmware can put the 
throughput processor into low power states by lowering the core 
V/F level or temporarily enable sleep state.  

Note that the firmware based power control implementation is 
fairly scalable and easy to update. Although the entire power 
management loop passes through several levels, the control 
latency is a negligible factor compared to the much longer time 
interval of power budget variation.  
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Figure 3: The mapping of power management modes to load 

adaptation behaviors 

C. Learning-Based Mode Switching 

The mode tuning agent is Chameleon’s key optimization 
engine. It determines the state of the mode register, and thereby 
affects how servers will react to the time-varying green power 
budget. In Figure 3 we show the load adaptation policy in different 
power management modes. When the server is set as energy-
oriented mode (E-mode), it will strive to maximize direct green 
energy usage. That is, the micro-controller will dynamically tune 
the processor voltage and frequency levels to follow the power 
supply budget. On the other hand, in performance-oriented mode 
(P-mode), the server prefers to use stored energy to fill the power 
shortfall when the load power demand is higher than the power 
supply budget.  
 Power mode switching is challenging. An intuitive thinking is 
that one can simply adjust the mode based on pre-defined power 
threshold or workload performance threshold: i.e., use energy-
oriented mode when power headroom increases and use 
performance-oriented mode when server throughput drops. 
However, such straightforward scheduling scheme lacks 
robustness and often shows unsatisfied results when faced with 
disturbing events. For instance, an increase in power budget is 
actually not a good indication of abundant renewable power 
supply – it is very likely that the renewable power output 
fluctuates heavily and it is just temporary power surge. Similarly, 
a temporary drop in server throughput does not necessarily mean 
that we are lack of power budget – probably the throughput 
processor is waiting due to memory access.  
 In this study we explore a reinforcement learning based mode 
tuning approach. Rather than specify a rigid mode switching 
policy, we provide Chameleon the privilege to make its own 
decisions through controller-system interaction. Such approach 
has two advantages. First, learning-based design is more adaptive 
and is able to optimize its power management effectiveness over 
the lifetime. Second, it shows better extensibility when we need 
more power management modes to handle the increasing 
complexity in hardware and workload.  For threshold-based mode 
switching scheme, it is difficult to analyze the entire design space 
when facing a large number of modes and threshold values.  
 The behavior of the mode tuning agent (i.e., the learner) is 
given by a sequence of state-mode pairs (Si, Mi), where Si is the 
supply-demand mismatch (in Watts) in the last control period  and 

Mi is the power management mode that the agent decides to select 
based on its experience and observation of the state. Meanwhile, 
the agent receives numerical rewards Ri from the system as a 
feedback for the mode switching action it takes. The reward signal 
indicates if the mode selection is favorable in an immediate sense 
and helps the mode tuning agent to update its knowledge base in 
the future. 
 The reward function specifies the objective of the mode tuning 
agent. The goal is to maximize the cumulative reward over the 
long time. We define the reward as: 

( ) ( )V

IPSPerformance
R

Power ariability A p F p
   ,  (1) 

where IPS is the instruction per second for each individual 
processor core, A( ) and F( ) are the fluctuation amplitude and the 
fluctuation frequency of the power data series, respectively. A( ) is 
calculated as the standard deviation of the load power. The 
definition of F( ) is similar to the averaged zero-crossing rate 
widely used in the signal processing community: 

( ) 0.5 | sgn[ ( ) ] sgn[ ( 1) ] |F p x n x x n x      ,   (2) 

Where sgn[ ] is the sign function and x is the mean value of x. Note 

that in Eq-1, the power variability is a lower-is-better metric. The 
definition of our reward function implies that we want the mode 
tuning agent to optimize the system throughput while be aware 
that severe load power variation is harmful. Note that frequent 
load power cycles can result in thermal cycles and potentially 
degrade the lifetime of the system. 
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Figure 4: Online-learning control flow and timeline 

D. Solving the Mode Switching Problem 

 We solve the mode switching problem using Q-learning 
algorithm [6]. It is easy to implement as hardware controller since 
the algorithm naturally operates in an on-line, fully incremental 
fashion. The basic idea of Q-learning is to store a so-called Q-
value for each state-mode pair (Si, Mi) in a lookup table. The Q-
value is used to predict the possible return of each power 
management mode at any given system state. We evenly divided 
the range of supply-demand mismatch into four intervals, with 
each mapping to a given Q-table entry. We choose a four-entry 
table because more entries will increase the computation 
complexity significantly [6].  

Figure 4 illustrates the control follow in a given mode tuning 
period. In the ‘Switch’ stage, the mode tuning agent determines 
current state Si based on monitored data and selects a power 
management mode. In the ‘Analyze’ stage, the agent waits for a 
sequence of load tuning activities and collects profiling data (the 
feedback information) and calculates the reward value. In the 
‘Learn’ stage, the Chameleon controller updates Q-table based on 
a comprehensive evaluation of the previous mode decisions and 
reward value. 



Figure 5 shows our learning-based mode tuning scheme. The 
agent chooses a mode that has larger Q-value at any given system 
state. Meanwhile, it occasionally takes a random power 
management mode instead of the optimal one observed from the 
Q-learning table. This is referred to as exploration of the 
environment and helps to avoid local optimal [6]. In Figure 5, the 
discount factor r determines the importance of future rewards; the 
learning rate determines to what extent the newly acquired 
information will override the old information. 

Initialize: All state-action pairs are initialized to zero 
Requires: Discount factor γ , learning rate α , exploration probability ε  

1 
2 
3 
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12 

   Set mode register with mode 
   IF (rand () < ε ) 

                mode ←Select random mode  
       ELSE 
                Evaluate current system performance states 
                mode ←select mode which maximizes Q-value 
      END IF 
       IF (new mode tuning cycle T begins) 
                Calculate reward R 
               Q’ ← next Q-value read from the learning table 
               Q[s, a] ← (1 - α ) × Q[s, a] + α × (R + γ × Q’[s’, a’]) 
       END IF 

Figure 5: Pseudo code for mode switching 
 

III. EVALUATION METHODOLOGY 

In this section, we introduce our heavily instrumented 

framework that incorporates a cycle-based microarchitecture 

simulator and real-world traces of green energy sources.  

Our evaluation framework of a throughput server processor is 

modeled based on the cycle-level simulator GPGPU-Sim v2.1.1b 

[7], which simulates throughput core, interconnection network, 

texture/constant cache, memory controller, L1/L2 cache, and off-

chip DRAM. We have enhanced the simulator to model core-level 

power gating and DVFS. Table 1 summarizes our configuration 

that closely models NVIDIA GTX 580 [8] and Table 2 

summarizes power control configurations. 

We designed a throughput server power simulator based on 

McPAT [9] and incorporated power model for various throughput 

processor components such as fetch, decode, schedule, execution 

units, register file, shared memory etc. We also models non-core 

components including interconnect, L2 cache and memory 

controllers. These components account for a large portion of 

power consumption in a throughput processor. We also 

implemented runtime power management module that supports 

dynamic clock adjustment at the beginning of every DVFS period. 

To validate our model, we compared our simulation results with 

actual power measurement using current sensors attached to a 

GTX 470 GPU module and found satisfactorily close match. 

We choose from a large set of available throughput workloads 

from Nvidia CUDA SDK [10], Rodinia Benchmark [11], Parboil 

Benchmark [12], and some third party applications. The selected 

workloads show good mix of memory accesses and compute 

instructions. The problem size of the workloads is scaled to avoid 

long simulation time or unrealistically small workload stress. 

Table 3 lists the evaluated workloads. 

We use renewable power supply traces generated from the raw 

data of HOMER [13]. HOMER is developed by the National 

Renewable Energy Lab for simulating renewable energy 

technologies using real-world power data. As shown in Table 4, 

we generate four traces with different combinations of power 

supply variability and average power budget levels. 

We also evaluate the impact of dynamic load power adaptation 
on processor temperature using HotSpot 5.0 [14]. We 
instrumented HotSpot5.0 to model the thermal characteristics of 
the throughput processor and also integrated it within our 
simulation framework. Table 5 summarizes the HotSpot 
parameters used in our experiment. In this study we monitored the 
highest temperature of the processor and counted the thermal 
cycles throughout the simulation. We adopt the reliability 
estimation method studied in [4]. 

TABLE 1. SIMULATION CONFIGURATIONS 

Parameters Configuration 

Throughput core 16 core, 32 SIMD pipeline 

Cache (L1/L2/Const/Tex) 32/512/16/16 (KB) 

Memory system 48KB shared, 6 controller, 303Gb/s 

Register count 16384 per shader core 

Threads per SM 1024 

Topology and bandwidth Mesh topology, 16B channel BW 

MC scheduling policy FRFCFS 
 
 

TABLE 2. LOAD POWER TUNING PARAMETERS 

Parameters Configuration 

Core voltages  (V) 0.95, 1.05, 1.15, 1.25, 1.35, 1.45 

Core freq. (GHz) 1.2, 1.4, 1.6, 1.8, 2.0, 2.2 

Interconnection (V/f) 1.05V/1.4G, 1.25/1.8G, 1.45/2.2G 

Memory Ctrl. and L2 (V/f) 0.95V/1.0G 
 
 

TABLE 3. SYNOPSIS OF EVALUATED WORKLOADS 

Abbr. Workload 
Avg. 

Power 

Avg. 

IPC 

FWT Fast Walsh Transform 128.1 W 107.8 

HY Hybrid Sort 80.6 W 86.1 

LIB LIBOR 112.3 W 96.5 

MM Matrix Multiplication 176.7 W 300.1 

MT Matrix Transpose 104.4 W 226.5 

MUM MUMmer GPU 202.8 W 11.9 

NW Needleman Wunsch 80.6 W 21.6 

PF Path Finder 122.4 W 113.3 

PNS Petri Net Simulation 143.7 W 67.4 

ST3D Stencil 3D 125.5 W 122.6 
 
 

TABLE 4. RENEWABLE  POWER SUPPLY TRACES 

Trace Description 
Avg. 

Power 
 (std) 

High Power Budget + High Variability 135W 38W 

High Power Budget + Low Variability 178W 17W 

Tight Power Budget + High Variability 40W 41W 

Tight Power Budget + Low Variability 101W 14W 
 
 

TABLE 5. HOTSPOT PARAMETERS 
Parameters Value 

Chip thickness / area 0.15 mm / 530 mm2 

Convection resistance 13.9 K/W 

Heat sink width / thickness 0.07 m / 69 mm 

Interface material thickness 0.025 mm 
 

IV. EXPERIMENTAL RESULTS 
 In this section we assess the impact of mode-switching power 

management on throughput servers in terms of energy, 

performance, and system lifetime. Our main baseline is 

Threshold, which combines different power management modes 

using simple threshold-based switching method (i.e., the average 

core power/performance level). We also compared Chameleon 

with the recent energy-oriented approach. We do not focus on 

performance-oriented design since its performance heavily 

depends on the actual installed battery capacity. 



 

 

 

 
Figure 6: Renewable energy utilization for different workloads 

(Normalized to energy-oriented design) 

 

Figure 7: Dependence on energy storage (i.e., the cumulative 

amount of green energy that goes through battery divided by the 

overall green energy consumed by the system) 

A. Energy Utilization 

We first analyze the energy utilization profile of different 

power management schemes. As shown in Figure 6, when the 

green power budget is high, the efficiency of Chameleon and 

Threshold are both close to existing energy-oriented approach. 

On average, Chameleon could achieve 97% utilization rate 

compared to an aggressively supply-tracking based design and 

shows 95% of renewable energy utilization. 

Second, if the green power budget is tight, the efficiency of 

different schemes can vary significantly when faced with 

different power budget variability. If the budget variation is low, 

mode-switching (i.e., Chameleon and Threshold) shows nearly 

50% less renewable energy utilization since it tradeoffs energy 

efficiency for performance. However, when the power variability 

is high, mode-switching based design outperforms energy-

oriented design significantly. This is because the later approach 

loses its advantages of directly utilizing the green power budget 

when the power budget frequently drops below a very low level.  

In Figure 7 we show the energy utilization profile from the 

point of view of the stored energy. The system increasingly gives 

P-mode (i.e., using stored energy to boost system performance) 

high priority as the green power budget becomes tight and 

variable. Our results show that about 75% of the green power 

must be first stored into a battery then it can be used for the 

computing system to meet their performance/reliability goal.  

B. Performance Acceleration 

We further evaluate the benefits of mode switching in terms 
of average system throughput, as shown in Figure 8. Compared to 
energy-oriented design, Chameleon mode-switching power 
management could improve the performance by 1.5X when the 
power generation is high. When the green power budget is tight, 
our technique shows 16X increased performance compared to a 
rigid energy-oriented design. More importantly, Chameleon 
design outperforms simple threshold-based mode switching 
scheme due to its online learning capability. Although the actual 
effectiveness of our learning based mode-switching varies with 
different workloads, Chameleon shows 13% higher workload 
speed on average across all the workloads.  

C. Reliability Benefits 

The effect of aggressive load power adaption on processor is 

an open question. Prior study has shown concern for the lifetime 

issue of using power cycling on servers but does not dig into it. 

We argue that aggressive power tracking and load power tuning 

can result in excessive number of thermal cycles (TC), which will 

result in permanent failure of semiconductors [4].  

Chameleon alleviates this problem as the mode tuning agent is 

aware of the load power variability and tries to avoid it. Figure 9 

shows the mean time between failures (MTBF) of throughput 

processors in Chameleon and Threshold design. The results are 

normalized to that of the energy-oriented approach. As we can 

see, the second and third plots show less MTBF improvement 

compared to the first and forth plots. This is because energy-

oriented design causes fewer thermal cycles when the green 

power supply is relatively stable and abundant. Overall, mode 

switching power management could improve the processor 

lifetime significantly, and Chameleon even shows 42% longer 

MTBF than Threshold due to its variability-aware light-weight 

mode switching activities. 

V. RELATED WORK 
 Sustainability has become an increasing concern in recent 
studies. In this section we discuss the state-of-the-art design in the 
emerging green energy-aware computing research.  

A. Focusing on server load matching 

 There have been several pioneering studies on matching 
computer power demand with renewable power budget [15 - 22]. 
For example, Li et al. proposed load adaptation scheme for solar 
energy powered multi-core servers [16] and Sharma et al. 
discussed the impact of tracking intermittent power on system 
performance [17]. They both chose hardware tuning knobs for 
load matching. On the other hand, Goiri et al. leveraged workload 
scheduling based on the availability of renewable energy [18, 19]. 
Also, Zhang et al. explored workload routing algorithm for 
maximizing green energy usage [20] and Li et al. proposed 
energy-aware workload migration for improving load matching 
efficiency [21]. At HP, Arlitt et al. designed clusters that adjust its 
load based on the green power availability [22].  

B. Focusing on power source managment 

 Another design approach is to fully leverage ancillary power 
systems or utility grid. For example, Govindan et al. evaluated the 
benefits of using onsite energy storage for managing power 
demand surge and power shortage problems [23, 24]. Deng et al. 
investigated distributed grid-tied inverter for integrating green 
energy at different design levels [25]. 
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Figure 8: Comparison of average throughput across different power management schemes 
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C. Joint management of supply and load 

We notice that recent designs have highlighted cooperative 
tuning of renewable energy sources and computing workload to 
achieve a better performance. For example, a joint control of 
computing power demand and onsite generator output is discussed 
in [26] for optimizing the green energy utilization and workload 
performance simultaneously. In [27], the system not only takes 
advantage of the self-tuning capabilities of computing load, but 
also intentionally switches the load between green energy and 
utility grid for better performance. 

Different from existing works, this paper explores intelligent 
integration of different power management schemes for the 
optimal tradeoff between performance and efficiency. To our 
knowledge, this is the first paper that applies learning technique to 
throughput server power management to achieve reliability-aware 
adaptive green computing.  

VI. CONCLUSIONS 

Motivated by the energy crisis and environmental issue, this 
paper investigates green energy powered throughput server 
system. Existing energy-oriented and performance-oriented 
approaches lack a holistic view of managing the variable green 
power budget. We show that intelligent switching between 
different power management modes can boost the system 
performance by 12.8%, enhance reliability by 42%, and still 
maintain up to 95% green energy utilization. 
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