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ABSTRACT 

The great promise of in-memory computing inspires en-

gineers to scale their main memory subsystems in a timely 

and efficient manner. Offering greatly expanded capacity at 

near-DRAM speed, today’s new-generation persistent 

memory (PM) module is no doubt an ideal candidate for 

system upgrade. However, integrating DRAM-comparable 

PMs in current enterprise systems faces big barriers in 

terms of huge system modifications for software compati-

bility and complex runtime support. In addition, the very 

large PM capacity unavoidably results in massive metadata, 

which introduces significant performance and energy over-

head. The inefficiency issue becomes even acute when the 

memory system reaches its capacity limit or the application 

requires large memory space allocation.  

In this paper we propose adaptive memory fusion (AMF), 

a novel PM integration scheme that jointly solves the above 

issues. Rather than struggle to adapt to the persistence 

property of PM through modifying the full software stack, 

we focus on exploiting the high capacity feature of emerg-

ing PM modules. AMF is designed to be totally transparent 

to user applications by carefully hiding PM devices and 

managing the available PM space in a DRAM-like way. To 

further improve the performance, we devise holistic optimi-

zation scheme that allows the system to efficiently utilize 

system resources. Specifically, AMF is able to adaptively 

release PM based on memory pressure status, smartly re-

claim PM pages, and enable fast space expansion with di-

rect PM pass-through. We implement AMF as a kernel sub-

system in Linux. Compared to traditional approaches, AMF 

could decrease the page faults number of high-resident-set 

benchmarks by up to 67.8% with an average of 46.1%. Us-

ing realistic in-memory database, we show that AMF out-

performs existing solutions by 57.7% on SQLite and 21.8% 

on Redis. Overall, AMF represents a more lightweight de-

sign approach and it would greatly encourage rapid and 

flexible adoption of PM in the near future.  

1. INTRODUCTION 
The industry and academia alike have realized that large 

memory capacity is necessary for big data applications to 

conduct in-memory computing today. For example, SAP 

HANA [1], a commercial database vendor, installs very-

large amount of memory (from 128GB to 4TB) on a single 

node to sustain fast query and real-time analysis in database 

processing. To keep large data sets in DRAM and ensure 

low latency, researchers from Stanford propose RAMCloud 

[2], which forms a 1 petabyte (PB) memory subsystem by 

aggregating ten thousands servers.  

Unfortunately, keeping scaling up/out the DRAM can no 

longer create a sustainable business advantage today. Exist-

ing DRAM pooling strategies result in several issues such 

as greatly increased DIMM cost, significant board space 

overhead, and escalating energy needs. Considering the 

increasing gap between the processor computation capabil-

ity and the available memory capacity [3], a timely memory 

capacity expansion strategy combing new hardware tech-

nology and efficient integration method is highly desired.  

In this study we explore an efficient way to expand the 

main memory subsystem for high-performance in-memory 

data processing. Recently, the emergence of large-capacity 

PM modules presents a great opportunity to achieve this 

goal. A variety of new memory technologies such as Re-

RAM, STT-MRAM, and 3D XPoint could provide a per-

formance almost comparable to DRAM (see Table 1). The 

byte-addressable property of PM further allows it to be 

directly accessed by load/store instructions just like a tradi-

tional DRAM. More importantly, PM allows for much 

larger hardware capacity than DRAM (e.g., terabytes in-

stead of gigabytes) at highly competitive cost [5].  

Although PM hardware highlights non-volatility of 

stored bits, we do not intend to introduce the persistence 

property into existing system at this stage. This is primarily 

because there are many issues that can greatly complicate 

the integration of PM. For example, exposing the unique 

feature of PM device to the application requires the revi-

sion of the whole software stack [9], which is a formidable 

task. In fact, traditional OS mechanisms such as page fault 

handling, memory swapping and address space manage-

ment should all be tailored to fit the new access interfaces 

of PM. The procedures for booting and shutting down an 

operating system also need to be reworked since the PM 

has preserved a former execution state since last operation. 

Without appropriate management, selectively rejuvenating 

partial OS component (micro-boot) on PM can easily lead 

to unpredictable consequences. Further, many security is-

sues need to be considered as well. Without privacy and 

security aware garbage collection policies, encryption keys 

and decrypted data in the durable cells of PM can be easily 

leaked [10][11][12].  



  

 

 

Gracefully integrating PM into existing computer system 

is a non-trivial task, even if we only focus on the memory-

like property of PM. For enterprise-level in memory com-

puting, it is crucial to ensure compatibility and efficiency. 

There have been prior work investigate the byte-

addressable attribute of persistent memory [13][14][15]. 

They focus on persistent objects that support inflexible 

programming interfaces (e.g., Pmalloc, Pfree, NVheap, 

NVHOpen, and NVobject). It is difficult for them to be 

widely adopted in existing commercial software. Mean-

while, some proposals such as PMFS [16], HiNFS [17] and 

Nova [18] provide virtual file system interfaces that are 

widely used in block devices. Although these works em-

ploy PM’s memory-like property, they hurt system perfor-

mance due to the overhead of I/O software stack. 

In the era of “big” and “fast” data, persistent memory 

will play a more dominant role. However, from the per-

spective of a system designer, the new-generation PM 

modules are more likely to collaborate with DRAMs rather 

than replace them quickly. A key driving principle behind 

our design is to make the best use of the capacity benefits 

of PM while minimizing unnecessary changes to applica-

tions and the corresponding running environment. To this 

end, we propose adaptive memory fusion (AMF), an adap-

tive memory fusion strategy that smartly integrates high-

performance PM into existing main memory subsystem.  

AMF is a lightweight, application-transparent PM inte-

gration scheme. The transparent management of PM de-

notes that the user does not have to manually activate ex-

plicit interface, such as using Pmalloc to allocate space and 

Pfree to reclaim space. AMF is able to automatically con-

figure all the PM-equipped NUMA nodes to make sure that 

the PM is correctly initialized. Afterwards, the PM devices 

are managed in a DRAM-like way in the kernel mode. 

AMF just employs several mature management mecha-

nisms (e.g., buddy system for contiguous multi-page alloca-

tions) that are widely used in today’s operating system.  

We develop optimization techniques to make AMF an 

agile scheme that can efficiently handling large-capacity 

PM management. For example, our PM space allocation 

technique avoids metadata explosion by only allocating the 

necessary PM resources. Meanwhile, our system can dy-

namically append appropriate amount of PM space into a 

running system based on the memory pressure. This can 

greatly reduce the performance degradation due to expen-

sive virtual memory swapping.  Further, we also offer a 

compatible programming interface which can conveniently 

assist programmers to directly use the large capacity of 

physical PM at the user level.  

We believe AMF is an important step in the evolution of 

systems towards ones with large persistent memories. In 

this paper we show limitations in the design of current sys-

tems that ultimately must be overcome. We also explore a 

reasonable set of compromises for the design of systems in 

the near future to take advantage of large-capacity PMs. 

Our design is orthogonal to techniques that aim to improve 

the performance and efficiency of DRAM and PM device.  

In summary, we make the following key contributions:  

 We introduce a fusion architecture which greatly 

facilitates memory capacity expansion with emerging 

PM modules. Existing OS can smoothly work with it 

with minor modifications. 

 We devise a memory space fusion mechanism to 

adaptively provision PM resources. It is a transparent 

procedure in that memory-intensive applications can 

automatically benefit from it.  

 We propose a holistic optimization strategy to bet-

ter manage large-capacity PM. Our agile scheme can 

minimize metadata overhead, reduce costly I/O opera-

tions, and provide fast access to PM devices.  

 We present our design as a unified solution called 

adaptive memory fusion (AMF). We implement AMF 

as a kernel module in Linux kernel 4.5.0.  

 We extensively evaluate our design from different 

perspectives. Using high-resident-set benchmarks and 

realistic in-memory database application, we show that 

AMF has great performance and efficiency potential. 

 

The rest of the paper is organized as follows. Section 2 

introduces the background. Section 3 analyzes different 

architecture options and depicts our design. Section 4 pro-

poses our adaptive memory fusion mechanism. Section 5 

details experiment setup. Section 6 presents evaluation re-

sults. Section 7 gives a short discussion and Section 8 co-

vers related work. Finally, Section 9 concludes this paper.  

2. BACKGROUND AND MOTIVATIONS 
Persistent memory (PM) can be an attractive candidate 

for database applications and analytic workloads that re-

quire intensive memory operation. In this section we briefly 

introduce the opportunities and challenges related to PM. 

2.1 Benefits of Tapping into PM 
PM devices typically reside on the high-speed DRAM 

bus. They can provide very fast DRAM-like access to criti-

cal data. Today, new PM device technologies such as 

phase-change memory (PCM), Resistive RAM (ReRAM), 

and spin-transfer torque RAM (STT-RAM) provide persis-

tent data storage with access latencies close to DRAM. 

According to recent studies [44][45][46], some of the high-

performance PM mediums such as STT-RAM cloud yield 

DRAM-comparable performance in terms of read/write 

latency (Table 1). As technology advances, these PM me-

diums are expected to provide even higher density, lower 

power, and shorter latency [47].  

Importantly, emerging PM technologies from different 

vendors allow us to run at memory speed with much larger 

capacity. In terms of capacity, PM will be roughly an order 

magnitude larger than DRAM. At the extreme, we can in-

stall terabytes rather than gigabytes of memory. For 

memory-intensive applications, one may be willing to sac-

rifice a little memory bandwidth performance for much 

larger capacity. Considering the lower price and reduced 

power demand of PM, emerging large-capacity PM module 

is indeed a top candidate for in-memory computing.  



  

 

 

2.2 Issues with PM Integration 
Integrating PM into current systems faces many chal-

lenges. We group the main issues into two categories: sys-

tem modification and system optimization. 

2.2.1 System Modification Challenge 

The persistence of PM means that the memory cell re-

tains data during power loss. One needs to devise appropri-

ate abstractions and interfaces for managing the non-

volatility property. In other words, introducing PM’s per-

sistence [8] could substantially influence operating system 

design and program development. Many major system 

components can be affected [9], such as virtual memory 

system, file system, program execution models, application 

installation, reliability and security module, etc. For in-

stance, current OS mainly uses a “buddy system” to allo-

cate and reclaim physical memory for every process. PM 

integration requires the kernel to create a similar system to 

managing PM space. In addition, the kernel needs to pro-

vide extra programming interfaces for upper applications to 

make use of PM. Besides, the persistent attribute of PM 

leads to newly allocated/reclaimed space that already in-

cludes unreleased persistent data – appropriate mechanisms 

are required to handle potential security issues. 

System modification can be a big barrier to quick, wide-

spread adoption of PM today and tomorrow. Huge modifi-

cations made to the corresponding running environment are 

not acceptable to enterprises. Making drastic changes to 

commercial databases is not practical as well.  

2.2.2 System Optimization Challenge 

Large capacity PM consumes huge metadata space. The 

kernel requires many bytes to describe dynamic properties 

for each page. The state information about a physical page 

is resident in a page descriptor (PD). For instance, the ker-

nel uses it to identify the physical page that belongs to ker-

nel code or kernel data. It also indicates that physical page 

is free or not free. PD can be quite large, requiring 56 bytes 

space to store in Linux-4.5.0 on the x86-64 architecture. In 

particular, at the terabyte level, a 1TB PM with 4KB page 

size requires 14GB space to store all page descriptors (1TB 

/ 4KB × 56 B). Some researchers [19] advise that using a 

64-bit miniature page descriptor to avoid the cost of a full 

page descriptor. However, it leads to huge kernel revision 

and reduces the compatibility of software. Thus, smarting 

managing PM space to reduce kernel metadata size is of 

paramount importance.  

There are several other challenges related to large PM 

management. For example, memory energy consumption 

can be affected by its capacity in use. In Figure 1 we show 

the percentage of memory energy consumption on a Dell 

R920 server by running SPEC CPU2006 benchmarks. We 

measure six multi-programmed workloads of different 

memory footprints. As we can see, under high memory 

footprint, the energy consumption rate can be increased by 

over 50%. On the other hand, the demand of memory is 

continually changing even for the same application. In Fig-

ure 2 we evaluate the memory footprint for Redis bench-

mark under different input data sizes. Our results show that 

the requests of different data size can yield significant 

memory demand variation. By opportunistically tracking 

the demand, one can further reduce energy overhead.  

2.3 The Main Goal of This Paper  
The intention of this project is to greatly facilitate the in-

tegration of PM in existing main memory subsystem. Faced 

with the system modification and optimization challenges, 

we aim to create a non-intrusive, light-weight design that 

allows a shared-memory machine to efficiently expand its 

memory capacity. We devise a novel memory fusion archi-

tecture and system mechanism to bypass the huge modifi-

cations faced by the OS; we also propose a holistic optimi-

zation strategy to reduce performance/energy overhead 

from different perspectives (detailed in Sections 3 and 4).  

Note that there is no one-for-all ideal design. Heavily in-

strumented PM systems with additional software support 

maybe a good direction if one has a firm goal of replacing 

DRAM with PM and a strong need to unleash the full po-

tential of memory persistency in the future. However, if 

one wants to expand memory capacity with minimum cost 

and seeks to boost in-memory computing right now, AMF 

with its lightweight, highly compatible and efficient de-

sign would be an attractive alternative.  

3. ARCHITECTURE ANALYSIS AND DESIGN 
In this section we first compare different architecture de-

sign options for PM integration. We then discuss the key 

feature of our fusion architecture.  

3.1 Architecture Analysis 
There are several design options available for integrating 

PM into the main memory subsystem of NUMA machines. 

In Figure 3 we illustrate their logical architectures.  

Option A1 shows a traditional design in which PM is not 

used. In this case the native OS works smoothly and no 

specific modifications are required for existing applications 

to run on the system. When PM hardware is directly used 

as a storage device (Option A2), it maintains disk semantics. 

In this case, the OS just treats the non-volatile device as 

conventional block storage, and creates a filesystem on it. 

Category Read latency Write latency Endurance 

DRAM 40-60ns 40-60ns 1016 

STT-RAM 10-50ns 10-50ns 1015 

ReRAM 50ns 80-100ns 1012 

Table 1. A comparison of memory technologies 

  

Fig. 1. Impact of capacity on 

power consumption 

Fig. 2. Memory capacity de-

mand variation  

 



  

 

 

Due to the block access patterns and the overhead of I/O 

software stack, the benefits of PM cannot be shown. In this 

work we focus on constructing the memory subsystem us-

ing PM which sits in the system’s DIMM slots.  

A group of architecture designs require significant 

modifications to the OS. For example, one can use PM 

exclusively or use DRAM as a "cache". In Figure 3, A3 

replaces the DRAM with PM (A3). The SSD/HDD may 

also be removed since the data in the PM is persistent. 

However, significant modifications are required to ensure 

that the booting and shutting down of the OS works 

smoothly and correctly. Like A4 shows, one can also insert 

a DRAM layer as the buffer for PM [31]. For example, 

Hewlett Packard Enterprise’s PM system includes a DRAM 

layer to accelerate applications, a dedicated flash tier for 

persistency. Appropriate software modules are required to 

ensure that the DRAM is transparent to main memory 

subsystem. The option A5 offers a uniform addressing 

space [32]. It relies on the memory controller to coordinate 

the allocation and reclamation of DRAM and PM resources. 

All the above designs overlook the impact of PM’s 

persistence on OS, which is a troublesome issue in practice. 

3.2 Fusion Architecture 
We present a fusion architecture that synergistically 

integrates DRAM and PM, as shown in Figure 3 (A6). It 

uses both PM and DRAM to get a very large pool of 

addressable memory without the significant overhead.   

The physical architecture of A6 is close to A5. It 

considers a hybrid system (DRAM+PM) based on a 

NUMA machine offering uniform addressing space. It uses 

a traditional two-layer framework (DRAM+Storage) on the 

first NUMA node. Both DRAM and PM are configured 

with a DIMM (Dual Inline Memory Modules) interface.  

Differently, A6 highlights unique PM organization and 

management. First, it exposes itself to the above OS as a 

DRAM by hiding the PM space appropriately. It configures 

other NUMA nodes with PM and keeps these PM 

detectable (but not accessible). As a result, the OS is able to 

directly boot from the DRAM node just like a native OS 

running on architecture A1. Consequently, there is no need 

to heavily handle the booting and shutting issues originated 

from PM’s persistence property. Second, A6 intends to hide 

PM space from the system. It only integrates partial PM 

space into the system to avoid instantaneous extension of 

the metadata. The system always stores frequently modified 

metadata such as page descriptors and page tables on 

DRAM node. By doing so the system can efficiently 

decrease the burden of the memory controller and reduce 

the writing frequency to wear-sensitive PM device.  

4. ADAPTIVE MEMORY FUSION 
This section presents the design and implementation of 

AMF, our adaptive memory fusion design. We first give an 

overview of the system architecture. We then discuss our 

memory space fusion design that allows existing applica-

tion to transparently use the DRAM-PM fusion architecture. 

More importantly, we propose a holistic performance opti-

mization scheme to further improve system efficiency.  

4.1 Overview 
Figure 4 depicts the basic architecture of AMF which 

spans across three layers: application, operating system, 

and hardware. We implement AMF as a prototype in 

Linux-4.5.0. While the major components of AMF lie in 

the OS level, our work does not require significant modifi-

cation to the system software. In fact, our method hides the 

complexity of PM integration from the user and OS. It pro-

vides an efficient way to gracefully utilize PM resources. 

In Figure 4, we consider a shared-memory system that 

supports non-uniform memory access (NUMA). DRAM 

Node 1 and PM Nodes 2~4 are memory components in a 

uniform physical address. The system can smoothly man-

age the PM and DRAM space together. The kernel boots 

from DRAM Node1 after loading the OS image from a 

secondary storage. AMF forces all the PM nodes to be hid-

den from the OS at the beginning. It dynamically allocates 

and manages PM resources afterwards. Specifically, AMF 

is composed of three main modules: a kpmemd service, a 

Hide/Reload Unit, and an On-Demand Mapping Unit. 

Kpmemd is our newly inserted kernel service. When the 

memory footprint reaches its limit, kpmemd can automati-

cally provide moderate amount of PM space (e.g., entire 

PM Node2 space or partial PM Node3 space) to alleviate 

the memory pressure. Kpmemd controls a group of manag-

ers associated with the physical memory. For example, a 

unique Manager 0 is created for the DRAM module. It col-

laborates with our kpmemd service to monitor the memory 

pressure to determine the activity of the other managers for 

PM (Managers 1~N). Figure 4 shows two PM managers. 

Manager 1 can be completely inactive if the whole PM 

Node2 is hidden; Manager 2 is activated even if only part 

of the PM is allocated.  

The Hide/Reload Unit (HRU) is responsible for hiding 

and reloading PM resources. On each NUMA node, the 

 

Fig. 3. Schematic diagram of different designs 
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memory space consists of ZONE_NORMAL 1  and 

ZONE_DMA. Additional space can be added on 

“ZONE_NORMAL” depending on how much PM is hid-

den. The allocation and reclamation of the integrated PM 

are both managed by the kernel just like DRAM (i.e., PM 

Manager is similar to Manager 0). Further, all these inte-

gration procedure is transparent to the user.  

The AMF architecture also presents a PM access tech-

nique in the user mode. This feature is completely compati-

ble with the current programming interface. In Figure 4, the 

Dynamic On-Demand Mapping Unit works in the kernel 

mode. It partitions PM into different regions to map differ-

ent device files. Application can directly access the physi-

cal PM space in unprivileged mode by using a traditional 

“mmap" interface. In this work we re-define “mmap” to 

enable direct PM space control (detailed in Section 4.3.3)  

In the following, we first introduce our memory space 

fusion mechanism which lays the foundation for PM man-

agement. We then discuss detailed optimization schemes 

that further improve AMF performance. 

4.2 Memory Space Fusion Mechanism 
The memory space fusion mechanism hides the com-

plexity of PM integration. Its goal is to reserve PM re-

source for reducing metadata. It features a conservative 

initialization and dynamic provisioning scheme.  

4.2.1 Conservative Initialization 

The basic idea of conservative initialization is to avoid 

initializing all the hardware resource at the boot stage. Our 

system can control the degree of initialization. Figure 5 

                                                                 

1 ZONE_NORMAL and ZONE_DMA are all Linux concepts for 

memory management 

shows the basic procedure in our system to perform con-

servative initialization. It mainly consists of four phases: 

profiling, redefining, preparing, and launching.  

In the profiling phase, the system needs to detect and 

probe the physical memory regions and convert the detect-

able information into a useable form. We can obtain basic 

memory information through BIOS in the real mode (16-bit 

mode) in the early stage of booting. These important data 

will be passed to a predefined area that can be detected by 

the system after booting.  

In the redefining phase our system changes the upper 

limit of memory to hide the PM space. To initialize partial 

PM space, we need to modify the last frame number as a 

predefined value. The last/highest frame number of the 

whole memory should be replaced by the DRAM’s last 

frame number on DRAM Node1.  

Phases 3 and 4 are necessary to execute corresponding 

modifications based on the value of the last frame number. 

We need to initialize the sparse memory model. In this 

model, the memory space is divided into multiple sections, 

and the page descriptors are just initialized at the head of 

each section.  

Finally, our system starts the buddy system. The above 

phases set up the basic mechanism for managing the physi-

cal memory. Our design ensures that the system only ini-

tializes part of the PM space. It leaves the remaining PM 

space detectable but inaccessible.  

4.2.2 Dynamic PM Provisioning 

During runtime, AMF keeps a watchful eye on system 

memory footprint. If the DRAM has inadequate space to 

satisfy an application’s memory request, AMF will trigger 

PM space integration. Figure 6 shows the basic procedures 

that support dynamic PM provisioning. 

In Figure 6, the first phase aims to obtain the distribution 

information of physical regions and its capacity range in 

64-bit mode at runtime. Afterwards, the other three phases 

are responsible for reloading the hidden PM space and 

make it accessible to the operating system.  

Information Detection: 

It is the first and most important step (called probing 

phase) for dynamic PM provisioning. Obtaining the distri-

bution information can be tricky. The conventional method 

for obtaining the information is to rebuild a detecting pro-

cedure by triggering a BIOS interruption. However, it is 

effective only in a real mode (a.k.a. real address mode), not 

in a 64-bit mode as OS finishes booting.  

In this work we choose to transfer the detected infor-

mation from a real address mode to a 64-bit mode. AMF 

employs this method to copy the detected information from 

the boot-parameter-page to the predefined probe area; the 

information contained in the boot-parameter-page is origi-

nated from BIOS interruption in the real address mode. 

AMF takes advantage of a sequential transferring approach, 

which guarantees that the detected information is delivered 

from the real address mode to the protect mode and then to 

64-bit mode. Finally, AMF can get the transferred data 

from the predefined probe area. 
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Fig. 4. Adaptive memory fusion (AMF) overview. It assumes a 

shared-memory NUMA system. Kpmemd, Hide/Reload Unit, and 

On-Demand Mapping Unit are the key components of our design  

 



  

 

 

Reloading PM Space: 

After information detection, the remainder/hidden PM 

space is already detectable in the 64-bit mode on a running 

system. The next task is to dynamically release the hidden 

PM space. To achieve this end, we need to force the partial 

PM space to operate in a DRAM-alike way. From the per-

spective of system implementation, it is necessary to build 

a series of functions and interfaces. 

AMF extends the total physical page frame number in 

the extending phase. To extend the original last page frame 

number, we need to calculate an offset value. Here the off-

set denotes the total page frames of the newly added PM 

space (detailed in Section 4.3).  

In the registering phase, the system registers the newly 

added PM space to a unified resource tree. The resource 

tree is a special data structure for managing resources in 

Linux. It facilitates manage of device resources.  

In the merging phase, AMF merges the newly added PM 

space into existing system. A new ZONE_NORMAL on 

the corresponding node is formed based on the memory 

distribution information coming from the probe area. When 

building the sparse memory model, the newly added PM 

has to be spitted into multiple sections.  

Finally, the newly added PM space becomes manageable. 

It is under the control of a unified buddy system.  

4.3 Agile Memory Space Management 
Note that it is not enough to just routinely hide and re-

load the PM. If the PM resource allocation is aggressive, 

more active pages and kernel metadata can be generated. If 

the allocation strategy is too conservative (i.e., freeing up 

inadequate amount of memory), it can trigger costly SWAP 

operations. Therefore, an agile memory space management 

is needed to achieve a better design tradeoff. 

4.3.1 Relaxed PM Allocation  

AMF leverages memory watermarks to enable memory 

pressure-aware allocation. Memory watermarks represent 

current memory pressure on a running system. In Figure 7, 

Page_min, Page_low, Page_high are memory watermarks. 

Their values are fixed once the kernel obtains the amount 

of present pages. Page_min identifies the minimum 

memory space that must remain free for critical allocations. 

Page_low is a warning line: once the remaining free pages 

drop below it, a kernel thread called kswapd will be acti-

vated to trigger memory SWAP operation. Page_high is a 

threshold: the kswapd will sleep if the observed number of 

free pages is larger than it.  

To reduce or prevent the costly SWAP operations, it is 

necessary to provide relatively larger amount of PM space 

(relaxed allocation). During the runtime, our kernel ser-

vices dynamically monitors the memory watermarks to 

obtain a reasonable estimation of the amount of PM that we 

need to integrate. We then extend the ZONE_NORMAL 

and increase the number of present pages. 

AMF’s relaxed PM allocation is supported by our kernel 

service kpmemd. Importantly, kpmemd can collaborate 

very well with existing kernel services, as shown in Figure 

8. To detect the memory pressure, kpmemd inserts itself 

before kswapd. If kpmemd effectively alleviates the prob-

lem, kswapd maintains the sleep state. Otherwise, kswapd 

and kpmemd jointly handle the memory pressure issue. 

Conventionally, these watermarks are at the granularity 

of MBs. For example, the watermarks value on our plat-

form is: Page_min–16MB (4097 pages), Page_low–20MB 

(5121 pages), Page_high–24MB (6145 pages). To effec-

tively handle the applications whose memory footprint are 

large (e.g., at GB levels), we devise a pressure-aware ca-
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Fig. 5. Conservative initialization procedure Fig. 6. Dynamic PM provisioning procedure 

 
 

Fig. 7. Memory watermarks Fig. 8. AMF kernel thread 

 

Page_high

Page_low

Page_min

kswapd 

wake up
kswapd 

sleep

GFP_ATOMIC allocation still 

can obtain page  



  

 

 

pacity expansion policy as shown in Table 2. By increasing 

PM to reach a high level of memory watermarks, AMF is 

able to prevent or postpone the costly swapping.  

4.3.2 Lazy PM Reclamation 

The space of PM’s page descriptors occupied must to be 

reclaimed; otherwise it will nibble away the precious 

DRAM space. Releasing the space of PM’s page de-

scriptors occupied denotes that it is necessary to firstly re-

move the reclaimed PM pages from the buddy system. This 

process must be very careful since immediate reclamation 

can result in page thrashing.  

Our idea is to dynamically assess the benefits of PM rec-

lamation. If the expected DRAM space saving is higher 

than a predefined threshold value (e.g., 3% of the installed 

DRAM space in our system), our kernel service will re-

move the selected PM space from the system. AMF mainly 

removes the reclaimed space from the free list of the buddy 

system and to shrink the size of the ZONE_NORMALx. 

Finally, we reset the space that PM’s page descriptors oc-

cupied. Particularly, the whole removal is also automatical-

ly handled as a partial function of the kpmemd. Our kernel 

service periodically scans the amount of the reclaimed PM 

space to remove multiple sections from the system. 

4.3.3 Direct PM Pass-Through 

Existing kernel provides an efficient file access mecha-

nism through the mmap system call. The main feature of 

the mmap is that the file content can be directly mapped to 

a continuous virtual address space (referred to as MMAP 

Region), and the physical space can map this MMAP Re-

gion under automatic control of the Kernel. Hence, read 

and write operations can be converted into memory access-

ing of this MMAP Region in the user mode. 

The mmap approach implies that partial physical PM 

space can be conveniently accessed in the user mode. We 

can allocate different amount of PM space by constructing 

different device file (e.g., /dev/pmem_1GB_addr1). We call 

this PM usage approach as direct PM pass-through. The 

benefit of this approach is two-fold. First, the device file 

can be easily registered to Devices-Drivers-Model which 

employs existing functions and interfaces. Second, different 

sizes of PM space are explicitly organized in user-mode so 

that programmer can conveniently access them by the file 

system interface (e.g., open/close). 

In the environment of Linux-64, the virtual MMAP Re-

gion has reached TB level. It is sufficient for managing the 

huge physical PM space. In this paper we directly allocate 

virtual memory area which belongs to MMAP Region in 

the Kernel. Our system dynamically builds page table for 

mapping between device file and the virtual memory region 

(Figure 4). Our customized mmap only borrows open and 

close interfaces from the Virtual File System (VFS). It can 

effectively avoid the overhead of IO software stack and 

maximizes the byte-addressable property of PM. In Figure 

9 we provide an instance of using our mmap. 

5. EXPERIMENTALSETUP 
We run AMF on a quadruple-socket Intel Xeon-based 

system and a fresh Linux kernel. This platform has a large 

memory capacity organized in NUMA architecture and is 

easy to emulate large capacity of the persistent memory. 

Table 3 describes the specification of the platform. 

Since PM technology is still in an active developing 

phase now, in this study we emulate PM with DRAM. This 

approach has been adopted by many prior studies on PM 

based system designs [42][45]. The performance of PM is 

comparable to DRAM. In this paper we mainly focus on 

exploiting the capacity benefits of integration PM in exist-

ing main memory subsystems. Therefore, the evaluation 

results presented below does not take into account the dif-

ference of accessing latencies between PM and DRAM.  

The total amount of memory is 512GB on our platform. 

On Node1, the first 64GB is regarded as DRAM and the 

second 64GB is regard as PM. The remainder 384GB on 

Node2, Node3 and Nnode4 are all treated as PM. DRAM 

area is managed by original kernel and is available to appli-

cations at any time. PM regions are managed by the origi-

nal kernel together with AMF to monitor the memory pres-

sure. The PM region on Node4 is managed by the original 

kernel and AMF as well, and notably, applications can also 

utilize this region to map/munmap AMF’s device file.  

To demonstrate that AMF can effectively eliminate or 

decrease the memory deficits, we select nine benchmarks 

from the SPEC CPU2006 suite (http://www.spec.org). The 

memory footprint of the benchmarks is large enough to 

evoke memory deficiency. We use htop [33] which is an 

Remainder free pages Amount of integrating  

>page_high× 1024 DRAM’s capacity× 0 

(page_low× 1024, page_high× 1024] DRAM’s capacity× 1 

(page_min× 1024, page_low× 1024] DRAM’s capacity× 2 

(page_high, page_min× 1024] DRAM’s capacity× 3 

[page_low, page_high] DRAM’s capacity× 5 

Table 2. Policy of integrating amount 

 

Descriptions: Example of application directly using phys-

ical PM space. Our “mmap" (row 3) completely compat-

ible with traditional “mmap" (row 4). 

Input: an opened device file represents a huge PM space and a 

huge ISO image file on disk. 

Output: huge image file is moved to PM space. 

 

1. fd1 = open(“/dev/pmem1_8GB_0x30000000000", 

O_RDWR); 

2. fd2 = open (“/media/CentOS7.iso", O_RDWR); 

3. pdata1 = (char*)mmap(NULL, 0x200000000, ROT_READ |      

PROT_WRITE, MAP_SHARED, fd1, 0x30000000000); 

4. pdata2 = (char*)mmap(NULL, 0x200000000, ROT_READ | 

PROT_WRITE, MAP_SHARED, fd2, 0); 

5. memcpy(pdata1, pdata2, 0x200000000); 

6. close(fd1); 

7. munmap(pdata1, 0x200000000); 

8. close(fd2); 

9. munmap(pdata2, 0x200000000); 
 

Fig. 9. PM pass-through usage example 

 



  

 

 

interactive process viewer for Unix to monitor the memory 

footprint of these benchmarks. Since the DRAM capacity 

of the platform is large (reaches 64GB), our experiment 

requires executing multiple instances of the benchmarks to 

cause large quantities of memory access to activate the 

function of AMF. We repeat experiments five times and 

average the results to reduce the randomness of measure-

ment. We run STREAM benchmark [35] on our system to 

ensure that the bandwidth difference between our emulat-

ing platform and PM is within 5%.  

We mainly compare our design with conventional design 

that tries to build a unified space of DRAM and PM (i.e., 

architecture design A5). Table 4 shows the configuration of 

our experiment. We implement a benchmark to evaluate 

our direct PM pass-through technique. It allocates/reclaims 

the PM space using AMF’s self-defined but compatible 

"mmap/munmap" interface to replace traditional array 

space based on STREAM. 

We also evaluate two representative in-memory compu-

ting applications. SQLite has been widely used in datacen-

ters as the underlying storage engine for application-

specific database servers. We measure the throughput of 

SQLite on servers which configured with large capacity 

PM space. Then, we implemented a benchmark which cre-

ates a database purely in memory and performs random 

insert, update, select and delete transactions. Redis [36] is a 

popular in-memory data structure store, widely used as a 

database, cache and message broker. Twitter uses Redis to 

scale exploding growth of cache service because of its in-

memory nature. Table 5 shows the parameters we use for 

evaluating Redis. In test AMF’s capability of handling 

memory pressure, we push nearly 30 million requests 

which are sufficient to trigger huge memory footprint. 

6. EVALUATION RESULTS 

In this section we discuss the benefits of applying AMF 

to PM-DRAM hybrid systems.  

6.1 Performance Implications 
We first evaluate the impact of AMF on system perfor-

mance. We measure and collect different system statistics 

that are closely related to system performance.  

Average number of page faults: Figure.10 presents the 

average page fault number of AMF and Unified at different 

timestamps. The results show that AMF is indeed able to 

effectively alleviate page fault with different sizes of 

memory footprint. In fact, excessive memory allocation can 

lead to memory deficit/pressure, which often evokes the 

inherent page fault mechanism of the OS kernel. Different-

ly, our system just provides moderate amount of PM space 

to expand the memory space and satisfy more memory al-

location needs. Thus, the total number of page faults de-

clines, comparing with Unified.  

 Occupied SWAP partition size: In Figure.11 we com-

pare the occupied SWAP partition size of AMF and our 

baseline Unified over the time. The plot shows that AMF 

can decrease the consumption of SWAP partition space. 

This is because our system dynamically provides appropri-

ate amount of PM space. The newly introduced PM space 

prevents the OS kernel from frequently activating kswapd. 

AS a result the kernel does not have to swap the memory 

space to the slow HDD/SSD. In fact, SSDs can quick wear 

out if we frequently use it for swap. 

Percentage of kernel/user mode: Figure.12 further pre-

sents the percentage of CPU time spent in kernel mode and 

CPU time spent in user mode. It is evident that AMF’s 

CPU time in user mode is significantly higher than that of 

Unified, while our CPU time in kernel mode is slightly 

lower than that of our baseline. The higher CPU time in 

user mode denotes that CPU cycles spent more useful time 

to execute user-level instructions. The system does not 

have to frequently trap into the kernel mode to handle page 

fault. We can also see that both baseline and AMF have a 

particularly huge memory demand. Thus, they spend a sim-

ilar portion of their execution time in kernel mode. The 

curve moves sharply at intervals signifies a new batch of 

instances are launched in user-mode every once in a while, 

because the total number of instances is far greater than the 

number of cores in the system, all the instances cannot 

completely finish executing at once. At the end of every 

batch, part of the core resources have been gradually re-

leased, which leads to a dithering for CPU time.  

Performance of multiple benchmarks: We also con-

structed total 675 instances (a group of SPEC CPU2006 

benchmarks) to examine the improvement of our work in 

term of total page faults and total occupied size of SWAP 

partition. Figure 13 depicts the normalized total page faults. 

Our results show that the total page fault number is dropped 

by up to 67.8% with an average of 46.1%. Figure 14 further 

depicts the total occupied size of SWAP partition using 

AMF. The plot shows that the total occupied size of SWAP 

partition is dropped by up to 72.0% with an average of 

Component Specification 

Platform Dell R920 shared-memory Server 

CPU Xeon E7-4820 8-core Processor ×4, 16M LLC 

Main Memory  512GB, 1066Mhz 

OS Centos  6.6 

Kernel Version Linux Kernel 4.5.0 

File system Ext4 

Table 3. Specification of our platform 

 

# of Instance Unified (static PM) AMF[dynamic PM] 

Exp. 1 129 64G DRAM+(64G PM) 64G DRAM+[64G PM] 

Exp. 2 193 64G DRAM+(128G PM) 64G DRAM+[128G PM] 

Exp. 3 277 64G DRAM+(192G PM) 64G DRAM+[192G PM] 

Exp. 4 385 64G DRAM+(320G PM) 64G DRAM+[320G PM] 

Table 4. Evaluated baseline configurations 

 

vm.overcommit_memory = 1  port = 6379 

rdbcompression = yes  save = disable 

appendonly = no  appendfsync = no 

timeout = 300  maxclinets = 60000 

hostname = local  clients = 500 

requests = 30 million  pipeline = 512 

random keys= 400k  data size = 4kB 

Table 5. Major parameters used for Redis 



  

 

 

29.5%. Therefore, by smartly integration PM into existing 

memory systems one can greatly improve the performance. 

Primary metrics, including the number of page faults, the 

size of occupied SWAP capacity and the ratio of user mode 

running time consistently demonstrate that AMF is superior 

to our baseline. This is mainly because AMF is able to 

maximally utilize the available DRAM space. At the appli-

cation launch state, AMF has more available DRAM space 

than Unified because it avoids excessive Page Descriptors. 

Thus, AMF can run more instances from the beginning. 

Once memory deficit became visible, AMF immediately 

integrates appropriate PM space into the system, which 

seldom restricts from running more instances.  

6.2 Power Efficiency Analysis 
We then estimated the potential energy saving of AMF 

using the actual system log collected from our system and 

analytical models. Similar to prior work [4][6][7], we ig-

nore other memory states and calculate power demand 

based on Micron’s methodology [34], In idle states the sys-

tem consumes about 0.23W/GB while in the active states 

consumes about 1.34W/GB. The transition from idle to 

active states consumes about 0.76 W/GB. Our estimation 

considers the actually number of workload instances. 

Compared to the conventional design, AMF shows sig-

nificant energy savings due to the lower memory capacity 

overhead and relatively faster execution time. Our estima-

tion is conservative since we primarily rely on DRAM pa-

rameter for calculation. With actual PM devices that are 

typically more energy-efficient than DRAM, the overall 

power demand of our system can be even lower.  

6.3 Impact of PM Pass-Through 
We further evaluate the execution time of using device 

file identified PM space (e.g., the On-Demand Mapping 

Unit in AMF) Figure.16 presents the execution time of the 

STREAM operations, normalized to native running.  

Our results show that the execution time of each opera-

tion using AMF provided interface is comparable to origi-

nal array interface. The largest gap is less than 1%. This 

demonstrates that our designed mapping mechanism does 

not incur significant performance degradation, although it 

requires a real-time mapping operation.  

6.4 Case Studies 
To understand the performance of commercial software 

using AMF, we evaluate two different types of database 

software: SQLit and Redis.  

    

(a) Exp.1 (b) Exp.2 (c) Exp.3 (d) Exp.4 

Fig. 10. Average page fault number using mcf application. Horizontal axis shows time in minutes 
 

    

(a) Exp.1 (b) Exp.2 (c) Exp.3 (d) Exp.4 

Fig. 11. Utilized size of SWAP partition over the time. Horizontal axis shows time in minutes 
 

    

(a) Exp.1 (b) Exp.2 (c) Exp.3 (d) Exp.4 

Fig. 12. CPU time in system (sy) and user (us) mode. The horizontal axis shows time in minutes 
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SQLite Database Transactions: Figure 17 presents the 

transaction improvements triggered by our work, normal-

ized to native running. We prepare approximately 17 mil-

lion records for insert transaction and 3 million records for 

each update, select, delete respectively. The histogram 

shows that the throughput of in-memory database SQLite is 

improved by up to 57.7% with an average of 40.6%. In 

particularly, we define "throughput" as the number of 

transactions executed per seconds, while in SPEC-CPU-

2006 criterion it means the number of instructions executed 

per seconds. That is, our granularity of "throughput" is 

larger than traditional ones but does not affect the results. 

Redis Key-Value Store Requests: Finally, in Figure 18 

we present the results of several popular several Redis op-

erations (set, get, lpush, lpop). AMF shows that it can 

achieve average 25.1% requests improvement of set/get, 

and average 18.5% requests improvement of lpush/lpop 

compared to the conventional design. The reason for this 

lies in providing more available space by AMF’s adaptive 

PM provisioning mechanism just matches Redis’s in-

memory computing demand.  

7. DISCUSSIONS 
Tapping into Huge Pages. Linux supports huge page 

and transparent huge page [42]. Huge Pages create pre-

allocated contiguous memory space designed to assist ap-

plication performance. However, this mechanism requires 

the system software to implement its own support in user 

space to take advantage of these potential performance 

benefits. Huge page uses fewer pages to cover the physical 

address space. As a result it requires fewer TLB entries and 

incurs fewer TLB misses. In this study, huge pages allow 

AMF to easily integrate more PMs.  

Note that some NoSQL databases such as Couchbase [43] 

usually need sparse memory access patterns and rarely have 

contiguous access patterns. In addition, huge pages are not 

swappable. Thus, it easily incurs data loss for some securi-

ty-sensitive applications. Huge pages require large areas of 

contiguous physical memory, while a rabbit hole (memory 

inner hole) begins when a Redis-server process is running 

because of substantially allocations smaller than 2MB.  

Storing Page Descriptors in PM. Storing the metadata 

(i.e., page descriptors) in the PM requires complex OS revi-

sion. In addition, migrating page descriptors to PM space to 

store metadata is not practical. The initialization of page 

descriptors must be done at the OS booting procedure, 

which introduces significant overhead. Even worse, page 

descriptors itself are frequently changed data structures. 

Storing them in PM significantly increases the burden of 

the hardware and seriously decreases device lifetime.  

Consistency. Previous works such as logging [21] [22], 

shadow method [23], persistent transactions [24] [25], 

light-weight method [26] [27] have provided effective 

methods for guaranteeing the consistency. In this paper, the 

consistency follows these assumptions: 1) the system sup-

ports an atomic write of 64 bits and 2) does not use flight 

memory operations. We solve the consistency problem at 

the memory controller layer similar to ThyNVM [28].  

Wear Levering. Prior works [29] [31] proposed a few 

mechanisms to promote PM lifetime at hardware/software 

layer or from the perspective of hardware-software co-

design. As it is believed that wear levering will be resolved 

at the memory controller layer in the near future, we omit 

this issue in this study. Our work tries to decrease the bur-

den of hardware by considering wear levering. 

8. RELATED WORK 
As the release date of Intel Apache Pass DIMM [37] on 

the Sky-Lake based servers approached, researchers and 

engineers have made significant progress for introducing 

PM into current computer systems. These works mainly 

  
Fig. 13. Page faults with mixed benchmarks Fig. 14. Occupied size of SWAP partition 

 

    
Fig. 15. Energy benefits from 

adaptive memory fusion 

Fig. 16. Impact of direct PM 

pass-through on performance 

Fig. 17. Performance impact of 

AMF on SQLite database 

Fig. 18. Performance impact of 

AMF on Redis key-value store 

 

0.00

0.20

0.40

0.60

0.80

1.00

P
a
g

e
 F

a
u

lt
(N

o
rm

a
li

z
e

d
 )

Unifed AMF

0.00
0.20
0.40
0.60
0.80
1.00

O
c
c
u

p
ie

d
 S

W
A

P
 S

p
a
c
e

(N
o

rm
a
li

z
e

d
 )

Unifed AMF

0

40000

80000

120000

160000

200000

128G 192G 256G 384G

E
n

e
rg

y
  

C
o

n
s

u
m

p
ti

o
n

 (
J
)

AMF Unifed

0.98

0.99

1.00

1.01

1.02

Copy Scale Add Triad

N
o

rm
al

iz
e

d
 

Ex
e

cu
ti

o
n

 T
im

e
AMF Unified

0

0.2

0.4

0.6

0.8

1

1.2

Insert Update Select Delete

N
o

rm
al

iz
e

d
 

Th
ro

u
gh

p
u

t

AMF Unified

0

30000

60000

90000

set get lpush lpop

O
p

e
ra

ti
o

n
s

 /
 S

e
c

AMF Unified



  

 

 

excavate PM’s persistent property [16] [17] [18], byte-

addressable property [13] [14] [15], and maximally relieve 

the consistency problem [22] [25] [27] and wear leveling 

problem [30] [38] [39] [20]. In contrast to these prior works, 

this paper focuses on PM’s large-capacity property, from 

the perspective of memory architecture and system soft-

ware, to integrate PM into current computer system.  

Besides the above PM related studies, there are also a 

few works highly related to our work. 

 Memory Ballooning. Hypervisor employs memory bal-

looning technique to coordinate the available memory be-

tween the Virtual Machines (VMs) [40]. Our work differs 

from this technique in four aspects. First, ballooning is 

based on virtualization technology, while our work is based 

on a native OS. Second, ballooning aims to optimize the 

utilization of memory between VMs by the balloon driver, 

while AMF aims at managing the PM space. Third, bal-

looning adjusts memory utilization in low granularity of 

pages and often incurs page thrashing. We manage the PM 

space in high granularity of sections, which is able to alle-

viate the overall memory pressure and never shrinks 

memory-resident-set. Forth, all the memory space is detect-

able and available at initialization stage in the hypervisor. 

Differently, AMF hides PM space for efficiency.  

 Disaggregated Memory. Disaggregated memory [3] is a 

perfect solution to enable memory capacity expansion 

match the computational scaling. This work differs from 

our work in the following aspects. First, their work aims to 

resolve the memory capacity wall problem, while our work 

targets to intelligently scale large-capacity memory. Second, 

from the perspective of hardware architecture, their work 

provides extra memory capacity by provisioning an addi-

tional separate physical memory blade. In contrast, we 

build a new architecture to facilitate the compatible integra-

tion of PM on a NUMA-based machine. Third, their solu-

tion requires a virtualization layer to provide page-level 

access to a memory blade, while our solution purely relies 

on kernel revision to gain DRAM-alike access. 

 Memory Hotplug. Memory hotplug [41] technology al-

lows users to increase/decrease memory capacity. This 

technology consists of physical memory hotplug phase and 

logical memory hotplug phase. The physical memory in 

DIMM must first be initialized. Afterwards, the initialized 

memory is turned from offline to online (this logical phase 

called Memory Online). The differences between memory 

hotplug and our work can be summarized as follows. First, 

memory hotplug has wider application domain than AMF. 

It is because memory hotplug is a physical memory recon-

figuration mechanism, which can handle the hardware er-

rors, balance the workload, support memory extension, etc. 

Differently, AMF mainly provides an adaptive integrating 

mechanism for the sake of decreasing memory pressure and 

automatically managing the PM space. Second, memory 

hotplug adjusts memory utilization by adding/deleting a 

real memory device directly and the total physical memory 

spaces can change dynamically. However, AMF adds the 

detected PM space gradually and automatically makes them 

available for applications (allocation and reclamation are 

feasible). The total physical PM space is fixed in advance. 

Third, memory hotplug requires updating the SRAT table 

(a table in ACPI which includes memory info.) at its run-

ning stage. In contrast, AMF needn’t to update the table. 

Finally, memory hotplug needs to modify the whole 

memory subsystem, and our work only adds a kernel mod-

ule in local OS with minute revision. 

9. CONCLUSION 
In this paper, we propose an architecture which allows 

the OS to manage DRAM and PM space in a combined 

manner. Unlike traditional main memory subsystems, 

which initialize all the physical memory at the boot stage, 

our adaptive memory fusion (AMF) mechanism only ini-

tializes partial PM space to avoid instant expansion of ker-

nel metadata. Our agile system management strategy guar-

antees low performance overhead. We have implemented a 

kernel module on a commercial server based on Linux-

4.5.0. Extensive evaluation shows that AMF allows 

memory-intensive workloads to provide much better per-

formance than conventional design.   
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