
Adaptive Memory Fusion: Towards Transparent,
Agile Integration of Persistent Memory

Dongliang Xue1 Chao Li1 Linpeng Huang1 Chentao Wu1 Tianyou Li2

1Department of Computer Science and Engineering, Shanghai Jiao Tong University
2Intel Asia Pacific R&D Co., LTD

xuedongliang010@sjtu.edu.cn, {lichao, huang-lp, wuct} @cs.sjtu.edu.cn, tianyou.li@intel.com

ABSTRACT

The great promise of in-memory computing inspires en-

gineers to scale their main memory subsystems in a timely

and efficient manner. Offering greatly expanded capacity at

near-DRAM speed, today’s new-generation persistent

memory (PM) module is no doubt an ideal candidate for

system upgrade. However, integrating DRAM-comparable

PMs in current enterprise systems faces big barriers in

terms of huge system modifications for software compati-

bility and complex runtime support. In addition, the very

large PM capacity unavoidably results in massive metadata,

which introduces significant performance and energy over-

head. The inefficiency issue becomes even acute when the

memory system reaches its capacity limit or the application

requires large memory space allocation.

In this paper we propose adaptive memory fusion (AMF),

a novel PM integration scheme that jointly solves the above

issues. Rather than struggle to adapt to the persistence

property of PM through modifying the full software stack,

we focus on exploiting the high capacity feature of emerg-

ing PM modules. AMF is designed to be totally transparent

to user applications by carefully hiding PM devices and

managing the available PM space in a DRAM-like way. To

further improve the performance, we devise holistic optimi-

zation scheme that allows the system to efficiently utilize

system resources. Specifically, AMF is able to adaptively

release PM based on memory pressure status, smartly re-

claim PM pages, and enable fast space expansion with di-

rect PM pass-through. We implement AMF as a kernel sub-

system in Linux. Compared to traditional approaches, AMF

could decrease the page faults number of high-resident-set

benchmarks by up to 67.8% with an average of 46.1%. Us-

ing realistic in-memory database, we show that AMF out-

performs existing solutions by 57.7% on SQLite and 21.8%

on Redis. Overall, AMF represents a more lightweight de-

sign approach and it would greatly encourage rapid and

flexible adoption of PM in the near future.

1. INTRODUCTION
The industry and academia alike have realized that large

memory capacity is necessary for big data applications to

conduct in-memory computing today. For example, SAP

HANA [1], a commercial database vendor, installs very-

large amount of memory (from 128GB to 4TB) on a single

node to sustain fast query and real-time analysis in database

processing. To keep large data sets in DRAM and ensure

low latency, researchers from Stanford propose RAMCloud

[2], which forms a 1 petabyte (PB) memory subsystem by

aggregating ten thousands servers.

Unfortunately, keeping scaling up/out the DRAM can no

longer create a sustainable business advantage today. Exist-

ing DRAM pooling strategies result in several issues such

as greatly increased DIMM cost, significant board space

overhead, and escalating energy needs. Considering the

increasing gap between the processor computation capabil-

ity and the available memory capacity [3], a timely memory

capacity expansion strategy combing new hardware tech-

nology and efficient integration method is highly desired.

In this study we explore an efficient way to expand the

main memory subsystem for high-performance in-memory

data processing. Recently, the emergence of large-capacity

PM modules presents a great opportunity to achieve this

goal. A variety of new memory technologies such as Re-

RAM, STT-MRAM, and 3D XPoint could provide a per-

formance almost comparable to DRAM (see Table 1). The

byte-addressable property of PM further allows it to be

directly accessed by load/store instructions just like a tradi-

tional DRAM. More importantly, PM allows for much

larger hardware capacity than DRAM (e.g., terabytes in-

stead of gigabytes) at highly competitive cost [5].

Although PM hardware highlights non-volatility of

stored bits, we do not intend to introduce the persistence

property into existing system at this stage. This is primarily

because there are many issues that can greatly complicate

the integration of PM. For example, exposing the unique

feature of PM device to the application requires the revi-

sion of the whole software stack [9], which is a formidable

task. In fact, traditional OS mechanisms such as page fault

handling, memory swapping and address space manage-

ment should all be tailored to fit the new access interfaces

of PM. The procedures for booting and shutting down an

operating system also need to be reworked since the PM

has preserved a former execution state since last operation.

Without appropriate management, selectively rejuvenating

partial OS component (micro-boot) on PM can easily lead

to unpredictable consequences. Further, many security is-

sues need to be considered as well. Without privacy and

security aware garbage collection policies, encryption keys

and decrypted data in the durable cells of PM can be easily

leaked [10][11][12].

Gracefully integrating PM into existing computer system

is a non-trivial task, even if we only focus on the memory-

like property of PM. For enterprise-level in memory com-

puting, it is crucial to ensure compatibility and efficiency.

There have been prior work investigate the byte-

addressable attribute of persistent memory [13][14][15].

They focus on persistent objects that support inflexible

programming interfaces (e.g., Pmalloc, Pfree, NVheap,

NVHOpen, and NVobject). It is difficult for them to be

widely adopted in existing commercial software. Mean-

while, some proposals such as PMFS [16], HiNFS [17] and

Nova [18] provide virtual file system interfaces that are

widely used in block devices. Although these works em-

ploy PM’s memory-like property, they hurt system perfor-

mance due to the overhead of I/O software stack.

In the era of “big” and “fast” data, persistent memory

will play a more dominant role. However, from the per-

spective of a system designer, the new-generation PM

modules are more likely to collaborate with DRAMs rather

than replace them quickly. A key driving principle behind

our design is to make the best use of the capacity benefits

of PM while minimizing unnecessary changes to applica-

tions and the corresponding running environment. To this

end, we propose adaptive memory fusion (AMF), an adap-

tive memory fusion strategy that smartly integrates high-

performance PM into existing main memory subsystem.

AMF is a lightweight, application-transparent PM inte-

gration scheme. The transparent management of PM de-

notes that the user does not have to manually activate ex-

plicit interface, such as using Pmalloc to allocate space and

Pfree to reclaim space. AMF is able to automatically con-

figure all the PM-equipped NUMA nodes to make sure that

the PM is correctly initialized. Afterwards, the PM devices

are managed in a DRAM-like way in the kernel mode.

AMF just employs several mature management mecha-

nisms (e.g., buddy system for contiguous multi-page alloca-

tions) that are widely used in today’s operating system.

We develop optimization techniques to make AMF an

agile scheme that can efficiently handling large-capacity

PM management. For example, our PM space allocation

technique avoids metadata explosion by only allocating the

necessary PM resources. Meanwhile, our system can dy-

namically append appropriate amount of PM space into a

running system based on the memory pressure. This can

greatly reduce the performance degradation due to expen-

sive virtual memory swapping. Further, we also offer a

compatible programming interface which can conveniently

assist programmers to directly use the large capacity of

physical PM at the user level.

We believe AMF is an important step in the evolution of

systems towards ones with large persistent memories. In

this paper we show limitations in the design of current sys-

tems that ultimately must be overcome. We also explore a

reasonable set of compromises for the design of systems in

the near future to take advantage of large-capacity PMs.

Our design is orthogonal to techniques that aim to improve

the performance and efficiency of DRAM and PM device.

In summary, we make the following key contributions:

 We introduce a fusion architecture which greatly

facilitates memory capacity expansion with emerging

PM modules. Existing OS can smoothly work with it

with minor modifications.

 We devise a memory space fusion mechanism to

adaptively provision PM resources. It is a transparent

procedure in that memory-intensive applications can

automatically benefit from it.

 We propose a holistic optimization strategy to bet-

ter manage large-capacity PM. Our agile scheme can

minimize metadata overhead, reduce costly I/O opera-

tions, and provide fast access to PM devices.

 We present our design as a unified solution called

adaptive memory fusion (AMF). We implement AMF

as a kernel module in Linux kernel 4.5.0.

 We extensively evaluate our design from different

perspectives. Using high-resident-set benchmarks and

realistic in-memory database application, we show that

AMF has great performance and efficiency potential.

The rest of the paper is organized as follows. Section 2

introduces the background. Section 3 analyzes different

architecture options and depicts our design. Section 4 pro-

poses our adaptive memory fusion mechanism. Section 5

details experiment setup. Section 6 presents evaluation re-

sults. Section 7 gives a short discussion and Section 8 co-

vers related work. Finally, Section 9 concludes this paper.

2. BACKGROUND AND MOTIVATIONS
Persistent memory (PM) can be an attractive candidate

for database applications and analytic workloads that re-

quire intensive memory operation. In this section we briefly

introduce the opportunities and challenges related to PM.

2.1 Benefits of Tapping into PM
PM devices typically reside on the high-speed DRAM

bus. They can provide very fast DRAM-like access to criti-

cal data. Today, new PM device technologies such as

phase-change memory (PCM), Resistive RAM (ReRAM),

and spin-transfer torque RAM (STT-RAM) provide persis-

tent data storage with access latencies close to DRAM.

According to recent studies [44][45][46], some of the high-

performance PM mediums such as STT-RAM cloud yield

DRAM-comparable performance in terms of read/write

latency (Table 1). As technology advances, these PM me-

diums are expected to provide even higher density, lower

power, and shorter latency [47].

Importantly, emerging PM technologies from different

vendors allow us to run at memory speed with much larger

capacity. In terms of capacity, PM will be roughly an order

magnitude larger than DRAM. At the extreme, we can in-

stall terabytes rather than gigabytes of memory. For

memory-intensive applications, one may be willing to sac-

rifice a little memory bandwidth performance for much

larger capacity. Considering the lower price and reduced

power demand of PM, emerging large-capacity PM module

is indeed a top candidate for in-memory computing.

2.2 Issues with PM Integration
Integrating PM into current systems faces many chal-

lenges. We group the main issues into two categories: sys-

tem modification and system optimization.

2.2.1 System Modification Challenge

The persistence of PM means that the memory cell re-

tains data during power loss. One needs to devise appropri-

ate abstractions and interfaces for managing the non-

volatility property. In other words, introducing PM’s per-

sistence [8] could substantially influence operating system

design and program development. Many major system

components can be affected [9], such as virtual memory

system, file system, program execution models, application

installation, reliability and security module, etc. For in-

stance, current OS mainly uses a “buddy system” to allo-

cate and reclaim physical memory for every process. PM

integration requires the kernel to create a similar system to

managing PM space. In addition, the kernel needs to pro-

vide extra programming interfaces for upper applications to

make use of PM. Besides, the persistent attribute of PM

leads to newly allocated/reclaimed space that already in-

cludes unreleased persistent data – appropriate mechanisms

are required to handle potential security issues.

System modification can be a big barrier to quick, wide-

spread adoption of PM today and tomorrow. Huge modifi-

cations made to the corresponding running environment are

not acceptable to enterprises. Making drastic changes to

commercial databases is not practical as well.

2.2.2 System Optimization Challenge

Large capacity PM consumes huge metadata space. The

kernel requires many bytes to describe dynamic properties

for each page. The state information about a physical page

is resident in a page descriptor (PD). For instance, the ker-

nel uses it to identify the physical page that belongs to ker-

nel code or kernel data. It also indicates that physical page

is free or not free. PD can be quite large, requiring 56 bytes

space to store in Linux-4.5.0 on the x86-64 architecture. In

particular, at the terabyte level, a 1TB PM with 4KB page

size requires 14GB space to store all page descriptors (1TB

/ 4KB × 56 B). Some researchers [19] advise that using a

64-bit miniature page descriptor to avoid the cost of a full

page descriptor. However, it leads to huge kernel revision

and reduces the compatibility of software. Thus, smarting

managing PM space to reduce kernel metadata size is of

paramount importance.

There are several other challenges related to large PM

management. For example, memory energy consumption

can be affected by its capacity in use. In Figure 1 we show

the percentage of memory energy consumption on a Dell

R920 server by running SPEC CPU2006 benchmarks. We

measure six multi-programmed workloads of different

memory footprints. As we can see, under high memory

footprint, the energy consumption rate can be increased by

over 50%. On the other hand, the demand of memory is

continually changing even for the same application. In Fig-

ure 2 we evaluate the memory footprint for Redis bench-

mark under different input data sizes. Our results show that

the requests of different data size can yield significant

memory demand variation. By opportunistically tracking

the demand, one can further reduce energy overhead.

2.3 The Main Goal of This Paper
The intention of this project is to greatly facilitate the in-

tegration of PM in existing main memory subsystem. Faced

with the system modification and optimization challenges,

we aim to create a non-intrusive, light-weight design that

allows a shared-memory machine to efficiently expand its

memory capacity. We devise a novel memory fusion archi-

tecture and system mechanism to bypass the huge modifi-

cations faced by the OS; we also propose a holistic optimi-

zation strategy to reduce performance/energy overhead

from different perspectives (detailed in Sections 3 and 4).

Note that there is no one-for-all ideal design. Heavily in-

strumented PM systems with additional software support

maybe a good direction if one has a firm goal of replacing

DRAM with PM and a strong need to unleash the full po-

tential of memory persistency in the future. However, if

one wants to expand memory capacity with minimum cost

and seeks to boost in-memory computing right now, AMF

with its lightweight, highly compatible and efficient de-

sign would be an attractive alternative.

3. ARCHITECTURE ANALYSIS AND DESIGN
In this section we first compare different architecture de-

sign options for PM integration. We then discuss the key

feature of our fusion architecture.

3.1 Architecture Analysis
There are several design options available for integrating

PM into the main memory subsystem of NUMA machines.

In Figure 3 we illustrate their logical architectures.

Option A1 shows a traditional design in which PM is not

used. In this case the native OS works smoothly and no

specific modifications are required for existing applications

to run on the system. When PM hardware is directly used

as a storage device (Option A2), it maintains disk semantics.

In this case, the OS just treats the non-volatile device as

conventional block storage, and creates a filesystem on it.

Category Read latency Write latency Endurance

DRAM 40-60ns 40-60ns 1016

STT-RAM 10-50ns 10-50ns 1015

ReRAM 50ns 80-100ns 1012

Table 1. A comparison of memory technologies

Fig. 1. Impact of capacity on

power consumption

Fig. 2. Memory capacity de-

mand variation

Due to the block access patterns and the overhead of I/O

software stack, the benefits of PM cannot be shown. In this

work we focus on constructing the memory subsystem us-

ing PM which sits in the system’s DIMM slots.

A group of architecture designs require significant

modifications to the OS. For example, one can use PM

exclusively or use DRAM as a "cache". In Figure 3, A3

replaces the DRAM with PM (A3). The SSD/HDD may

also be removed since the data in the PM is persistent.

However, significant modifications are required to ensure

that the booting and shutting down of the OS works

smoothly and correctly. Like A4 shows, one can also insert

a DRAM layer as the buffer for PM [31]. For example,

Hewlett Packard Enterprise’s PM system includes a DRAM

layer to accelerate applications, a dedicated flash tier for

persistency. Appropriate software modules are required to

ensure that the DRAM is transparent to main memory

subsystem. The option A5 offers a uniform addressing

space [32]. It relies on the memory controller to coordinate

the allocation and reclamation of DRAM and PM resources.

All the above designs overlook the impact of PM’s

persistence on OS, which is a troublesome issue in practice.

3.2 Fusion Architecture
We present a fusion architecture that synergistically

integrates DRAM and PM, as shown in Figure 3 (A6). It

uses both PM and DRAM to get a very large pool of

addressable memory without the significant overhead.

The physical architecture of A6 is close to A5. It

considers a hybrid system (DRAM+PM) based on a

NUMA machine offering uniform addressing space. It uses

a traditional two-layer framework (DRAM+Storage) on the

first NUMA node. Both DRAM and PM are configured

with a DIMM (Dual Inline Memory Modules) interface.

Differently, A6 highlights unique PM organization and

management. First, it exposes itself to the above OS as a

DRAM by hiding the PM space appropriately. It configures

other NUMA nodes with PM and keeps these PM

detectable (but not accessible). As a result, the OS is able to

directly boot from the DRAM node just like a native OS

running on architecture A1. Consequently, there is no need

to heavily handle the booting and shutting issues originated

from PM’s persistence property. Second, A6 intends to hide

PM space from the system. It only integrates partial PM

space into the system to avoid instantaneous extension of

the metadata. The system always stores frequently modified

metadata such as page descriptors and page tables on

DRAM node. By doing so the system can efficiently

decrease the burden of the memory controller and reduce

the writing frequency to wear-sensitive PM device.

4. ADAPTIVE MEMORY FUSION
This section presents the design and implementation of

AMF, our adaptive memory fusion design. We first give an

overview of the system architecture. We then discuss our

memory space fusion design that allows existing applica-

tion to transparently use the DRAM-PM fusion architecture.

More importantly, we propose a holistic performance opti-

mization scheme to further improve system efficiency.

4.1 Overview
Figure 4 depicts the basic architecture of AMF which

spans across three layers: application, operating system,

and hardware. We implement AMF as a prototype in

Linux-4.5.0. While the major components of AMF lie in

the OS level, our work does not require significant modifi-

cation to the system software. In fact, our method hides the

complexity of PM integration from the user and OS. It pro-

vides an efficient way to gracefully utilize PM resources.

In Figure 4, we consider a shared-memory system that

supports non-uniform memory access (NUMA). DRAM

Node 1 and PM Nodes 2~4 are memory components in a

uniform physical address. The system can smoothly man-

age the PM and DRAM space together. The kernel boots

from DRAM Node1 after loading the OS image from a

secondary storage. AMF forces all the PM nodes to be hid-

den from the OS at the beginning. It dynamically allocates

and manages PM resources afterwards. Specifically, AMF

is composed of three main modules: a kpmemd service, a

Hide/Reload Unit, and an On-Demand Mapping Unit.

Kpmemd is our newly inserted kernel service. When the

memory footprint reaches its limit, kpmemd can automati-

cally provide moderate amount of PM space (e.g., entire

PM Node2 space or partial PM Node3 space) to alleviate

the memory pressure. Kpmemd controls a group of manag-

ers associated with the physical memory. For example, a

unique Manager 0 is created for the DRAM module. It col-

laborates with our kpmemd service to monitor the memory

pressure to determine the activity of the other managers for

PM (Managers 1~N). Figure 4 shows two PM managers.

Manager 1 can be completely inactive if the whole PM

Node2 is hidden; Manager 2 is activated even if only part

of the PM is allocated.

The Hide/Reload Unit (HRU) is responsible for hiding

and reloading PM resources. On each NUMA node, the

Fig. 3. Schematic diagram of different designs

SSD/HDD SSD/HDD

SSD/HDD SSD/HDD SSD/HDD

PM PM

A1: Original A2: PM as Storage A3: PM Alone

A4: PM with Buffer A5: Unified Space A6: Memory Fusion

DRAM DRAM DRAM
PM

PD

DRAM DRAM

CPU CPU CPU CPU

PM PM

DRAM DRAM PM PM

DRAM PM

CPU CPU

CPU CPU CPU CPU CPU CPU

memory space consists of ZONE_NORMAL 1 and

ZONE_DMA. Additional space can be added on

“ZONE_NORMAL” depending on how much PM is hid-

den. The allocation and reclamation of the integrated PM

are both managed by the kernel just like DRAM (i.e., PM

Manager is similar to Manager 0). Further, all these inte-

gration procedure is transparent to the user.

The AMF architecture also presents a PM access tech-

nique in the user mode. This feature is completely compati-

ble with the current programming interface. In Figure 4, the

Dynamic On-Demand Mapping Unit works in the kernel

mode. It partitions PM into different regions to map differ-

ent device files. Application can directly access the physi-

cal PM space in unprivileged mode by using a traditional

“mmap" interface. In this work we re-define “mmap” to

enable direct PM space control (detailed in Section 4.3.3)

In the following, we first introduce our memory space

fusion mechanism which lays the foundation for PM man-

agement. We then discuss detailed optimization schemes

that further improve AMF performance.

4.2 Memory Space Fusion Mechanism
The memory space fusion mechanism hides the com-

plexity of PM integration. Its goal is to reserve PM re-

source for reducing metadata. It features a conservative

initialization and dynamic provisioning scheme.

4.2.1 Conservative Initialization

The basic idea of conservative initialization is to avoid

initializing all the hardware resource at the boot stage. Our

system can control the degree of initialization. Figure 5

1 ZONE_NORMAL and ZONE_DMA are all Linux concepts for

memory management

shows the basic procedure in our system to perform con-

servative initialization. It mainly consists of four phases:

profiling, redefining, preparing, and launching.

In the profiling phase, the system needs to detect and

probe the physical memory regions and convert the detect-

able information into a useable form. We can obtain basic

memory information through BIOS in the real mode (16-bit

mode) in the early stage of booting. These important data

will be passed to a predefined area that can be detected by

the system after booting.

In the redefining phase our system changes the upper

limit of memory to hide the PM space. To initialize partial

PM space, we need to modify the last frame number as a

predefined value. The last/highest frame number of the

whole memory should be replaced by the DRAM’s last

frame number on DRAM Node1.

Phases 3 and 4 are necessary to execute corresponding

modifications based on the value of the last frame number.

We need to initialize the sparse memory model. In this

model, the memory space is divided into multiple sections,

and the page descriptors are just initialized at the head of

each section.

Finally, our system starts the buddy system. The above

phases set up the basic mechanism for managing the physi-

cal memory. Our design ensures that the system only ini-

tializes part of the PM space. It leaves the remaining PM

space detectable but inaccessible.

4.2.2 Dynamic PM Provisioning

During runtime, AMF keeps a watchful eye on system

memory footprint. If the DRAM has inadequate space to

satisfy an application’s memory request, AMF will trigger

PM space integration. Figure 6 shows the basic procedures

that support dynamic PM provisioning.

In Figure 6, the first phase aims to obtain the distribution

information of physical regions and its capacity range in

64-bit mode at runtime. Afterwards, the other three phases

are responsible for reloading the hidden PM space and

make it accessible to the operating system.

Information Detection:

It is the first and most important step (called probing

phase) for dynamic PM provisioning. Obtaining the distri-

bution information can be tricky. The conventional method

for obtaining the information is to rebuild a detecting pro-

cedure by triggering a BIOS interruption. However, it is

effective only in a real mode (a.k.a. real address mode), not

in a 64-bit mode as OS finishes booting.

In this work we choose to transfer the detected infor-

mation from a real address mode to a 64-bit mode. AMF

employs this method to copy the detected information from

the boot-parameter-page to the predefined probe area; the

information contained in the boot-parameter-page is origi-

nated from BIOS interruption in the real address mode.

AMF takes advantage of a sequential transferring approach,

which guarantees that the detected information is delivered

from the real address mode to the protect mode and then to

64-bit mode. Finally, AMF can get the transferred data

from the predefined probe area.

Hardware

Application

�
�

�
�Virtual Memory

Management

�SQLite APPn

Physical

 Page

Physical

 Page

�

Buddy System

Operating System

ZONE_DMA ZONE_NORMAL

�

�

Physical

 Page

ZONE_NORMALx

Redis SPEC

Kpmemd: A new kernel service for AMF

DRAM Node1 PM Node2

�
�

�
�

Physical

 Page

Physical

 Page

�

ZONE_DMA ZONE_NORMAL

�

Physical

 Page

Physical

 Page

Physical

 Page

�

ZONE_DMA ZONE_NORMAL

�

Physical

 Page
� �

Buddy System Buddy System

Manager 0 Manager 1 (inactive) Manager 2 (active)

Hide/Reload Unit

O
n

-D
e
m

a
n

d

M
a

p
p

in
g

 U
n

it

1GB

8GB

��

��

PM Node3

open: /dev/pmem_1GB_addr1

open: /dev/pmem_8GB_addrx

PM Node4

Physical Memory

Management

Partially Hide PM Node2Hide PM Node2

Fig. 4. Adaptive memory fusion (AMF) overview. It assumes a

shared-memory NUMA system. Kpmemd, Hide/Reload Unit, and

On-Demand Mapping Unit are the key components of our design

Reloading PM Space:

After information detection, the remainder/hidden PM

space is already detectable in the 64-bit mode on a running

system. The next task is to dynamically release the hidden

PM space. To achieve this end, we need to force the partial

PM space to operate in a DRAM-alike way. From the per-

spective of system implementation, it is necessary to build

a series of functions and interfaces.

AMF extends the total physical page frame number in

the extending phase. To extend the original last page frame

number, we need to calculate an offset value. Here the off-

set denotes the total page frames of the newly added PM

space (detailed in Section 4.3).

In the registering phase, the system registers the newly

added PM space to a unified resource tree. The resource

tree is a special data structure for managing resources in

Linux. It facilitates manage of device resources.

In the merging phase, AMF merges the newly added PM

space into existing system. A new ZONE_NORMAL on

the corresponding node is formed based on the memory

distribution information coming from the probe area. When

building the sparse memory model, the newly added PM

has to be spitted into multiple sections.

Finally, the newly added PM space becomes manageable.

It is under the control of a unified buddy system.

4.3 Agile Memory Space Management
Note that it is not enough to just routinely hide and re-

load the PM. If the PM resource allocation is aggressive,

more active pages and kernel metadata can be generated. If

the allocation strategy is too conservative (i.e., freeing up

inadequate amount of memory), it can trigger costly SWAP

operations. Therefore, an agile memory space management

is needed to achieve a better design tradeoff.

4.3.1 Relaxed PM Allocation

AMF leverages memory watermarks to enable memory

pressure-aware allocation. Memory watermarks represent

current memory pressure on a running system. In Figure 7,

Page_min, Page_low, Page_high are memory watermarks.

Their values are fixed once the kernel obtains the amount

of present pages. Page_min identifies the minimum

memory space that must remain free for critical allocations.

Page_low is a warning line: once the remaining free pages

drop below it, a kernel thread called kswapd will be acti-

vated to trigger memory SWAP operation. Page_high is a

threshold: the kswapd will sleep if the observed number of

free pages is larger than it.

To reduce or prevent the costly SWAP operations, it is

necessary to provide relatively larger amount of PM space

(relaxed allocation). During the runtime, our kernel ser-

vices dynamically monitors the memory watermarks to

obtain a reasonable estimation of the amount of PM that we

need to integrate. We then extend the ZONE_NORMAL

and increase the number of present pages.

AMF’s relaxed PM allocation is supported by our kernel

service kpmemd. Importantly, kpmemd can collaborate

very well with existing kernel services, as shown in Figure

8. To detect the memory pressure, kpmemd inserts itself

before kswapd. If kpmemd effectively alleviates the prob-

lem, kswapd maintains the sleep state. Otherwise, kswapd

and kpmemd jointly handle the memory pressure issue.

Conventionally, these watermarks are at the granularity

of MBs. For example, the watermarks value on our plat-

form is: Page_min–16MB (4097 pages), Page_low–20MB

(5121 pages), Page_high–24MB (6145 pages). To effec-

tively handle the applications whose memory footprint are

large (e.g., at GB levels), we devise a pressure-aware ca-

P1:Profiling Phase

16-bit Mode

32-bit Mode

Alter Page

Frame Number

Hiding PM

Buddy System

P2: Redefining Phase

Zone Manager

P3: Preparing Phase P4: Launching Phase

Sparse Memory

Model

BIOS Interupt

Predefined Area

P1:Probing Phase

Predefined area

Detection Unit Altering

Old PFN

Identifying

Original PFN

Sparse Memory

Model

P2: Extending Phase

Determining

Resource Type

P3: Registering Phase P4: Merging Phase

Register to

Resource Tree

Extended

Normal Zone

16-bit

Mode

32-bit

Mode

Fig. 5. Conservative initialization procedure Fig. 6. Dynamic PM provisioning procedure

Fig. 7. Memory watermarks Fig. 8. AMF kernel thread

Page_high

Page_low

Page_min

kswapd

wake up
kswapd

sleep

GFP_ATOMIC allocation still

can obtain page

pacity expansion policy as shown in Table 2. By increasing

PM to reach a high level of memory watermarks, AMF is

able to prevent or postpone the costly swapping.

4.3.2 Lazy PM Reclamation

The space of PM’s page descriptors occupied must to be

reclaimed; otherwise it will nibble away the precious

DRAM space. Releasing the space of PM’s page de-

scriptors occupied denotes that it is necessary to firstly re-

move the reclaimed PM pages from the buddy system. This

process must be very careful since immediate reclamation

can result in page thrashing.

Our idea is to dynamically assess the benefits of PM rec-

lamation. If the expected DRAM space saving is higher

than a predefined threshold value (e.g., 3% of the installed

DRAM space in our system), our kernel service will re-

move the selected PM space from the system. AMF mainly

removes the reclaimed space from the free list of the buddy

system and to shrink the size of the ZONE_NORMALx.

Finally, we reset the space that PM’s page descriptors oc-

cupied. Particularly, the whole removal is also automatical-

ly handled as a partial function of the kpmemd. Our kernel

service periodically scans the amount of the reclaimed PM

space to remove multiple sections from the system.

4.3.3 Direct PM Pass-Through

Existing kernel provides an efficient file access mecha-

nism through the mmap system call. The main feature of

the mmap is that the file content can be directly mapped to

a continuous virtual address space (referred to as MMAP

Region), and the physical space can map this MMAP Re-

gion under automatic control of the Kernel. Hence, read

and write operations can be converted into memory access-

ing of this MMAP Region in the user mode.

The mmap approach implies that partial physical PM

space can be conveniently accessed in the user mode. We

can allocate different amount of PM space by constructing

different device file (e.g., /dev/pmem_1GB_addr1). We call

this PM usage approach as direct PM pass-through. The

benefit of this approach is two-fold. First, the device file

can be easily registered to Devices-Drivers-Model which

employs existing functions and interfaces. Second, different

sizes of PM space are explicitly organized in user-mode so

that programmer can conveniently access them by the file

system interface (e.g., open/close).

In the environment of Linux-64, the virtual MMAP Re-

gion has reached TB level. It is sufficient for managing the

huge physical PM space. In this paper we directly allocate

virtual memory area which belongs to MMAP Region in

the Kernel. Our system dynamically builds page table for

mapping between device file and the virtual memory region

(Figure 4). Our customized mmap only borrows open and

close interfaces from the Virtual File System (VFS). It can

effectively avoid the overhead of IO software stack and

maximizes the byte-addressable property of PM. In Figure

9 we provide an instance of using our mmap.

5. EXPERIMENTALSETUP
We run AMF on a quadruple-socket Intel Xeon-based

system and a fresh Linux kernel. This platform has a large

memory capacity organized in NUMA architecture and is

easy to emulate large capacity of the persistent memory.

Table 3 describes the specification of the platform.

Since PM technology is still in an active developing

phase now, in this study we emulate PM with DRAM. This

approach has been adopted by many prior studies on PM

based system designs [42][45]. The performance of PM is

comparable to DRAM. In this paper we mainly focus on

exploiting the capacity benefits of integration PM in exist-

ing main memory subsystems. Therefore, the evaluation

results presented below does not take into account the dif-

ference of accessing latencies between PM and DRAM.

The total amount of memory is 512GB on our platform.

On Node1, the first 64GB is regarded as DRAM and the

second 64GB is regard as PM. The remainder 384GB on

Node2, Node3 and Nnode4 are all treated as PM. DRAM

area is managed by original kernel and is available to appli-

cations at any time. PM regions are managed by the origi-

nal kernel together with AMF to monitor the memory pres-

sure. The PM region on Node4 is managed by the original

kernel and AMF as well, and notably, applications can also

utilize this region to map/munmap AMF’s device file.

To demonstrate that AMF can effectively eliminate or

decrease the memory deficits, we select nine benchmarks

from the SPEC CPU2006 suite (http://www.spec.org). The

memory footprint of the benchmarks is large enough to

evoke memory deficiency. We use htop [33] which is an

Remainder free pages Amount of integrating

>page_high× 1024 DRAM’s capacity× 0

(page_low× 1024, page_high× 1024] DRAM’s capacity× 1

(page_min× 1024, page_low× 1024] DRAM’s capacity× 2

(page_high, page_min× 1024] DRAM’s capacity× 3

[page_low, page_high] DRAM’s capacity× 5

Table 2. Policy of integrating amount

Descriptions: Example of application directly using phys-

ical PM space. Our “mmap" (row 3) completely compat-

ible with traditional “mmap" (row 4).

Input: an opened device file represents a huge PM space and a

huge ISO image file on disk.

Output: huge image file is moved to PM space.

1. fd1 = open(“/dev/pmem1_8GB_0x30000000000",

O_RDWR);

2. fd2 = open (“/media/CentOS7.iso", O_RDWR);

3. pdata1 = (char*)mmap(NULL, 0x200000000, ROT_READ |

PROT_WRITE, MAP_SHARED, fd1, 0x30000000000);

4. pdata2 = (char*)mmap(NULL, 0x200000000, ROT_READ |

PROT_WRITE, MAP_SHARED, fd2, 0);

5. memcpy(pdata1, pdata2, 0x200000000);

6. close(fd1);

7. munmap(pdata1, 0x200000000);

8. close(fd2);

9. munmap(pdata2, 0x200000000);

Fig. 9. PM pass-through usage example

interactive process viewer for Unix to monitor the memory

footprint of these benchmarks. Since the DRAM capacity

of the platform is large (reaches 64GB), our experiment

requires executing multiple instances of the benchmarks to

cause large quantities of memory access to activate the

function of AMF. We repeat experiments five times and

average the results to reduce the randomness of measure-

ment. We run STREAM benchmark [35] on our system to

ensure that the bandwidth difference between our emulat-

ing platform and PM is within 5%.

We mainly compare our design with conventional design

that tries to build a unified space of DRAM and PM (i.e.,

architecture design A5). Table 4 shows the configuration of

our experiment. We implement a benchmark to evaluate

our direct PM pass-through technique. It allocates/reclaims

the PM space using AMF’s self-defined but compatible

"mmap/munmap" interface to replace traditional array

space based on STREAM.

We also evaluate two representative in-memory compu-

ting applications. SQLite has been widely used in datacen-

ters as the underlying storage engine for application-

specific database servers. We measure the throughput of

SQLite on servers which configured with large capacity

PM space. Then, we implemented a benchmark which cre-

ates a database purely in memory and performs random

insert, update, select and delete transactions. Redis [36] is a

popular in-memory data structure store, widely used as a

database, cache and message broker. Twitter uses Redis to

scale exploding growth of cache service because of its in-

memory nature. Table 5 shows the parameters we use for

evaluating Redis. In test AMF’s capability of handling

memory pressure, we push nearly 30 million requests

which are sufficient to trigger huge memory footprint.

6. EVALUATION RESULTS

In this section we discuss the benefits of applying AMF

to PM-DRAM hybrid systems.

6.1 Performance Implications
We first evaluate the impact of AMF on system perfor-

mance. We measure and collect different system statistics

that are closely related to system performance.

Average number of page faults: Figure.10 presents the

average page fault number of AMF and Unified at different

timestamps. The results show that AMF is indeed able to

effectively alleviate page fault with different sizes of

memory footprint. In fact, excessive memory allocation can

lead to memory deficit/pressure, which often evokes the

inherent page fault mechanism of the OS kernel. Different-

ly, our system just provides moderate amount of PM space

to expand the memory space and satisfy more memory al-

location needs. Thus, the total number of page faults de-

clines, comparing with Unified.

 Occupied SWAP partition size: In Figure.11 we com-

pare the occupied SWAP partition size of AMF and our

baseline Unified over the time. The plot shows that AMF

can decrease the consumption of SWAP partition space.

This is because our system dynamically provides appropri-

ate amount of PM space. The newly introduced PM space

prevents the OS kernel from frequently activating kswapd.

AS a result the kernel does not have to swap the memory

space to the slow HDD/SSD. In fact, SSDs can quick wear

out if we frequently use it for swap.

Percentage of kernel/user mode: Figure.12 further pre-

sents the percentage of CPU time spent in kernel mode and

CPU time spent in user mode. It is evident that AMF’s

CPU time in user mode is significantly higher than that of

Unified, while our CPU time in kernel mode is slightly

lower than that of our baseline. The higher CPU time in

user mode denotes that CPU cycles spent more useful time

to execute user-level instructions. The system does not

have to frequently trap into the kernel mode to handle page

fault. We can also see that both baseline and AMF have a

particularly huge memory demand. Thus, they spend a sim-

ilar portion of their execution time in kernel mode. The

curve moves sharply at intervals signifies a new batch of

instances are launched in user-mode every once in a while,

because the total number of instances is far greater than the

number of cores in the system, all the instances cannot

completely finish executing at once. At the end of every

batch, part of the core resources have been gradually re-

leased, which leads to a dithering for CPU time.

Performance of multiple benchmarks: We also con-

structed total 675 instances (a group of SPEC CPU2006

benchmarks) to examine the improvement of our work in

term of total page faults and total occupied size of SWAP

partition. Figure 13 depicts the normalized total page faults.

Our results show that the total page fault number is dropped

by up to 67.8% with an average of 46.1%. Figure 14 further

depicts the total occupied size of SWAP partition using

AMF. The plot shows that the total occupied size of SWAP

partition is dropped by up to 72.0% with an average of

Component Specification

Platform Dell R920 shared-memory Server

CPU Xeon E7-4820 8-core Processor ×4, 16M LLC

Main Memory 512GB, 1066Mhz

OS Centos 6.6

Kernel Version Linux Kernel 4.5.0

File system Ext4

Table 3. Specification of our platform

of Instance Unified (static PM) AMF[dynamic PM]

Exp. 1 129 64G DRAM+(64G PM) 64G DRAM+[64G PM]

Exp. 2 193 64G DRAM+(128G PM) 64G DRAM+[128G PM]

Exp. 3 277 64G DRAM+(192G PM) 64G DRAM+[192G PM]

Exp. 4 385 64G DRAM+(320G PM) 64G DRAM+[320G PM]

Table 4. Evaluated baseline configurations

vm.overcommit_memory = 1 port = 6379

rdbcompression = yes save = disable

appendonly = no appendfsync = no

timeout = 300 maxclinets = 60000

hostname = local clients = 500

requests = 30 million pipeline = 512

random keys= 400k data size = 4kB

Table 5. Major parameters used for Redis

29.5%. Therefore, by smartly integration PM into existing

memory systems one can greatly improve the performance.

Primary metrics, including the number of page faults, the

size of occupied SWAP capacity and the ratio of user mode

running time consistently demonstrate that AMF is superior

to our baseline. This is mainly because AMF is able to

maximally utilize the available DRAM space. At the appli-

cation launch state, AMF has more available DRAM space

than Unified because it avoids excessive Page Descriptors.

Thus, AMF can run more instances from the beginning.

Once memory deficit became visible, AMF immediately

integrates appropriate PM space into the system, which

seldom restricts from running more instances.

6.2 Power Efficiency Analysis
We then estimated the potential energy saving of AMF

using the actual system log collected from our system and

analytical models. Similar to prior work [4][6][7], we ig-

nore other memory states and calculate power demand

based on Micron’s methodology [34], In idle states the sys-

tem consumes about 0.23W/GB while in the active states

consumes about 1.34W/GB. The transition from idle to

active states consumes about 0.76 W/GB. Our estimation

considers the actually number of workload instances.

Compared to the conventional design, AMF shows sig-

nificant energy savings due to the lower memory capacity

overhead and relatively faster execution time. Our estima-

tion is conservative since we primarily rely on DRAM pa-

rameter for calculation. With actual PM devices that are

typically more energy-efficient than DRAM, the overall

power demand of our system can be even lower.

6.3 Impact of PM Pass-Through
We further evaluate the execution time of using device

file identified PM space (e.g., the On-Demand Mapping

Unit in AMF) Figure.16 presents the execution time of the

STREAM operations, normalized to native running.

Our results show that the execution time of each opera-

tion using AMF provided interface is comparable to origi-

nal array interface. The largest gap is less than 1%. This

demonstrates that our designed mapping mechanism does

not incur significant performance degradation, although it

requires a real-time mapping operation.

6.4 Case Studies
To understand the performance of commercial software

using AMF, we evaluate two different types of database

software: SQLit and Redis.

(a) Exp.1 (b) Exp.2 (c) Exp.3 (d) Exp.4

Fig. 10. Average page fault number using mcf application. Horizontal axis shows time in minutes

(a) Exp.1 (b) Exp.2 (c) Exp.3 (d) Exp.4

Fig. 11. Utilized size of SWAP partition over the time. Horizontal axis shows time in minutes

(a) Exp.1 (b) Exp.2 (c) Exp.3 (d) Exp.4

Fig. 12. CPU time in system (sy) and user (us) mode. The horizontal axis shows time in minutes

0

50

100

150

200

0 100 200 300 400

#
 o

f
P

a
g

e
 F

a
u

lt
Unified AMF

0

50

100

150

200

0 100 200 300 400

#
 o

f
P

a
g

e
 F

a
u

lt

Unified AMF

0

50

100

150

200

0 100 200 300 400

#
 o

f
P

a
g

e
 F

a
u

lt

Unified AMF

0

50

100

150

200

0 100 200 300 400

#
 o

f
P

a
g

e
 F

a
u

lt

Unified AMF

0

100

200

300

400

500

600

0

2
5

5
0

7
5

1
0
0

1
2
0

1
5
0

2
0
0

2
2
5

2
5
0

2
8
5

3
1
0

U
ti

li
z
e
d

 S
iz

e
 o

f
S

W
A

P

P
a
rt

it
io

n
 (

M
B

)

Unified AMF

0

100

200

300

400

500

600
0

2
8

5
5

1
0
0

1
2
5

1
6
0

2
0
0

2
2
5

2
5
0

3
0
0

U
ti

li
z
e
d

 S
iz

e
 o

f
S

W
A

P

P
a
rt

it
io

n
 (

M
B

)
Unified AMF

0

100

200

300

400

500

600

0

5
0

1
0
0

1
5
0

2
0
0

2
2
0

2
8
0

3
1
5

3
5
0

U
ti

li
z
e

d
 S

iz
e

 o
f

S
W

A
P

p

a
rt

it
io

n
 (

M
B

)

Unified AMF

0

100

200

300

400

500

600

0

2
5

6
0

9
0

1
3
0

1
8
5

2
4
0

2
8
7

3
5
0

U
ti

li
z
e

d
 S

iz
e

 o
f

S
W

A
P

p

a
rt

it
io

n
 (

M
B

)

Unified AMF

-5%

15%

35%

55%

0 100 200 300

P
e
rc

e
n

ta
g

e

Unified-us AMF-us
Unified-sy AMF-sy

-5%

15%

35%

55%

0 100 200 300

P
e
rc

e
n

ta
g

e

Unified-us AMF-us
Unified-sy AMF-sy

-5%

15%

35%

55%

0 100 200 300

P
e
rc

e
n

ta
g

e

Unified-us AMF-us
Unified-sy AMF-sy

-5%

15%

35%

55%

0 100 200 300

P
e
rc

e
n

ta
g

e

Unified-us AMF-us
Unified-sy AMF-sy

SQLite Database Transactions: Figure 17 presents the

transaction improvements triggered by our work, normal-

ized to native running. We prepare approximately 17 mil-

lion records for insert transaction and 3 million records for

each update, select, delete respectively. The histogram

shows that the throughput of in-memory database SQLite is

improved by up to 57.7% with an average of 40.6%. In

particularly, we define "throughput" as the number of

transactions executed per seconds, while in SPEC-CPU-

2006 criterion it means the number of instructions executed

per seconds. That is, our granularity of "throughput" is

larger than traditional ones but does not affect the results.

Redis Key-Value Store Requests: Finally, in Figure 18

we present the results of several popular several Redis op-

erations (set, get, lpush, lpop). AMF shows that it can

achieve average 25.1% requests improvement of set/get,

and average 18.5% requests improvement of lpush/lpop

compared to the conventional design. The reason for this

lies in providing more available space by AMF’s adaptive

PM provisioning mechanism just matches Redis’s in-

memory computing demand.

7. DISCUSSIONS
Tapping into Huge Pages. Linux supports huge page

and transparent huge page [42]. Huge Pages create pre-

allocated contiguous memory space designed to assist ap-

plication performance. However, this mechanism requires

the system software to implement its own support in user

space to take advantage of these potential performance

benefits. Huge page uses fewer pages to cover the physical

address space. As a result it requires fewer TLB entries and

incurs fewer TLB misses. In this study, huge pages allow

AMF to easily integrate more PMs.

Note that some NoSQL databases such as Couchbase [43]

usually need sparse memory access patterns and rarely have

contiguous access patterns. In addition, huge pages are not

swappable. Thus, it easily incurs data loss for some securi-

ty-sensitive applications. Huge pages require large areas of

contiguous physical memory, while a rabbit hole (memory

inner hole) begins when a Redis-server process is running

because of substantially allocations smaller than 2MB.

Storing Page Descriptors in PM. Storing the metadata

(i.e., page descriptors) in the PM requires complex OS revi-

sion. In addition, migrating page descriptors to PM space to

store metadata is not practical. The initialization of page

descriptors must be done at the OS booting procedure,

which introduces significant overhead. Even worse, page

descriptors itself are frequently changed data structures.

Storing them in PM significantly increases the burden of

the hardware and seriously decreases device lifetime.

Consistency. Previous works such as logging [21] [22],

shadow method [23], persistent transactions [24] [25],

light-weight method [26] [27] have provided effective

methods for guaranteeing the consistency. In this paper, the

consistency follows these assumptions: 1) the system sup-

ports an atomic write of 64 bits and 2) does not use flight

memory operations. We solve the consistency problem at

the memory controller layer similar to ThyNVM [28].

Wear Levering. Prior works [29] [31] proposed a few

mechanisms to promote PM lifetime at hardware/software

layer or from the perspective of hardware-software co-

design. As it is believed that wear levering will be resolved

at the memory controller layer in the near future, we omit

this issue in this study. Our work tries to decrease the bur-

den of hardware by considering wear levering.

8. RELATED WORK
As the release date of Intel Apache Pass DIMM [37] on

the Sky-Lake based servers approached, researchers and

engineers have made significant progress for introducing

PM into current computer systems. These works mainly

Fig. 13. Page faults with mixed benchmarks Fig. 14. Occupied size of SWAP partition

Fig. 15. Energy benefits from

adaptive memory fusion

Fig. 16. Impact of direct PM

pass-through on performance

Fig. 17. Performance impact of

AMF on SQLite database

Fig. 18. Performance impact of

AMF on Redis key-value store

0.00

0.20

0.40

0.60

0.80

1.00

P
a
g

e
 F

a
u

lt
(N

o
rm

a
li

z
e

d
)

Unifed AMF

0.00
0.20
0.40
0.60
0.80
1.00

O
c
c
u

p
ie

d
 S

W
A

P
 S

p
a
c
e

(N
o

rm
a
li

z
e

d
)

Unifed AMF

0

40000

80000

120000

160000

200000

128G 192G 256G 384G

E
n

e
rg

y

C
o

n
s

u
m

p
ti

o
n

 (
J
)

AMF Unifed

0.98

0.99

1.00

1.01

1.02

Copy Scale Add Triad

N
o

rm
al

iz
e

d

Ex
e

cu
ti

o
n

 T
im

e
AMF Unified

0

0.2

0.4

0.6

0.8

1

1.2

Insert Update Select Delete

N
o

rm
al

iz
e

d

Th
ro

u
gh

p
u

t

AMF Unified

0

30000

60000

90000

set get lpush lpop

O
p

e
ra

ti
o

n
s

 /
 S

e
c

AMF Unified

excavate PM’s persistent property [16] [17] [18], byte-

addressable property [13] [14] [15], and maximally relieve

the consistency problem [22] [25] [27] and wear leveling

problem [30] [38] [39] [20]. In contrast to these prior works,

this paper focuses on PM’s large-capacity property, from

the perspective of memory architecture and system soft-

ware, to integrate PM into current computer system.

Besides the above PM related studies, there are also a

few works highly related to our work.

 Memory Ballooning. Hypervisor employs memory bal-

looning technique to coordinate the available memory be-

tween the Virtual Machines (VMs) [40]. Our work differs

from this technique in four aspects. First, ballooning is

based on virtualization technology, while our work is based

on a native OS. Second, ballooning aims to optimize the

utilization of memory between VMs by the balloon driver,

while AMF aims at managing the PM space. Third, bal-

looning adjusts memory utilization in low granularity of

pages and often incurs page thrashing. We manage the PM

space in high granularity of sections, which is able to alle-

viate the overall memory pressure and never shrinks

memory-resident-set. Forth, all the memory space is detect-

able and available at initialization stage in the hypervisor.

Differently, AMF hides PM space for efficiency.

 Disaggregated Memory. Disaggregated memory [3] is a

perfect solution to enable memory capacity expansion

match the computational scaling. This work differs from

our work in the following aspects. First, their work aims to

resolve the memory capacity wall problem, while our work

targets to intelligently scale large-capacity memory. Second,

from the perspective of hardware architecture, their work

provides extra memory capacity by provisioning an addi-

tional separate physical memory blade. In contrast, we

build a new architecture to facilitate the compatible integra-

tion of PM on a NUMA-based machine. Third, their solu-

tion requires a virtualization layer to provide page-level

access to a memory blade, while our solution purely relies

on kernel revision to gain DRAM-alike access.

 Memory Hotplug. Memory hotplug [41] technology al-

lows users to increase/decrease memory capacity. This

technology consists of physical memory hotplug phase and

logical memory hotplug phase. The physical memory in

DIMM must first be initialized. Afterwards, the initialized

memory is turned from offline to online (this logical phase

called Memory Online). The differences between memory

hotplug and our work can be summarized as follows. First,

memory hotplug has wider application domain than AMF.

It is because memory hotplug is a physical memory recon-

figuration mechanism, which can handle the hardware er-

rors, balance the workload, support memory extension, etc.

Differently, AMF mainly provides an adaptive integrating

mechanism for the sake of decreasing memory pressure and

automatically managing the PM space. Second, memory

hotplug adjusts memory utilization by adding/deleting a

real memory device directly and the total physical memory

spaces can change dynamically. However, AMF adds the

detected PM space gradually and automatically makes them

available for applications (allocation and reclamation are

feasible). The total physical PM space is fixed in advance.

Third, memory hotplug requires updating the SRAT table

(a table in ACPI which includes memory info.) at its run-

ning stage. In contrast, AMF needn’t to update the table.

Finally, memory hotplug needs to modify the whole

memory subsystem, and our work only adds a kernel mod-

ule in local OS with minute revision.

9. CONCLUSION
In this paper, we propose an architecture which allows

the OS to manage DRAM and PM space in a combined

manner. Unlike traditional main memory subsystems,

which initialize all the physical memory at the boot stage,

our adaptive memory fusion (AMF) mechanism only ini-

tializes partial PM space to avoid instant expansion of ker-

nel metadata. Our agile system management strategy guar-

antees low performance overhead. We have implemented a

kernel module on a commercial server based on Linux-

4.5.0. Extensive evaluation shows that AMF allows

memory-intensive workloads to provide much better per-

formance than conventional design.

ACKNOWLEDGMENTS
The authors would like to thank all the anonymous re-

viewers for providing valuable feedbacks. This work is

supported by the National High Technology Research and

Development Program of China (No.2015AA015303) and

the Natural Science Foundation of China (No. 61472241,

No. 61502302, No. 61628208). Chao Li is also funded by a

CCF-Intel Young Faculty Research Program Award. Cor-

responding authors are Chao Li and Linpeng Huang at

Shanghai Jiao Tong University.

10. REFERENCES

[1] F. Färber, S. K. Cha, J. Primsch, C. Bornhövd, S. Sigg, and W.

Lehner, “SAPHANAdatabase: data management for modern busi-
ness applications,” ACM SIGMOD Record, vol. 40, issue. 4, 2012

[2] J. Ousterhout, A. Gopalan, A. Gupta, A. Kejriwal, C. Lee, B. Mon-

tazeri, D. Ongaro, S. J. Park, H. Qin, M. Rosenblum, S. Rumble, R.
Stutsman, and S. Yang, “The RAMCloud storage system,” ACM

Transactions on Computer Systems (TOCS), vol. 33, issue 3, 2015

[3] K. Lim, J. Chang, T. Mudge, P. Ranganathan, S. K. Reinhardt, and T.
F. Wenisch, “Disaggregated memory for expansion and sharing in

blade servers,” in ACM SIGARCH Computer Architecture News, vol.
37, pp. 267–278, ACM, 2009

[4] K. Lim, P. Ranganathan, J. Chang, C. Patel, T. Mudge, and S. Rein-
hardt, “Understanding and designing new server architectures for

emerging warehouse-computing environments,” in the 35th Interna-

tional Symposium on Computer Architecture (ISCA), 2008

[5] SNIA Researcher. "Bringing Persistent Memory Technology to SAP

HANA: Opportunities and challenges". https://www.snia.org
/sites/defaulat/files/PM-summit/2017 /presentations

[6] I. Paul, W. Huang, M. Arora, and S. Yalamanchili, “Harmonia:

Balancing compute and memory power in high-performance gpus,”
in the 42nd ACM/IEEE Annual International Symposium on Com-

puter Architecture (ISCA), 2015

[7] H. Huang, K. G. Shin, C. Lefurgy, K. Rajamani, T. Keller, E.
V.Hensbergen, and F. Rawson, “Cooperative software-hardware

power management for main memory,” in Workshop on Power-
Aware Computer Systems (HotPower), 2004

[8] A. Kolli, J. Rosen, S. Diestelhorst, A. Saidi, S. Pelley, S. Liu, P. M.

Chen, and T. F. Wenisch, “Delegated persist ordering,” in the 49th

Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO), 2016

[9] K. Bailey, L. Ceze, S. D. Gribble, and H. M. Levy, “Operating sys-

tem implications of fast, cheap, non-volatile memory.,” in HotOS-
XIII, 2011

[10] A. Awad, P. Manadhata, S. Haber, Y. Solihin, and W. Horne, “Silent

shredder: Zero-cost shredding for secure non-volatile main memory
controllers,” in Proceedings of the Twenty-First International Con-

ference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS), 2016

[11] V. Young, P. J. Nair, and M. K. Qureshi, “Deuce: Write-efficient

encryption for non-volatile memories,” in Proceedings of the 20th
International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), 2015

[12] S. Chhabra and Y. Solihin, “i-nvmm: a secure non-volatile main
memory system with incremental encryption,” in Proceedings of the

38th Annual International Symposium on Computer Architecture
(ISCA), 2011

[13] H. Volos, A. J. Tack, and M. M. Swift, “Mnemosyne: Lightweight

persistent memory,” in ACM SIGARCH Computer Architecture

News, vol. 39, pp. 91–104, 2011

[14] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K. Gupta, R.
Jhala, and S. Swanson, “Nv-heaps: making persistent objects fast

and safe with next-generation, non-volatile memories,” ACM Sigplan

Notices, vol. 46, no. 3, pp. 105–118, 2011

[15] T. Hwang, J. Jung, and Y. Won, “Heapo: Heap-based persistent

object store,” ACM Transactions on Storage (TOS), vol. 11, no. 1, p.
3, 2015

[16] S. R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz, D. Reddy, R.
Sankaran, and J. Jackson, “System software for persistent memory,”

in Proceedings of the Ninth European Conference on Computer Sys-

tems (EuroSys), 2014

[17] J. Ou, J. Shu, and Y. Lu, “A high performance file system for non-

volatile main memory,” in Proceedings of the Eleventh European
Conference on Computer Systems (EuroSys), 2016

[18] J. Xu and S. Swanson, “Nova: a log-structured file system for hybrid

volatile/non-volatile main memories,” in the 14th USENIX Confer-
ence on File and Storage Technologies (FAST), 2016

[19] Dave, “Dax and fsync: the cost of forgoing page structures.”
https://lwn.net/Articles/676737/

[20] S. Venkataraman, N. Tolia, P. Ranganathan, and R. H. Campbell,
“Consistent and durable data structures for non-volatile byte-

addressable memory,” in the 9th USENIX conference on File and

Storage Technologies (FAST), 2011

[21] J. Arulraj, A. Pavlo, and S. R. Dulloor, “Let’s talk about storage &

recovery methods for non-volatile memory database systems,” in the

2015 ACM SIGMOD International Conference on Management of
Data (SIGMOD), 2015

[22] W.-H. Kim, J. Kim, W. Baek, B. Nam, and Y. Won, “Nvwal: ex-
ploiting nvram in write-ahead logging,” in the Twenty-First Interna-

tional Conference on Architectural Support for Programming Lan-

guages and Operating Systems (ASPLOS), pp. 385–398, 2016

[23] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger,

and D. Coetzee, “Better i/o through byte-addressable, persistent
memory,” in the ACM SIGOPS 22nd Symposium on Operating Sys-

tems Principles (SOSP), pp. 133–146, ACM, 2009.

[24] A. Kolli, S. Pelley, A. Saidi, P. M. Chen, and T. F. Wenisch, “High-
performance transactions for persistent memories,” in the Twenty-

First International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS), 2016

[25] J. Seo, W.-H. Kim, W. Baek, B. Nam, and S. H. Noh, “Failure-

atomic slotted paging for persistent memory,” in the Twenty-Second
International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), 2017

[26] Y. Lu, J. Shu, L. Sun, and O. Mutlu, “Loose-ordering consistency for
persistent memory,” in the 32nd IEEE International Conference on

Computer Design (ICCD), IEEE, 2014.

[27] S. Nalli, S. Haria, M. D. Hill, M. M. Swift, H. Volos, and K. Keeton,

“An analysis of persistent memory use with whisper,” in the 22nd In-

ternational Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), 2017.

[28] J. Ren, J. Zhao, S. Khan, J. Choi, Y. Wu, and O. Mutlu, “Thynvm:

Enabling software-transparent crash consistency in persistent
memory systems,” in the 48th International Symposium on Microar-

chitecture (MICRO), 2015.

[29] M. K. Qureshi, A. Seznec, L. A. Lastras, and M. M. Franceschini,
“Practical and secure PCM systems by online detection of malicious

write streams,” in the 17th IEEE International Symposium on High

Performance Computer Architecture (HPCA), 2011.

[30] M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan, L. Lastras,

and B. Abali, “Enhancing lifetime and security of pcm-based main
memory with start-gap wear leveling,” in the 42nd Annual

IEEE/ACM International Symposium on Micro Architecture (MI-

CRO), 2009

[31] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable high per-

formance main memory system using phase-change memory tech-
nology,” in the International Symposium on Computer Architecture

(ISCA), 2009

[32] G. Dhiman, R. Ayoub, and T. Rosing, “Pdram: A hybrid pram and
ram main memory system,” in the 46th ACM/IEEE Design Automa-

tion Conference (DAC), pp. 664–669, IEEE, 2009

[33] H. Muhammad, “htop - an interactive process viewer for unix.”

https://hisham.hm/htop/

[34] M. Researcher, “Calculating memory system power for ddr3 intro-
duction.” /https://www.micron.com/support/toolsandutilities/power-

calc.2017/

[35] J. Mccalpin, “Stream: Sustainable memory bandwidth in high per-

formance computers.” https://www.cs.virginia.edu/stream/

[36] Redis, https://redis.io/.

[37] Trends in Storage for 2017, https://www.servethehome.com/trends-
in-storage-for-2017/

[38] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting phase
change memory as a scalable dram alternative,” in International

Symposium on Computer Architecture (ISCA), 2009

[39] E. Ipek, J. Condit, E. B. Nightingale, D. Burger, and T. Moscibroda,
“Dynamically replicated memory: building reliable systems from

nanoscale resistive memories,” in the 15th International Conference
on Architectural Support for Programming Languages and Operat-

ing Systems (ASPLOS), 2010

[40] C. A. Waldspurger, “Memory resource management in vmware esx
server,” ACM SIGOPS Operating Systems Review, vol. 36, no. SI, pp.

181–194, 2002

[41] D. Hansen, M. Kravetz, B. Christiansen, and M. Tolentino, “Hotplug
memory and the linux vm,” in Linux Symposium, Citeseer, 2004

[42] N. Agarwal and T. Wenisch, “Thermostat: Application-transparent
page management for two-tiered main memory,” in the Twenty-

Second International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS), 2017

[43] C. Researcher, “Couchbase.” https://www.couchbase.com/

[44] SNIA Researcher, Dr. Rajiv Y. Ranjan Co-founder & CTO "STT-

MRAM: Emerging NVM ", https://www.snia.org/, 2016

[45] Luc Thomas. "Basic Principles, Challenges and Opportunities of
STT-MRAM for Embedded Memory Applications" in MSST 2017

[46] Jung, Ju-Yong and Cho, Sangyeun. "Memorage: Emerging persistent
RAM based malleable main memory and storage architecture". in

the 27th international ACM conference on International conference
on supercomputing, 2013

[47] Y. Jin, M. Shihab and M. Jung. "Area, Power, and Latency Consid-

erations of STT-MRAM to Substitute for Main Memory”, The
Memory Forum, 2014

