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Review

« Sever-level, rack-level, cluster-level, faclility-level
« Major metrics of data center design

« Data center infrastructure: Power/Cooling/ICT

* The long tail concept

« Data center capacity utilization

« Types of power provisioning

* Modular data center and cooling



Outlines

« Computer Power Management Basics

* Discussion and Case Studies



Frequency Scaling
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Benefit
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* Benefit vs. Cost
— power demand « overall performance
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Intel ACPI Specification

« ACPI: Advanced Configuration and Power Interface
— An open standard
— OS can perform power management though it

Applications

OS Power Management

ACPI

Drivers

Hardware




Global System States (G-states)

G-states are high-level description of the platform states

GO (working)

— The working system state

G1 (sleeping)

— No computational task is performed

G2 (soft off)

— Powered down but can be restarted by interrupts

G3 (hard off)

— Mechanical off



Sleep States (S-states)

S-states are set in the BIOS and configured by the system

* GO0-S0: normal operation

¢ G1
— S1: processor clock is off
— S2: processor is off
— S3: suspend to RAM
— S4: suspend to disk

e G2-S5: halt state



S-State Transition Latency
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 Resume times from S3 can be an order of magnitude
better than those with S4 or S5

« The power-off times for S3 are significantly better
than for S4 and S5



Processor Power States (C-states)

GO0 and S0 together define a working platform state, at
which a range of C-states are defined to save power

« CO State (normal operating state)
— code is being executed

- C1 State (auto halt):
— The clock is gated, i.e., prevented from reaching the core

« (C3 State (sleep):
— Maintains architectural state but flushes data to shared LLC
— Shut down the clock generators

« CO6 State:

— Architectural states are saved to a dedicated SRAM
— Core voltage reduced to zero volts



Processor Performance State (P-states)

P-States talk about different operational modes (freq.)

« Multiple levels of clock frequency

— From PO (the highest performance) to Pn (the lowest performance)
« Sub states of CO

— Defines dynamic voltage and frequency scaling (DVFS) steps

« Switching latencies are negligible for most purposes

Frequency Voltage P-State
1.6 GHz 1484V PO
1.4 GHz 1.420V P1
1.2 GHz 1.276 V P2
1.0 GHz 1.164 V P3
800 MHz 1.036 V P4
600 MHz 0.956 V P5

Intel Pentium M at 1.6GHz
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e
Thermal Limitations

« Thermal design power (TDP)

— The maximum sustained power that should be used for design of
the processor thermal solution

Duty cycles of power peaks in
this region can be configurable
via PL3/PsysPL3

e e —— < Power could

Power iﬁ this region can be configured sustain here up to
via PL1 Tau/PsysPL1 Tau ~100s seconds

M P L e < Power could

sustain here
forever

Power ~ (Pwerage power)

Notel: Optional Feature, default is disabled o=

Package Power Control
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Outlines

* Discussion and Case Studies
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Discussion: Emerging Apps and Computational Sprinting
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Cores active (top row), cumulative computation (middle row) and
temperature (bottom row) over time for three execution modes: (a)
sustained, (b) sprint, and (c) sprint augmented with phase change material.
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Discussion: DVFS in Virtualized Cloud Environment

Assume the default time slice (credit) for vCPU is 30 ms and the
minimum sampling interval of frequency adjustment is 10 ms
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Discussion: Non-uniform Hardware Power Characteristics

Core to core (C2C) variation has been identified and the maximum
difference in core frequencies is estimated to be 20%

Min Voltage of AMD A10-5800K @3.8GHz
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IS
Discussion: Identifying the Power Management Bottleneck

In highly complex computing environment, a background task can
become the efficiency bottleneck if other jobs depend on it
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Case Study: SolarCore
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Chao Li, Wangyuan Zhang, Chang-Burm Cho, and Tao Li. “SolarCore: Solar Energy

Driven Multi-core Architecture Power Management”. Proc. the 17th IEEE Int. Symp. on

High-Performance Computer Architecture (HPCA), Feb. 2011. (Best Paper Award)

* Rethinking SolarCore’s Power Management Strategy
— What we can learn?

— What is the key limitations?

T ; ; ; ; T T T T
7:00am 8:00am  9:00am  10:00am 11:00am  12:00am  1:00pm  2:00pm  3:00pm  4:00pm  5:00pm

400

T 350

300

250

200

150

100

PV-generator voltage

17




Unique Solar Power Behavior

e Variable, non-linear power output

e Maximal power point (MPP)

— A special operation point that delivers
maximum electrical power

N s P Pmax

-V MPP Pmpp|- . Load P-V
Impp— - Load -V PL *




Tracking Coordination

e Move load I-V curve to MPP

— Tune the power converter
— Tune the multi-core processor

‘ i i °

= MPP

¥, Load
Y V

MPPT position can be tricky: LEFT side or RIGHT side?
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Multi-core Aware MPP Tracking

e Architecture support
— Per-core DVES 4 6.\//F- x 8.core=48-1oad.-levels ]

e Stepwise, successive tracking
— Progressively move the multi-core load to MPP

Z——> L\

<Step ?%Vlulti-core adapta))m
QO. <Step 2> dit]ect tracking diregion
K

Tune multi-core

S

Tune converter

<Step 1> Decrease the load if renewable
power supply drops
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Tracking # Performance

e Metrics: performance-time-product (PTP)
— Throughput x Runtime/Day = Total instructions committed
— Needs effective optimization along with the tracking

30 MPG vs. 15PG

T T,

\\ oy

OIL _

e Improve PTP using throughput-power ratio (TPR)
— Performance-per-watt evaluates computation efficiency
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Per-core Load Adaptation
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Calculate Throughput-Power Ratio

e Allocate precious power to high productive cores
— Predict the return on investment (ROI)

Basic Assumptions Power Model and Throughput Model
P=aCV*f — P =aCV (v, + A)=aV;’ +¢
fi =V + 4 T = IPC; x f; =bV; +d;
Optimization Goal | |TPR calculation ‘ ‘
PTP =Y T; x Runtime; < AT = AV }TPR _AT by :
i AP =3aV:2AV B
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TPR Calculation

e Profiling
— Two operation points: (V1, P1), (V2, P2)
— |IPC

P=aCV*f fi=uVi+A1
4 i = HVj po|l

P =aCVy (v, + A) =aV;> +c,

P1|———— y
Ti =|PCini =biVi-|-di : ! -
V1 V2
Compute a and c using
AT =bAV } TPR — AT b performance counter statistics
N B 2
AP =3aV;2AV AP 3aV
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Per-core Load Adaptation Policy

e Tune one core at each timestamp
— Increase/decrease on V/F level

Keeps tuning individual core until
reaching its highest or lowest V/F level

Distribute the additional renewable
power evenly across all the cores in a
round-robin fashion

Selects cores based on the throughput-
power ratio (TPR) metrics
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Performance Oriented Core Selection

e Core tuning table )
— Tracks core status .-~
— Periodically updated”

SolarCore "
QD
controller

\

\

e Operation rule
— Front pointer \\
* Voltage level < 6
* Chooses higher TP\B
— Rear pointer '
* Voltage level >0 \
* Chooses lower TPR

7/

Table format

Core ID |Voltage level

FofS e
7 | 6
6 6
4 | 3
3 | 6
1 | 5 |y
2 o | |

Core tuning table

high

ddl

ow
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SolarCore Management Timeline
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Summary, Reference, and Exercises

« (-States, S-States, C-States, P-States
« TDP, Turbo Boost
 Power management can be challenging

Reference: 6th Generation Intel® Processor Datasheet for
S-Platforms

Question: What would happen if a computer in state
S1/52/S3 loses all its AC connection or battery power?
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