Computer Architecture计算机体系结构

Lecture 11．Interconnection Networks

第十一讲，片上互联网络简介Chao Li，PhD．
李超博士

SJTU－SE346，Spring 2019

Review

- Data-level parallelism
- Vector processor and vector instruction
- VMPIS components, DAXPY, execution latency
- SIMD lanes, chaining, vector length register
- GPGPU, CUDA programming model
- TPC, SM, SP, warp scheduling, branch divergence
- CPU-GPU system

Outlines

- Introduction and Terminology
- Interconnection Topologies

A Simple Dedicated Link Network

Device A

Device B

The transmitter, link, and receiver collectively form a channel

- Links:
- Bundle of wires that carries a signal
- Channel:
- A single link between host or switch elements
- Buffer:
- To hold data as it is being transferred

Terminology

- Node:
- A network endpoint connected to a router/switch
- Switch/Router:
- Connects a fixed number of input channels to a fixed number of output channels; this number is called switch degree or radix
- Route/Path:
- A sequence of channels and switches; the number of switches through which packets had to traverse is referred to as hop count
- Message:
- The unit of information sent or received by network clients; it can be broken into a sequence of packets
- Network Interface:
- Compose and process messages

Network Characters

- A network is generally characterized by its
- Topology:
- Describes the physical interconnection structure of the network graph
- Routing algorithm:
- Determines which routes messages may flow through the network graph
- Switching strategy:
- Determines how the data in a message traverses its route
- Flow control mechanism:
- Determines when the message, or portions of it, move along its route

Properties of Network Topology

- Diameter
- The maximum shortest path between any two nodes
- Routing distance
- Number of links/hops along the route
- Average Distance
- Average number of hops across all valid routes
- Non-Blocking (Blocking)
- Can connect any idle input to any idle output
- Blocking arises due to paths sharing one or more links

Packet Format

- Packet:
- Consists of a header, a data payload, and a trailer

Header

Destination port
Message ID
Sequence number
Type
Payload
Trailer
Checksum

- The minimum unit of information that can be transferred across a link is called a flow control unit: flit

Network Switch

- Network switches implement the routing, arbitration, and switching functions of switched-media networks

Switching Strategy

- Switching strategy:
- Determines how the data in a message traverses its route
- e.g. circuit switching establishes a dedicated communications channel (circuit)
- e.g. packet switching: divides the data into packets that share the network
- Circuit vs. Packet:
- Circuit switching has better bandwidth
- Circuit switching has longer setup time

Performance Evaluation

- Link width: w
- Unit interval: $\boldsymbol{\tau}$
- Signaling rate: $f=1 / \boldsymbol{\tau}$
- Channel bandwidth: $\boldsymbol{b}=\boldsymbol{w} \cdot \boldsymbol{f}$
- Total bandwidth of all the channels (or links)
- the number of channels times the bandwidth per channel

Latency (Lower Bound)

- Sending overhead: Overhead
- Receiving overhead: Overhead
- Total routing time: $\boldsymbol{T}_{\boldsymbol{R}}$
- Arbitration time: $\boldsymbol{T}_{\boldsymbol{A}}$
- Switching time: $\boldsymbol{T}_{\boldsymbol{S}}$
- Total time of flight of the packet $\boldsymbol{T}_{\text {TotalProp }}$

Latency $=$

$$
\text { Overhead }_{s}+\left(T_{\text {TotalProp }}+T_{R}+T_{A}+T_{S}\right)+\frac{\text { Packet size }}{\text { Bandwidth }}+\text { Overhead }_{r}
$$

Outlines

- Introduction and Terminology
- Interconnection Topologies

Switch Network Topologies

- View switched network as a graph
- Vertices: nodes or switches
- Edges: communication paths
- Describes the structure of the network graph
- e.g. Direct network have a host node connected to each switch
- a.k.a. distributed switch
- e.g. Indirect network have hosts connected only to certain switches
- a.k.a. centralized switch
- Regular vs Irregular
- Regular network are widely used graphs such as grid and tree, etc.

Bus

- Connects all inputs to all outputs using a single switch ?
- Diameter is 1
- Degree is N
- No fault tolerance: single point of failure
- Low performance: bandwidth is $O(1)$

- Bus: the interconnect is mostly just wires
- Only one transaction in progress at a time
- Frequency affected by physical limitations

Crossbar

- Crossbar switch
- A type of fully-connected network
- Every node connected to all others
- O(N) bandwidth
- Cost of interconnect: O(N^2)
- Good for small number of nodes

- Crosspoint switch complexity increases quadratically with the number of ports
- Multistage interconnection networks reduces complexity

Linear Arrays and Rings

- Array
- Connected by bidirectional links

- Diameter is $\mathrm{N}-1$
- Average distance is about $2 / 3 \mathrm{~N}$
- Bisection width is 1

- Ring
- adding end-round direct connections
- Connecting the two ends of an array
- Assume unidirectional links:
- Diameter is N-1
- Average distance is $\mathrm{N} / 2$
- Bisection width is 1 link

Multidimensional Topology: 2D Mesh

- Arrays and rings generalize naturally to higher dimensions
- 2D Mesh
- Nodes are connected as a grid
- Multiple routes between a pair of nodes
- Non-uniform node-to-node latency
- Cost of interconnect: $O(\mathrm{~N})$
- Example:
- Intel Paragon 2D mesh (64×64)

Multidimensional Topology: 2D Torus

- Reduces the diameter of a mesh network
- Torus: adding end-round direct connections
- An extension of the 2D mesh
- A regular torus has long warp-around links
- Slightly lower latency while higher cost

Case Study: Tilera's iMesh

- Coupes tiles (cores) with five 2D mesh on-chip networks

A 3x3 grid of tiles

A single network crossbar

Trees (Optional)

- Trees features planar, hierarchical topology
- Employed as indirect networks with hosts as leaves
- Routing distance grows only logarithmically

Multistage Interconnection Network (Optional)

- Indirect networks with multiple layers of switches
- Omega network:
- Log(N) number of stages and N/2 switching units

Butterfly Topology (Optional)

- Butterfly is an important logarithmic network
- Can be viewed as a tree with multiple roots
- A d-dimensional indirect butterfly:
- Connects $N=2^{d}$ nodes ($\mathrm{d} \geq 2$)
- $d=\log _{2} N$ levels of switches

Basic butterfly building block

Hypercube (Optional)

- Also known as binary d-cubes $\mathrm{N}=2^{d}$
- Switch degree equals dimension: $d=\log _{2} N$
- Good bisection bandwidth
- k-ary d-cube is a d dimensional torus with k elements along each dimension: $\mathrm{N}=k^{d}$
- Each node is addressed by a d-vector

Summary

- Basic concepts: link/channel/buffer
- Switch degree, average distance
- Non-blocking network, direct/Indirect network
- Network performance, latency estimation
- Network switch and switching strategy
- Bus and crossbar
- Array, ring, mesh, torus, tree, butterfly, hypercube

References

－课本参考：J．Hennessy，D．Patterson．Computer Architecture，Fifth Edition：A Quantitative Approach．
－Appendix F．
－其它参考：D．Culler et al．，《Parallel Computer Architecture：A Hardware／Software Approach》， Second Edition．
－Chapters：10．1，10．2，10．3， 10.5
－课外阅读：D．Wentzlaff et al．，On－chip Interconnection Architecture of the Tile Processor，IEEE Micro

