Computer Architecture 计算机体系结构

Lecture 11. Interconnection Networks 第十一讲、片上互联网络简介

Chao Li, PhD.

李招 博士

SJTU-SE346, Spring 2019

Review

- Data-level parallelism
- Vector processor and vector instruction
- VMPIS components, DAXPY, execution latency
- SIMD lanes, chaining, vector length register
- GPGPU, CUDA programming model
- TPC, SM, SP, warp scheduling, branch divergence
- CPU-GPU system

- Introduction and Terminology
- Interconnection Topologies

A Simple Dedicated Link Network

The transmitter, link, and receiver collectively form a channel

- Links:
 - Bundle of wires that carries a signal
- Channel:
 - A single link between host or switch elements
- Buffer:
 - To hold data as it is being transferred

Terminology

- Node:
 - A network endpoint connected to a router/switch

• Switch/Router:

 Connects a fixed number of input channels to a fixed number of output channels; this number is called switch degree or radix

Route/Path:

 A sequence of channels and switches; the number of switches through which packets had to traverse is referred to as hop count

• Message:

 The unit of information sent or received by network clients; it can be broken into a sequence of packets

Network Interface:

Compose and process messages

Network Characters

- A network is generally characterized by its
 - Topology:
 - Describes the physical interconnection structure of the network graph

– Routing algorithm:

• Determines which routes messages may flow through the network graph

– Switching strategy:

• Determines how the data in a message traverses its route

– Flow control mechanism:

• Determines when the message, or portions of it, move along its route

Properties of Network Topology

• Diameter

- The maximum shortest path between any two nodes

Routing distance

- Number of links/hops along the route

Average Distance

- Average number of hops across all valid routes

Non-Blocking (Blocking)

- Can connect any idle input to any idle output
- Blocking arises due to paths sharing one or more links

Packet Format

- Packet:
 - Consists of a header, a data payload, and a trailer

	Head	der			
Destin	ation p	ort			
Message ID					
Sequence number				nber	Trailer
Туре				Payload	Checksum
				Data	

 The minimum unit of information that can be transferred across a link is called a flow control unit: *flit*

Network Switch

• Network switches implement the routing, arbitration, and switching functions of switched-media networks

internal structure of a network switch

Switching Strategy

• Switching strategy:

- Determines how the data in a message traverses its route
- e.g. circuit switching establishes a dedicated communications channel (circuit)
- e.g. packet switching: divides the data into packets that share the network

Circuit vs. Packet:

- Circuit switching has better bandwidth
- Circuit switching has longer setup time

Performance Evaluation

- Link width: w
- Unit interval: τ
- Signaling rate: $f = 1 / \tau$
- Channel bandwidth: $b = w \cdot f$
- Total bandwidth of all the channels (or links)
 - the number of channels times the bandwidth per channel

Latency (Lower Bound)

- Sending overhead: *Overhead*_s
- Receiving overhead: *Overhead*_r
- Total routing time: T_R
- Arbitration time: T_A
- Switching time: T_S
- Total time of flight of the packet $T_{TotalProp}$

Latency =

 $\textit{Overhead}_{s} + (T_{\textit{TotalProp}} + T_{\textit{R}} + T_{\textit{A}} + T_{\textit{S}}) + \frac{\textit{Packet size}}{\textit{Bandwidth}} + \textit{Overhead}_{r}$

- Introduction and Terminology
- Interconnection Topologies

Switch Network Topologies

- View switched network as a graph
 - Vertices: nodes or switches
 - Edges: communication paths
- Describes the structure of the network graph
 - e.g. Direct network have a host node connected to each switch
 - a.k.a. distributed switch
 - e.g. Indirect network have hosts connected only to certain switches
 - a.k.a. centralized switch
- Regular vs Irregular
 - Regular network are widely used graphs such as grid and tree, etc.

- Connects all inputs to all outputs using a single switch ?
 - Diameter is 1
 - Degree is N
 - No fault tolerance: single point of failure
 - Low performance: bandwidth is O(1)

- Bus: the interconnect is mostly just wires
 - Only one transaction in progress at a time
 - Frequency affected by physical limitations

Crossbar

- Crossbar switch
 - A type of fully-connected network
 - Every node connected to all others
 - O(N) bandwidth
 - Cost of interconnect: O(N^2)
 - Good for small number of nodes

- Crosspoint switch complexity increases quadratically with the number of ports
- Multistage interconnection networks reduces complexity

Linear Arrays and Rings

- Array
 - Connected by bidirectional links
 - Diameter is N-1
 - Average distance is about $^{2}/_{3}$ N
 - Bisection width is 1

- Ring
 - adding end-round direct connections
 - Connecting the two ends of an array
 - Assume unidirectional links:
 - Diameter is N-1
 - Average distance is N/2
 - Bisection width is 1 link

Multidimensional Topology: 2D Mesh

- Arrays and rings generalize naturally to higher dimensions
- 2D Mesh
 - Nodes are connected as a grid
 - Multiple routes between a pair of nodes
 - Non-uniform node-to-node latency
 - Cost of interconnect: O(N)
- Example:
 - Intel Paragon 2D mesh (64x64)

Multidimensional Topology: 2D Torus

- Reduces the diameter of a mesh network
- Torus: adding end-round direct connections
 - An extension of the 2D mesh
 - A regular torus has long warp-around links
 - Slightly lower latency while higher cost

Case Study: Tilera's iMesh

• Coupes tiles (cores) with five 2D mesh on-chip networks

20

Trees (Optional)

- Trees features planar, hierarchical topology
- Employed as indirect networks with hosts as leaves
- Routing distance grows only logarithmically

Multistage Interconnection Network (Optional)

- Indirect networks with multiple layers of switches
- Omega network:
 - Log(N) number of stages and N/2 switching units

CPU

Memory

Butterfly Topology (Optional)

- Butterfly is an important logarithmic network
 - Can be viewed as a tree with multiple roots
- A *d*-dimensional indirect butterfly:
 - Connects $N = 2^d$ nodes (d≥2)
 - $d = \log_2 N$ levels of switches

Basic butterfly building block

Hypercube (Optional)

- Also known as binary d-cubes $N = 2^d$
- Switch degree equals dimension: $d = \log_2 N$
- Good bisection bandwidth
- *k*-ary *d*-cube is a *d* dimensional torus with *k* elements along each dimension: $N = k^d$

Each node is addressed by a *d*-vector

- Basic concepts: link/channel/buffer
- Switch degree, average distance
- Non-blocking network, direct/Indirect network
- Network performance, latency estimation
- Network switch and switching strategy
- Bus and crossbar
- Array, ring, mesh, torus, tree, butterfly, hypercube

- 课本参考: J. Hennessy, D. Patterson. Computer Architecture, Fifth Edition: A Quantitative Approach.
 – Appendix F.
- 其它参考: D. Culler et al., 《Parallel Computer Architecture: A Hardware/Software Approach》, Second Edition.
 - Chapters: 10.1, 10.2, 10.3, 10.5
- 课外阅读: D. Wentzlaff et al., On-chip Interconnection Architecture of the Tile Processor, IEEE Micro

